sglang 0.4.7.post1__py3-none-any.whl → 0.4.8.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +8 -6
- sglang/srt/_custom_ops.py +2 -2
- sglang/srt/code_completion_parser.py +2 -44
- sglang/srt/configs/model_config.py +1 -0
- sglang/srt/constants.py +3 -0
- sglang/srt/conversation.py +14 -3
- sglang/srt/custom_op.py +11 -1
- sglang/srt/disaggregation/base/conn.py +2 -0
- sglang/srt/disaggregation/decode.py +22 -28
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +4 -3
- sglang/srt/disaggregation/mini_lb.py +34 -4
- sglang/srt/disaggregation/mooncake/conn.py +301 -64
- sglang/srt/disaggregation/mooncake/transfer_engine.py +31 -1
- sglang/srt/disaggregation/nixl/conn.py +94 -46
- sglang/srt/disaggregation/prefill.py +20 -15
- sglang/srt/disaggregation/utils.py +47 -18
- sglang/srt/distributed/parallel_state.py +12 -4
- sglang/srt/entrypoints/engine.py +27 -31
- sglang/srt/entrypoints/http_server.py +149 -79
- sglang/srt/entrypoints/http_server_engine.py +0 -3
- sglang/srt/entrypoints/openai/__init__.py +0 -0
- sglang/srt/{openai_api → entrypoints/openai}/protocol.py +115 -34
- sglang/srt/entrypoints/openai/serving_base.py +149 -0
- sglang/srt/entrypoints/openai/serving_chat.py +897 -0
- sglang/srt/entrypoints/openai/serving_completions.py +425 -0
- sglang/srt/entrypoints/openai/serving_embedding.py +170 -0
- sglang/srt/entrypoints/openai/serving_rerank.py +102 -0
- sglang/srt/entrypoints/openai/serving_score.py +61 -0
- sglang/srt/entrypoints/openai/usage_processor.py +81 -0
- sglang/srt/entrypoints/openai/utils.py +72 -0
- sglang/srt/function_call/base_format_detector.py +7 -4
- sglang/srt/function_call/deepseekv3_detector.py +1 -1
- sglang/srt/function_call/ebnf_composer.py +64 -10
- sglang/srt/function_call/function_call_parser.py +6 -6
- sglang/srt/function_call/llama32_detector.py +1 -1
- sglang/srt/function_call/mistral_detector.py +1 -1
- sglang/srt/function_call/pythonic_detector.py +1 -1
- sglang/srt/function_call/qwen25_detector.py +1 -1
- sglang/srt/{openai_api/utils.py → jinja_template_utils.py} +6 -5
- sglang/srt/layers/activation.py +28 -3
- sglang/srt/layers/attention/aiter_backend.py +5 -2
- sglang/srt/layers/attention/base_attn_backend.py +1 -1
- sglang/srt/layers/attention/cutlass_mla_backend.py +1 -0
- sglang/srt/layers/attention/flashattention_backend.py +43 -23
- sglang/srt/layers/attention/flashinfer_backend.py +9 -6
- sglang/srt/layers/attention/flashinfer_mla_backend.py +7 -4
- sglang/srt/layers/attention/flashmla_backend.py +5 -2
- sglang/srt/layers/attention/tbo_backend.py +3 -3
- sglang/srt/layers/attention/triton_backend.py +19 -11
- sglang/srt/layers/communicator.py +5 -5
- sglang/srt/layers/dp_attention.py +11 -2
- sglang/srt/layers/layernorm.py +44 -2
- sglang/srt/layers/linear.py +18 -1
- sglang/srt/layers/logits_processor.py +14 -5
- sglang/srt/layers/moe/ep_moe/kernels.py +159 -2
- sglang/srt/layers/moe/ep_moe/layer.py +286 -13
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +19 -2
- sglang/srt/layers/moe/fused_moe_native.py +7 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +13 -2
- sglang/srt/layers/moe/fused_moe_triton/layer.py +148 -26
- sglang/srt/layers/moe/topk.py +117 -4
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +6 -2
- sglang/srt/layers/quantization/fp8.py +25 -17
- sglang/srt/layers/quantization/fp8_utils.py +5 -4
- sglang/srt/layers/quantization/modelopt_quant.py +62 -8
- sglang/srt/layers/quantization/utils.py +5 -2
- sglang/srt/layers/rotary_embedding.py +144 -12
- sglang/srt/layers/sampler.py +1 -1
- sglang/srt/layers/vocab_parallel_embedding.py +14 -1
- sglang/srt/lora/lora_manager.py +173 -74
- sglang/srt/lora/mem_pool.py +49 -45
- sglang/srt/lora/utils.py +1 -1
- sglang/srt/managers/cache_controller.py +33 -15
- sglang/srt/managers/expert_distribution.py +21 -0
- sglang/srt/managers/io_struct.py +19 -14
- sglang/srt/managers/multimodal_processors/base_processor.py +44 -9
- sglang/srt/managers/multimodal_processors/gemma3n.py +97 -0
- sglang/srt/managers/schedule_batch.py +49 -32
- sglang/srt/managers/schedule_policy.py +70 -56
- sglang/srt/managers/scheduler.py +189 -68
- sglang/srt/managers/template_manager.py +226 -0
- sglang/srt/managers/tokenizer_manager.py +11 -8
- sglang/srt/managers/tp_worker.py +12 -2
- sglang/srt/managers/tp_worker_overlap_thread.py +11 -0
- sglang/srt/mem_cache/{paged_allocator.py → allocator.py} +125 -34
- sglang/srt/mem_cache/base_prefix_cache.py +52 -8
- sglang/srt/mem_cache/chunk_cache.py +11 -16
- sglang/srt/mem_cache/hiradix_cache.py +34 -23
- sglang/srt/mem_cache/memory_pool.py +118 -114
- sglang/srt/mem_cache/radix_cache.py +20 -16
- sglang/srt/model_executor/cuda_graph_runner.py +77 -46
- sglang/srt/model_executor/forward_batch_info.py +18 -5
- sglang/srt/model_executor/model_runner.py +27 -8
- sglang/srt/model_loader/loader.py +50 -8
- sglang/srt/model_loader/weight_utils.py +100 -2
- sglang/srt/models/deepseek_nextn.py +35 -30
- sglang/srt/models/deepseek_v2.py +255 -30
- sglang/srt/models/gemma3n_audio.py +949 -0
- sglang/srt/models/gemma3n_causal.py +1009 -0
- sglang/srt/models/gemma3n_mm.py +511 -0
- sglang/srt/models/glm4.py +312 -0
- sglang/srt/models/hunyuan.py +771 -0
- sglang/srt/models/mimo_mtp.py +2 -18
- sglang/srt/reasoning_parser.py +21 -11
- sglang/srt/server_args.py +51 -9
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +131 -10
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +125 -12
- sglang/srt/speculative/eagle_utils.py +80 -8
- sglang/srt/speculative/eagle_worker.py +124 -41
- sglang/srt/torch_memory_saver_adapter.py +19 -15
- sglang/srt/two_batch_overlap.py +4 -1
- sglang/srt/utils.py +248 -11
- sglang/test/test_block_fp8_ep.py +1 -0
- sglang/test/test_utils.py +1 -0
- sglang/version.py +1 -1
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.post1.dist-info}/METADATA +4 -10
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.post1.dist-info}/RECORD +121 -105
- sglang/srt/entrypoints/verl_engine.py +0 -179
- sglang/srt/openai_api/adapter.py +0 -2148
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.post1.dist-info}/WHEEL +0 -0
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.post1.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.7.post1.dist-info → sglang-0.4.8.post1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,312 @@
|
|
1
|
+
# Copyright 2023-2024 SGLang Team
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
#
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
+
#
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
+
# See the License for the specific language governing permissions and
|
12
|
+
# limitations under the License.
|
13
|
+
# ==============================================================================
|
14
|
+
|
15
|
+
# Modeling from:
|
16
|
+
# ./llama.py and
|
17
|
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm4/modular_glm4.py
|
18
|
+
"""Inference-only GLM4 model compatible with THUDM weights."""
|
19
|
+
|
20
|
+
from typing import Iterable, List, Optional, Tuple, Union
|
21
|
+
|
22
|
+
import torch
|
23
|
+
from torch import nn
|
24
|
+
from transformers import Glm4Config
|
25
|
+
|
26
|
+
from sglang.srt.distributed import get_tensor_model_parallel_world_size
|
27
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
28
|
+
from sglang.srt.layers.linear import QKVParallelLinear, RowParallelLinear
|
29
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
30
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
31
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
32
|
+
from sglang.srt.layers.rotary_embedding import get_rope
|
33
|
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
34
|
+
ParallelLMHead,
|
35
|
+
VocabParallelEmbedding,
|
36
|
+
)
|
37
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
38
|
+
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
39
|
+
from sglang.srt.models.llama import LlamaMLP as Glm4MLP
|
40
|
+
from sglang.srt.utils import add_prefix, make_layers
|
41
|
+
|
42
|
+
|
43
|
+
class Glm4Attention(nn.Module):
|
44
|
+
def __init__(
|
45
|
+
self,
|
46
|
+
config,
|
47
|
+
layer_id: int = 0,
|
48
|
+
quant_config: Optional[QuantizationConfig] = None,
|
49
|
+
prefix: str = "",
|
50
|
+
):
|
51
|
+
super().__init__()
|
52
|
+
self.hidden_size = config.hidden_size
|
53
|
+
tp_size = get_tensor_model_parallel_world_size()
|
54
|
+
self.total_num_heads = config.num_attention_heads
|
55
|
+
assert self.total_num_heads % tp_size == 0
|
56
|
+
self.num_heads = self.total_num_heads // tp_size
|
57
|
+
self.total_num_kv_heads = config.num_key_value_heads
|
58
|
+
if self.total_num_kv_heads >= tp_size:
|
59
|
+
# Number of KV heads is greater than TP size, so we partition
|
60
|
+
# the KV heads across multiple tensor parallel GPUs.
|
61
|
+
assert self.total_num_kv_heads % tp_size == 0
|
62
|
+
else:
|
63
|
+
# Number of KV heads is less than TP size, so we replicate
|
64
|
+
# the KV heads across multiple tensor parallel GPUs.
|
65
|
+
assert tp_size % self.total_num_kv_heads == 0
|
66
|
+
partial_rotary_factor = getattr(config, "partial_rotary_factor", 0.5)
|
67
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
68
|
+
self.head_dim = config.hidden_size // self.total_num_heads
|
69
|
+
self.q_size = self.num_heads * self.head_dim
|
70
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
71
|
+
self.scaling = self.head_dim**-0.5
|
72
|
+
self.rope_theta = getattr(config, "rope_theta", 1000000)
|
73
|
+
self.rope_scaling = getattr(config, "rope_scaling", None)
|
74
|
+
|
75
|
+
self.qkv_proj = QKVParallelLinear(
|
76
|
+
self.hidden_size,
|
77
|
+
self.head_dim,
|
78
|
+
self.total_num_heads,
|
79
|
+
self.total_num_kv_heads,
|
80
|
+
bias=config.attention_bias,
|
81
|
+
quant_config=quant_config,
|
82
|
+
prefix=add_prefix("qkv_proj", prefix),
|
83
|
+
)
|
84
|
+
self.o_proj = RowParallelLinear(
|
85
|
+
self.total_num_heads * self.head_dim,
|
86
|
+
self.hidden_size,
|
87
|
+
bias=False,
|
88
|
+
quant_config=quant_config,
|
89
|
+
prefix=add_prefix("o_proj", prefix),
|
90
|
+
)
|
91
|
+
|
92
|
+
self.rotary_emb = get_rope(
|
93
|
+
self.head_dim,
|
94
|
+
rotary_dim=self.head_dim,
|
95
|
+
max_position=config.max_position_embeddings,
|
96
|
+
base=self.rope_theta,
|
97
|
+
rope_scaling=self.rope_scaling,
|
98
|
+
partial_rotary_factor=partial_rotary_factor,
|
99
|
+
is_neox_style=False,
|
100
|
+
)
|
101
|
+
self.attn = RadixAttention(
|
102
|
+
self.num_heads,
|
103
|
+
self.head_dim,
|
104
|
+
self.scaling,
|
105
|
+
num_kv_heads=self.num_kv_heads,
|
106
|
+
layer_id=layer_id,
|
107
|
+
quant_config=quant_config,
|
108
|
+
prefix=add_prefix("attn", prefix),
|
109
|
+
)
|
110
|
+
|
111
|
+
def forward(
|
112
|
+
self,
|
113
|
+
positions: torch.Tensor,
|
114
|
+
hidden_states: torch.Tensor,
|
115
|
+
forward_batch: ForwardBatch,
|
116
|
+
) -> torch.Tensor:
|
117
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
118
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
119
|
+
q, k = self.rotary_emb(positions, q, k)
|
120
|
+
context_layer = self.attn(
|
121
|
+
q,
|
122
|
+
k,
|
123
|
+
v,
|
124
|
+
forward_batch,
|
125
|
+
)
|
126
|
+
attn_output, _ = self.o_proj(context_layer)
|
127
|
+
return attn_output
|
128
|
+
|
129
|
+
|
130
|
+
class Glm4DecoderLayer(nn.Module):
|
131
|
+
"""A single transformer layer.
|
132
|
+
|
133
|
+
Transformer layer takes input with size [s, b, h] and returns an
|
134
|
+
output of the same size.
|
135
|
+
"""
|
136
|
+
|
137
|
+
def __init__(
|
138
|
+
self,
|
139
|
+
config,
|
140
|
+
layer_id: int,
|
141
|
+
quant_config: Optional[QuantizationConfig] = None,
|
142
|
+
prefix: str = "",
|
143
|
+
):
|
144
|
+
super().__init__()
|
145
|
+
# Self attention.
|
146
|
+
self.self_attn = Glm4Attention(
|
147
|
+
config, layer_id, quant_config, prefix=add_prefix("self_attn", prefix)
|
148
|
+
)
|
149
|
+
|
150
|
+
# MLP
|
151
|
+
self.mlp = Glm4MLP(
|
152
|
+
config.hidden_size,
|
153
|
+
intermediate_size=config.intermediate_size,
|
154
|
+
hidden_act=config.hidden_act,
|
155
|
+
quant_config=quant_config,
|
156
|
+
prefix=add_prefix("mlp", prefix),
|
157
|
+
)
|
158
|
+
|
159
|
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
160
|
+
self.post_attention_layernorm = RMSNorm(
|
161
|
+
config.hidden_size, eps=config.rms_norm_eps
|
162
|
+
)
|
163
|
+
self.post_self_attn_layernorm = RMSNorm(
|
164
|
+
config.hidden_size, eps=config.rms_norm_eps
|
165
|
+
)
|
166
|
+
self.post_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
167
|
+
|
168
|
+
def forward(
|
169
|
+
self,
|
170
|
+
positions: torch.Tensor,
|
171
|
+
hidden_states: torch.Tensor,
|
172
|
+
forward_batch: ForwardBatch,
|
173
|
+
residual: Optional[torch.Tensor],
|
174
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
175
|
+
# Self Attention
|
176
|
+
if residual is None:
|
177
|
+
residual = hidden_states
|
178
|
+
hidden_states = self.input_layernorm(hidden_states)
|
179
|
+
else:
|
180
|
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
181
|
+
hidden_states = self.self_attn(
|
182
|
+
positions=positions,
|
183
|
+
hidden_states=hidden_states,
|
184
|
+
forward_batch=forward_batch,
|
185
|
+
)
|
186
|
+
hidden_states = self.post_self_attn_layernorm(hidden_states)
|
187
|
+
|
188
|
+
# Fully Connected
|
189
|
+
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
190
|
+
hidden_states = self.mlp(hidden_states)
|
191
|
+
hidden_states = self.post_mlp_layernorm(hidden_states)
|
192
|
+
|
193
|
+
return hidden_states, residual
|
194
|
+
|
195
|
+
|
196
|
+
class Glm4Model(nn.Module):
|
197
|
+
def __init__(
|
198
|
+
self,
|
199
|
+
config: Glm4Config,
|
200
|
+
quant_config: Optional[QuantizationConfig] = None,
|
201
|
+
prefix: str = "",
|
202
|
+
) -> None:
|
203
|
+
super().__init__()
|
204
|
+
self.config = config
|
205
|
+
self.embed_tokens = VocabParallelEmbedding(
|
206
|
+
config.vocab_size,
|
207
|
+
config.hidden_size,
|
208
|
+
quant_config=quant_config,
|
209
|
+
prefix=add_prefix("embed_tokens", prefix),
|
210
|
+
)
|
211
|
+
self.layers = make_layers(
|
212
|
+
config.num_hidden_layers,
|
213
|
+
lambda idx, prefix: Glm4DecoderLayer(
|
214
|
+
config=config, layer_id=idx, quant_config=quant_config, prefix=prefix
|
215
|
+
),
|
216
|
+
prefix="model.layers",
|
217
|
+
)
|
218
|
+
|
219
|
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
220
|
+
|
221
|
+
@torch.no_grad()
|
222
|
+
def forward(
|
223
|
+
self,
|
224
|
+
input_ids: torch.Tensor,
|
225
|
+
positions: torch.Tensor,
|
226
|
+
forward_batch: ForwardBatch,
|
227
|
+
input_embeds: torch.Tensor = None,
|
228
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
|
229
|
+
if input_embeds is None:
|
230
|
+
hidden_states = self.embed_tokens(input_ids)
|
231
|
+
else:
|
232
|
+
hidden_states = input_embeds
|
233
|
+
residual = None
|
234
|
+
for layer in self.layers:
|
235
|
+
hidden_states, residual = layer(
|
236
|
+
positions,
|
237
|
+
hidden_states,
|
238
|
+
forward_batch,
|
239
|
+
residual,
|
240
|
+
)
|
241
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
242
|
+
|
243
|
+
return hidden_states
|
244
|
+
|
245
|
+
|
246
|
+
class Glm4ForCausalLM(nn.Module):
|
247
|
+
def __init__(
|
248
|
+
self,
|
249
|
+
config: Glm4Config,
|
250
|
+
quant_config: Optional[QuantizationConfig] = None,
|
251
|
+
prefix: str = "",
|
252
|
+
):
|
253
|
+
super().__init__()
|
254
|
+
self.config: Glm4Config = config
|
255
|
+
self.quant_config = quant_config
|
256
|
+
self.model = Glm4Model(config, quant_config, add_prefix("model", prefix))
|
257
|
+
if config.tie_word_embeddings:
|
258
|
+
self.lm_head = self.model.embed_tokens
|
259
|
+
else:
|
260
|
+
self.lm_head = ParallelLMHead(
|
261
|
+
config.vocab_size,
|
262
|
+
config.hidden_size,
|
263
|
+
quant_config=quant_config,
|
264
|
+
prefix="lm_head",
|
265
|
+
)
|
266
|
+
self.logits_processor = LogitsProcessor(config)
|
267
|
+
|
268
|
+
@torch.no_grad()
|
269
|
+
def forward(
|
270
|
+
self,
|
271
|
+
input_ids: torch.Tensor,
|
272
|
+
positions: torch.Tensor,
|
273
|
+
forward_batch: ForwardBatch,
|
274
|
+
) -> torch.Tensor:
|
275
|
+
hidden_states = self.model(input_ids, positions, forward_batch)
|
276
|
+
return self.logits_processor(
|
277
|
+
input_ids, hidden_states, self.lm_head, forward_batch
|
278
|
+
)
|
279
|
+
|
280
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
281
|
+
stacked_params_mapping = [
|
282
|
+
# (param_name, weight_name, shard_id)
|
283
|
+
(".qkv_proj", ".q_proj", "q"),
|
284
|
+
(".qkv_proj", ".k_proj", "k"),
|
285
|
+
(".qkv_proj", ".v_proj", "v"),
|
286
|
+
(".gate_up_proj", ".gate_proj", 0),
|
287
|
+
(".gate_up_proj", ".up_proj", 1),
|
288
|
+
]
|
289
|
+
params_dict = dict(self.named_parameters())
|
290
|
+
for name, loaded_weight in weights:
|
291
|
+
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
292
|
+
continue
|
293
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
294
|
+
if weight_name not in name:
|
295
|
+
continue
|
296
|
+
name = name.replace(weight_name, param_name)
|
297
|
+
param = params_dict[name]
|
298
|
+
weight_loader = param.weight_loader
|
299
|
+
weight_loader(param, loaded_weight, shard_id)
|
300
|
+
break
|
301
|
+
else:
|
302
|
+
if name in params_dict.keys():
|
303
|
+
param = params_dict[name]
|
304
|
+
weight_loader = getattr(
|
305
|
+
param, "weight_loader", default_weight_loader
|
306
|
+
)
|
307
|
+
weight_loader(param, loaded_weight)
|
308
|
+
else:
|
309
|
+
raise KeyError(f"Parameter '{name}' not found in model.")
|
310
|
+
|
311
|
+
|
312
|
+
EntryClass = [Glm4ForCausalLM]
|