sglang 0.4.6.post5__py3-none-any.whl → 0.4.7.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +2 -0
- sglang/api.py +7 -0
- sglang/bench_offline_throughput.py +10 -4
- sglang/bench_one_batch_server.py +67 -11
- sglang/bench_serving.py +86 -75
- sglang/lang/backend/runtime_endpoint.py +24 -1
- sglang/lang/interpreter.py +40 -1
- sglang/lang/ir.py +27 -0
- sglang/math_utils.py +8 -0
- sglang/profiler.py +167 -0
- sglang/srt/_custom_ops.py +34 -0
- sglang/srt/configs/internvl.py +8 -12
- sglang/srt/configs/model_config.py +33 -1
- sglang/srt/constrained/base_grammar_backend.py +5 -2
- sglang/srt/constrained/llguidance_backend.py +9 -8
- sglang/srt/constrained/outlines_backend.py +5 -4
- sglang/srt/constrained/xgrammar_backend.py +18 -18
- sglang/srt/conversation.py +52 -8
- sglang/srt/custom_op.py +38 -3
- sglang/srt/debug_utils.py +74 -0
- sglang/srt/disaggregation/base/__init__.py +1 -1
- sglang/srt/disaggregation/base/conn.py +25 -11
- sglang/srt/disaggregation/common/__init__.py +5 -0
- sglang/srt/disaggregation/common/conn.py +407 -0
- sglang/srt/disaggregation/common/utils.py +42 -0
- sglang/srt/disaggregation/decode.py +261 -52
- sglang/srt/disaggregation/fake/__init__.py +1 -1
- sglang/srt/disaggregation/fake/conn.py +16 -9
- sglang/srt/disaggregation/kv_events.py +60 -5
- sglang/srt/disaggregation/launch_lb.py +140 -0
- sglang/srt/disaggregation/mini_lb.py +29 -48
- sglang/srt/disaggregation/mooncake/__init__.py +1 -1
- sglang/srt/disaggregation/mooncake/conn.py +446 -149
- sglang/srt/disaggregation/mooncake/transfer_engine.py +32 -16
- sglang/srt/disaggregation/nixl/__init__.py +6 -1
- sglang/srt/disaggregation/nixl/conn.py +134 -437
- sglang/srt/disaggregation/prefill.py +130 -43
- sglang/srt/disaggregation/utils.py +127 -86
- sglang/srt/distributed/device_communicators/pymscclpp.py +315 -0
- sglang/srt/distributed/parallel_state.py +52 -5
- sglang/srt/entrypoints/EngineBase.py +6 -0
- sglang/srt/entrypoints/engine.py +116 -5
- sglang/srt/entrypoints/http_server.py +28 -4
- sglang/srt/eplb_simulator/__init__.py +1 -0
- sglang/srt/eplb_simulator/reader.py +51 -0
- sglang/srt/function_call/base_format_detector.py +138 -86
- sglang/srt/function_call/deepseekv3_detector.py +54 -6
- sglang/srt/function_call/ebnf_composer.py +33 -19
- sglang/srt/function_call/function_call_parser.py +27 -0
- sglang/srt/function_call/llama32_detector.py +33 -14
- sglang/srt/function_call/mistral_detector.py +73 -26
- sglang/srt/function_call/pythonic_detector.py +86 -20
- sglang/srt/function_call/qwen25_detector.py +64 -10
- sglang/srt/function_call/utils.py +17 -0
- sglang/srt/hf_transformers_utils.py +4 -0
- sglang/srt/layers/activation.py +19 -0
- sglang/srt/layers/attention/aiter_backend.py +503 -125
- sglang/srt/layers/attention/base_attn_backend.py +4 -0
- sglang/srt/layers/attention/cutlass_mla_backend.py +40 -34
- sglang/srt/layers/attention/flashattention_backend.py +137 -63
- sglang/srt/layers/attention/flashinfer_backend.py +46 -3
- sglang/srt/layers/attention/flashinfer_mla_backend.py +59 -25
- sglang/srt/layers/attention/flashmla_backend.py +2 -10
- sglang/srt/layers/attention/intel_amx_backend.py +128 -0
- sglang/srt/layers/attention/tbo_backend.py +232 -0
- sglang/srt/layers/attention/torch_native_backend.py +3 -0
- sglang/srt/layers/attention/triton_backend.py +304 -65
- sglang/srt/layers/attention/triton_ops/decode_attention.py +2 -7
- sglang/srt/layers/attention/triton_ops/extend_attention.py +12 -4
- sglang/srt/layers/attention/vision.py +51 -24
- sglang/srt/layers/communicator.py +281 -197
- sglang/srt/layers/dp_attention.py +6 -5
- sglang/srt/layers/layernorm.py +30 -19
- sglang/srt/layers/linear.py +0 -4
- sglang/srt/layers/logits_processor.py +0 -12
- sglang/srt/layers/moe/cutlass_moe.py +170 -7
- sglang/srt/layers/moe/cutlass_moe_params.py +169 -0
- sglang/srt/layers/moe/ep_moe/kernels.py +33 -11
- sglang/srt/layers/moe/ep_moe/layer.py +136 -72
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +24 -45
- sglang/srt/layers/moe/fused_moe_native.py +4 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_2_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=257,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +221 -29
- sglang/srt/layers/moe/fused_moe_triton/layer.py +34 -4
- sglang/srt/layers/moe/topk.py +60 -26
- sglang/srt/layers/multimodal.py +3 -3
- sglang/srt/layers/pooler.py +56 -0
- sglang/srt/layers/quantization/__init__.py +3 -2
- sglang/srt/layers/quantization/blockwise_int8.py +3 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +5 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/__init__.py +1 -0
- sglang/srt/layers/quantization/{deep_gemm.py → deep_gemm_wrapper/compile_utils.py} +69 -127
- sglang/srt/layers/quantization/deep_gemm_wrapper/configurer.py +32 -0
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +110 -0
- sglang/srt/layers/quantization/fp8.py +28 -23
- sglang/srt/layers/quantization/fp8_kernel.py +156 -75
- sglang/srt/layers/quantization/fp8_utils.py +250 -69
- sglang/srt/layers/quantization/modelopt_quant.py +334 -7
- sglang/srt/layers/quantization/moe_wna16.py +3 -0
- sglang/srt/layers/quantization/w8a8_fp8.py +3 -0
- sglang/srt/layers/quantization/w8a8_int8.py +3 -0
- sglang/srt/layers/radix_attention.py +2 -3
- sglang/srt/layers/rotary_embedding.py +6 -12
- sglang/srt/layers/sampler.py +80 -79
- sglang/srt/layers/utils.py +6 -0
- sglang/srt/lora/layers.py +12 -15
- sglang/srt/lora/lora.py +49 -5
- sglang/srt/lora/lora_manager.py +98 -39
- sglang/srt/lora/mem_pool.py +28 -21
- sglang/srt/lora/utils.py +17 -13
- sglang/srt/managers/cache_controller.py +2 -1
- sglang/srt/managers/data_parallel_controller.py +13 -5
- sglang/srt/managers/eplb_algorithms/__init__.py +63 -0
- sglang/srt/managers/eplb_algorithms/deepseek.py +223 -0
- sglang/srt/managers/{deepseek_eplb.py → eplb_algorithms/deepseek_vec.py} +5 -7
- sglang/srt/managers/eplb_manager.py +55 -14
- sglang/srt/managers/expert_distribution.py +220 -46
- sglang/srt/managers/expert_location.py +110 -56
- sglang/srt/managers/expert_location_dispatch.py +23 -6
- sglang/srt/managers/io_struct.py +43 -8
- sglang/srt/managers/mm_utils.py +88 -38
- sglang/srt/managers/multimodal_processors/base_processor.py +190 -18
- sglang/srt/managers/multimodal_processors/gemma3.py +4 -31
- sglang/srt/managers/multimodal_processors/internvl.py +4 -0
- sglang/srt/managers/multimodal_processors/kimi_vl.py +15 -34
- sglang/srt/managers/multimodal_processors/minicpm.py +2 -1
- sglang/srt/managers/multimodal_processors/phi4mm.py +87 -0
- sglang/srt/managers/multimodal_processors/qwen_vl.py +22 -64
- sglang/srt/managers/multimodal_processors/vila.py +85 -0
- sglang/srt/managers/schedule_batch.py +173 -38
- sglang/srt/managers/scheduler.py +376 -127
- sglang/srt/managers/tokenizer_manager.py +163 -19
- sglang/srt/managers/utils.py +0 -4
- sglang/srt/mem_cache/chunk_cache.py +1 -0
- sglang/srt/mem_cache/hiradix_cache.py +4 -2
- sglang/srt/mem_cache/memory_pool.py +111 -407
- sglang/srt/mem_cache/memory_pool_host.py +380 -0
- sglang/srt/mem_cache/radix_cache.py +36 -12
- sglang/srt/metrics/collector.py +9 -0
- sglang/srt/model_executor/cuda_graph_runner.py +191 -113
- sglang/srt/model_executor/expert_location_updater.py +157 -22
- sglang/srt/model_executor/forward_batch_info.py +52 -22
- sglang/srt/model_executor/model_runner.py +102 -62
- sglang/srt/model_loader/loader.py +8 -1
- sglang/srt/model_loader/utils.py +67 -1
- sglang/srt/models/bert.py +113 -13
- sglang/srt/models/deepseek_nextn.py +1 -1
- sglang/srt/models/deepseek_v2.py +623 -290
- sglang/srt/models/gemma3_causal.py +7 -0
- sglang/srt/models/gemma3_mm.py +19 -14
- sglang/srt/models/idefics2.py +342 -0
- sglang/srt/models/internvl.py +46 -102
- sglang/srt/models/kimi_vl.py +4 -4
- sglang/srt/models/llama.py +1 -1
- sglang/srt/models/minicpmo.py +2 -5
- sglang/srt/models/minicpmv.py +3 -295
- sglang/srt/models/phi4mm.py +512 -0
- sglang/srt/models/qwen2.py +38 -9
- sglang/srt/models/qwen2_5_vl.py +3 -9
- sglang/srt/models/qwen2_eagle.py +4 -1
- sglang/srt/models/qwen2_moe.py +58 -191
- sglang/srt/models/qwen2_vl.py +3 -9
- sglang/srt/models/qwen3.py +41 -10
- sglang/srt/models/qwen3_moe.py +230 -191
- sglang/srt/models/registry.py +9 -1
- sglang/srt/models/roberta.py +117 -9
- sglang/srt/models/transformers.py +291 -0
- sglang/srt/models/vila.py +305 -0
- sglang/srt/openai_api/adapter.py +248 -28
- sglang/srt/openai_api/protocol.py +68 -3
- sglang/srt/openai_api/utils.py +172 -0
- sglang/srt/operations.py +37 -2
- sglang/srt/operations_strategy.py +200 -24
- sglang/srt/sampling/sampling_batch_info.py +37 -1
- sglang/srt/sampling/sampling_params.py +4 -1
- sglang/srt/server_args.py +381 -209
- sglang/srt/speculative/build_eagle_tree.py +9 -9
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +12 -14
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +256 -0
- sglang/srt/speculative/eagle_utils.py +440 -200
- sglang/srt/speculative/eagle_worker.py +234 -63
- sglang/srt/two_batch_overlap.py +637 -0
- sglang/srt/utils.py +187 -7
- sglang/test/attention/test_prefix_chunk_info.py +2 -0
- sglang/test/runners.py +54 -10
- sglang/test/send_one.py +4 -0
- sglang/test/test_block_fp8.py +1 -0
- sglang/test/test_block_fp8_deep_gemm_blackwell.py +252 -0
- sglang/test/test_block_fp8_ep.py +1 -0
- sglang/test/test_cutlass_moe.py +3 -3
- sglang/test/test_fp4_moe.py +248 -0
- sglang/test/test_utils.py +82 -7
- sglang/utils.py +9 -0
- sglang/version.py +1 -1
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.post1.dist-info}/METADATA +17 -14
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.post1.dist-info}/RECORD +359 -321
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.post1.dist-info}/WHEEL +1 -1
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1024,device_name=NVIDIA_H200.json → triton_3_1_0/E=16,N=1024,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json → triton_3_1_0/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json → triton_3_1_0/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=1280,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=1280,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=2560,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=2560,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=320,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=320,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_1_0/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=64,N=640,device_name=NVIDIA_H200.json → triton_3_1_0/E=64,N=640,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=14336,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=14336,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=14336,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=1792,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=1792,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=1792,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=2048,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=2048,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=3584,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=3584,device_name=NVIDIA_L40S.json → triton_3_1_0/E=8,N=3584,device_name=NVIDIA_L40S.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=4096,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=4096,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI300X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI300X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Instinct_MI325X.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Instinct_MI325X.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=AMD_Radeon_Graphics.json → triton_3_1_0/E=8,N=7168,device_name=AMD_Radeon_Graphics.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=7168,device_name=NVIDIA_H200.json → triton_3_1_0/E=8,N=7168,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json → triton_3_1_0/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=192,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=192,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=384,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=384,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H100_80GB_HBM3.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=768,device_name=NVIDIA_H200.json → triton_3_2_0/E=128,N=768,device_name=NVIDIA_H200.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=128,N=96,device_name=NVIDIA_H20.json → triton_3_2_0/E=128,N=96,device_name=NVIDIA_H20.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=264,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_2_0/E=272,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- /sglang/srt/layers/moe/fused_moe_triton/configs/{E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json → triton_3_2_0/E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json} +0 -0
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.post1.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.6.post5.dist-info → sglang-0.4.7.post1.dist-info}/top_level.txt +0 -0
sglang/test/test_cutlass_moe.py
CHANGED
@@ -6,7 +6,7 @@ import triton # Added import
|
|
6
6
|
import triton.testing # Added import
|
7
7
|
from transformers import AutoConfig
|
8
8
|
|
9
|
-
from sglang.srt.layers.moe.cutlass_moe import
|
9
|
+
from sglang.srt.layers.moe.cutlass_moe import cutlass_fused_experts_fp8
|
10
10
|
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
|
11
11
|
|
12
12
|
|
@@ -125,7 +125,7 @@ def run_test(tp_size, batch_size, model_config, check=False):
|
|
125
125
|
problem_sizes2 = torch.empty((E, 3), dtype=torch.int32, device="cuda")
|
126
126
|
|
127
127
|
# --- Lambdas for Benchmarking ---
|
128
|
-
cutlass_lambda = lambda:
|
128
|
+
cutlass_lambda = lambda: cutlass_fused_experts_fp8(
|
129
129
|
x,
|
130
130
|
w1.transpose(1, 2), # Transposed
|
131
131
|
w2.transpose(1, 2), # Transposed
|
@@ -193,7 +193,7 @@ def run_test(tp_size, batch_size, model_config, check=False):
|
|
193
193
|
print("Running correctness check...")
|
194
194
|
with torch.no_grad():
|
195
195
|
# Run CUTLASS version (requires transposed weights)
|
196
|
-
y_cutlass =
|
196
|
+
y_cutlass = cutlass_fused_experts_fp8(
|
197
197
|
x,
|
198
198
|
w1.transpose(1, 2), # Transposed
|
199
199
|
w2.transpose(1, 2), # Transposed
|
@@ -0,0 +1,248 @@
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
2
|
+
import pytest
|
3
|
+
import torch
|
4
|
+
from sgl_kernel import scaled_fp4_quant
|
5
|
+
|
6
|
+
from sglang.srt.layers.activation import SiluAndMul
|
7
|
+
from sglang.srt.layers.moe.cutlass_moe import cutlass_moe_fp4
|
8
|
+
from sglang.srt.layers.moe.cutlass_moe_params import CutlassMoEParams, CutlassMoEType
|
9
|
+
from sglang.srt.layers.moe.topk import select_experts
|
10
|
+
|
11
|
+
if torch.cuda.get_device_capability() < (10, 0):
|
12
|
+
pytest.skip(
|
13
|
+
reason="Nvfp4 Requires compute capability of 10 or above.",
|
14
|
+
allow_module_level=True,
|
15
|
+
)
|
16
|
+
|
17
|
+
kE2M1ToFloat = torch.tensor(
|
18
|
+
[0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0], dtype=torch.float32
|
19
|
+
)
|
20
|
+
|
21
|
+
FLOAT8_E4M3_MAX = 448.0
|
22
|
+
FLOAT4_E2M1_MAX = 6.0
|
23
|
+
|
24
|
+
|
25
|
+
def convert_swizzled_to_linear(a_sf_swizzled: torch.Tensor, m, k, block_size):
|
26
|
+
m_tiles = (m + 128 - 1) // 128
|
27
|
+
f = block_size * 4
|
28
|
+
k_tiles = (k + f - 1) // f
|
29
|
+
tmp = torch.reshape(a_sf_swizzled, (1, m_tiles, k_tiles, 32, 4, 4))
|
30
|
+
tmp = torch.permute(tmp, (0, 1, 4, 3, 2, 5))
|
31
|
+
out = tmp.reshape(m_tiles * 128, k_tiles * f // block_size)
|
32
|
+
return out[0:m, 0:k]
|
33
|
+
|
34
|
+
|
35
|
+
def dequantize_nvfp4_to_dtype(
|
36
|
+
tensor_fp4, tensor_sf, global_scale, dtype, device, block_size=16
|
37
|
+
):
|
38
|
+
"""Dequantize the fp4 tensor back to high precision."""
|
39
|
+
# Two fp4 values are packed into one uint8.
|
40
|
+
assert tensor_fp4.dtype == torch.uint8
|
41
|
+
m, packed_k = tensor_fp4.shape
|
42
|
+
k = packed_k * 2
|
43
|
+
tensor_f32 = break_fp4_bytes(tensor_fp4, dtype)
|
44
|
+
tensor_f32 = tensor_f32.reshape(m, k // block_size, block_size)
|
45
|
+
tensor_sf = tensor_sf.view(torch.float8_e4m3fn)
|
46
|
+
tensor_sf = convert_swizzled_to_linear(tensor_sf, m, k, block_size)
|
47
|
+
tensor_sf_dtype = tensor_sf.to(torch.float32) / global_scale
|
48
|
+
|
49
|
+
# scale the tensor
|
50
|
+
out = (tensor_f32 * tensor_sf_dtype.unsqueeze(-1)).reshape(m, k)
|
51
|
+
return out.to(dtype=dtype)
|
52
|
+
|
53
|
+
|
54
|
+
def break_fp4_bytes(a, dtype):
|
55
|
+
assert a.dtype == torch.uint8
|
56
|
+
m, n = a.shape
|
57
|
+
|
58
|
+
# Vectorized nibble processing
|
59
|
+
a_flat = a.flatten()
|
60
|
+
high = (a_flat & 0xF0) >> 4 # Upper nibbles
|
61
|
+
low = a_flat & 0x0F # Lower nibbles
|
62
|
+
|
63
|
+
# Combine nibbles for batch processing
|
64
|
+
combined = torch.stack((low, high), dim=1).flatten()
|
65
|
+
|
66
|
+
# Vectorized sign and magnitude extraction
|
67
|
+
signs = (combined & 0x08).to(torch.bool) # Sign bits
|
68
|
+
abs_vals = (combined & 0x07).to(torch.long) # Magnitude indices
|
69
|
+
|
70
|
+
# Device-aware lookup and sign application
|
71
|
+
kE2M1 = kE2M1ToFloat.to(device=a.device)
|
72
|
+
values = kE2M1[abs_vals] * torch.where(signs, -1.0, 1.0)
|
73
|
+
|
74
|
+
# Reshape to final form
|
75
|
+
return values.reshape(m, n * 2).to(dtype=dtype)
|
76
|
+
|
77
|
+
|
78
|
+
MNK_FACTORS = [
|
79
|
+
(2, 1024, 1024),
|
80
|
+
(2, 1024, 1536),
|
81
|
+
(2, 3072, 1024),
|
82
|
+
(2, 3072, 1536),
|
83
|
+
(64, 1024, 1024),
|
84
|
+
(64, 1024, 1536),
|
85
|
+
(64, 3072, 1024),
|
86
|
+
(64, 2048, 1024),
|
87
|
+
(224, 1024, 1024),
|
88
|
+
(224, 1024, 1536),
|
89
|
+
]
|
90
|
+
|
91
|
+
|
92
|
+
# Reference implementation of torch_moe
|
93
|
+
def torch_moe(a, w1, w2, score, topk, expert_map):
|
94
|
+
B, D = a.shape
|
95
|
+
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
|
96
|
+
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
|
97
|
+
score = torch.softmax(score, dim=-1, dtype=torch.float32)
|
98
|
+
topk_weight, topk_ids = torch.topk(score, topk)
|
99
|
+
topk_weight = topk_weight.view(-1)
|
100
|
+
topk_ids = topk_ids.view(-1)
|
101
|
+
if expert_map is not None:
|
102
|
+
topk_ids = expert_map[topk_ids]
|
103
|
+
for i in range(w1.shape[0]):
|
104
|
+
mask = topk_ids == i
|
105
|
+
if mask.sum():
|
106
|
+
out[mask] = SiluAndMul()(a[mask] @ w1[i].transpose(0, 1)) @ w2[i].transpose(
|
107
|
+
0, 1
|
108
|
+
)
|
109
|
+
return (
|
110
|
+
out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)
|
111
|
+
).sum(dim=1)
|
112
|
+
|
113
|
+
|
114
|
+
@pytest.mark.parametrize("m,n,k", MNK_FACTORS)
|
115
|
+
@pytest.mark.parametrize("e", [40, 64, 256])
|
116
|
+
@pytest.mark.parametrize("topk", [1, 6, 8])
|
117
|
+
@pytest.mark.parametrize("dtype", [torch.half, torch.bfloat16])
|
118
|
+
@torch.inference_mode()
|
119
|
+
def test_cutlass_fp4_moe_no_graph(
|
120
|
+
m: int, n: int, k: int, e: int, topk: int, dtype: torch.dtype
|
121
|
+
):
|
122
|
+
|
123
|
+
torch.manual_seed(7)
|
124
|
+
a = torch.randn((m, k), device="cuda", dtype=dtype) / 10
|
125
|
+
w1 = torch.randn((e, 2 * n, k), device="cuda", dtype=dtype) / 10
|
126
|
+
quant_blocksize = 16
|
127
|
+
round_up = lambda x, y: (x + y - 1) // y * y
|
128
|
+
sf_w1_2n = round_up(2 * n, 128)
|
129
|
+
sf_w1_k = round_up(k // quant_blocksize, 4)
|
130
|
+
w1_blockscale = torch.empty(
|
131
|
+
(e, sf_w1_2n, sf_w1_k), device="cuda", dtype=torch.float8_e4m3fn
|
132
|
+
)
|
133
|
+
|
134
|
+
w2 = torch.randn((e, k, n), device="cuda", dtype=dtype) / 10
|
135
|
+
sf_w2_k = round_up(k, 128)
|
136
|
+
sf_w2_n = round_up(n // quant_blocksize, 4)
|
137
|
+
w2_blockscale = torch.empty(
|
138
|
+
(e, sf_w2_k, sf_w2_n), device="cuda", dtype=torch.float8_e4m3fn
|
139
|
+
)
|
140
|
+
|
141
|
+
w1_q = torch.empty((e, 2 * n, k // 2), device="cuda", dtype=torch.uint8)
|
142
|
+
w2_q = torch.empty((e, k, n // 2), device="cuda", dtype=torch.uint8)
|
143
|
+
w1_gs = torch.empty((e,), device="cuda", dtype=torch.float32)
|
144
|
+
w2_gs = torch.empty((e,), device="cuda", dtype=torch.float32)
|
145
|
+
|
146
|
+
for expert in range(e):
|
147
|
+
w1_amax = torch.abs(w1).max().to(torch.float32)
|
148
|
+
w2_amax = torch.abs(w2).max().to(torch.float32)
|
149
|
+
w1_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w1_amax
|
150
|
+
w2_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w2_amax
|
151
|
+
|
152
|
+
w1_q[expert], w1_blockscale[expert] = scaled_fp4_quant(
|
153
|
+
w1[expert], w1_gs[expert]
|
154
|
+
)
|
155
|
+
|
156
|
+
w2_q[expert], w2_blockscale[expert] = scaled_fp4_quant(
|
157
|
+
w2[expert], w2_gs[expert]
|
158
|
+
)
|
159
|
+
|
160
|
+
score = torch.randn((m, e), device="cuda", dtype=dtype)
|
161
|
+
|
162
|
+
topk_weights, topk_ids = select_experts(
|
163
|
+
hidden_states=a,
|
164
|
+
router_logits=score,
|
165
|
+
top_k=topk,
|
166
|
+
use_grouped_topk=False,
|
167
|
+
renormalize=False,
|
168
|
+
)
|
169
|
+
|
170
|
+
a1_gs = torch.ones((e,), device="cuda", dtype=torch.float32)
|
171
|
+
a2_gs = torch.ones((e,), device="cuda", dtype=torch.float32)
|
172
|
+
# strides for the cutlass moe_fp4 kernel
|
173
|
+
ab_strides_13 = torch.full(
|
174
|
+
(e,), w1_q.shape[2] * 2, dtype=torch.int64, device=w1_q.device
|
175
|
+
)
|
176
|
+
c_strides_13 = torch.full(
|
177
|
+
(e,), w1_q.shape[1], dtype=torch.int64, device=w1_q.device
|
178
|
+
)
|
179
|
+
ab_strides_2 = torch.full(
|
180
|
+
(e,), w2_q.shape[2] * 2, dtype=torch.int64, device=w2_q.device
|
181
|
+
)
|
182
|
+
c_strides_2 = torch.full((e,), w2_q.shape[1], dtype=torch.int64, device=w2_q.device)
|
183
|
+
params = CutlassMoEParams(
|
184
|
+
CutlassMoEType.BlockscaledFP4,
|
185
|
+
device=a.device,
|
186
|
+
num_experts=e,
|
187
|
+
intermediate_size_per_partition=n, # n
|
188
|
+
hidden_size=k,
|
189
|
+
) # k
|
190
|
+
cutlass_output = cutlass_moe_fp4(
|
191
|
+
a=a,
|
192
|
+
a1_gscale=a1_gs,
|
193
|
+
w1_fp4=w1_q,
|
194
|
+
w1_blockscale=w1_blockscale,
|
195
|
+
w1_alphas=(1 / w1_gs),
|
196
|
+
a2_gscale=a2_gs,
|
197
|
+
w2_fp4=w2_q,
|
198
|
+
w2_blockscale=w2_blockscale,
|
199
|
+
w2_alphas=(1 / w2_gs),
|
200
|
+
topk_weights=topk_weights,
|
201
|
+
topk_ids=topk_ids,
|
202
|
+
params=params,
|
203
|
+
apply_router_weight_on_input=False,
|
204
|
+
)
|
205
|
+
|
206
|
+
# Reference check:
|
207
|
+
a_global_scale = (
|
208
|
+
(FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(a.flatten(), dim=-1)
|
209
|
+
).to(torch.float32)
|
210
|
+
a_fp4, a_scale_interleaved = scaled_fp4_quant(a, a_global_scale)
|
211
|
+
_, m_k = a_fp4.shape
|
212
|
+
a_in_dtype = dequantize_nvfp4_to_dtype(
|
213
|
+
a_fp4,
|
214
|
+
a_scale_interleaved,
|
215
|
+
a_global_scale,
|
216
|
+
dtype=a.dtype,
|
217
|
+
device=a.device,
|
218
|
+
block_size=quant_blocksize,
|
219
|
+
)
|
220
|
+
|
221
|
+
w1_d = torch.empty((e, 2 * n, k), device="cuda", dtype=dtype)
|
222
|
+
w2_d = torch.empty((e, k, n), device="cuda", dtype=dtype)
|
223
|
+
|
224
|
+
for idx in range(0, e):
|
225
|
+
w1_d[idx] = dequantize_nvfp4_to_dtype(
|
226
|
+
w1_q[idx],
|
227
|
+
w1_blockscale[idx],
|
228
|
+
w1_gs[idx],
|
229
|
+
dtype=w1.dtype,
|
230
|
+
device=w1.device,
|
231
|
+
block_size=quant_blocksize,
|
232
|
+
)
|
233
|
+
w2_d[idx] = dequantize_nvfp4_to_dtype(
|
234
|
+
w2_q[idx],
|
235
|
+
w2_blockscale[idx],
|
236
|
+
w2_gs[idx],
|
237
|
+
dtype=w2.dtype,
|
238
|
+
device=w2.device,
|
239
|
+
block_size=quant_blocksize,
|
240
|
+
)
|
241
|
+
|
242
|
+
torch_output = torch_moe(a_in_dtype, w1_d, w2_d, score, topk, None)
|
243
|
+
|
244
|
+
torch.testing.assert_close(torch_output, cutlass_output, atol=1e-1, rtol=1e-1)
|
245
|
+
|
246
|
+
|
247
|
+
if __name__ == "__main__":
|
248
|
+
test_cutlass_fp4_moe_no_graph(224, 1024, 1024, 256, 8, torch.half)
|
sglang/test/test_utils.py
CHANGED
@@ -26,6 +26,7 @@ from sglang.lang.backend.openai import OpenAI
|
|
26
26
|
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
|
27
27
|
from sglang.srt.utils import (
|
28
28
|
get_bool_env_var,
|
29
|
+
get_device,
|
29
30
|
is_port_available,
|
30
31
|
kill_process_tree,
|
31
32
|
retry,
|
@@ -40,6 +41,8 @@ DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
40
41
|
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST = "Qwen/Qwen1.5-MoE-A2.7B"
|
41
42
|
|
42
43
|
# MLA test models
|
44
|
+
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
|
45
|
+
DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST = "cross-encoder/ms-marco-MiniLM-L6-v2"
|
43
46
|
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
|
44
47
|
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
|
45
48
|
DEFAULT_MODEL_NAME_FOR_TEST_MLA = "lmsys/sglang-ci-dsv3-test"
|
@@ -80,12 +83,11 @@ DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-In
|
|
80
83
|
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4,hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
|
81
84
|
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN = "Qwen/Qwen2.5-1.5B-Instruct"
|
82
85
|
DEFAULT_SMALL_VLM_MODEL_NAME_FOR_TEST = "Qwen/Qwen2.5-VL-3B-Instruct"
|
83
|
-
DEFAULT_VLM_CHAT_TEMPLATE_FOR_TEST = "qwen2-vl"
|
84
86
|
|
85
87
|
DEFAULT_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
|
86
88
|
DEFAULT_VIDEO_URL = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"
|
87
89
|
|
88
|
-
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH =
|
90
|
+
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
|
89
91
|
|
90
92
|
|
91
93
|
def is_in_ci():
|
@@ -93,6 +95,11 @@ def is_in_ci():
|
|
93
95
|
return get_bool_env_var("SGLANG_IS_IN_CI")
|
94
96
|
|
95
97
|
|
98
|
+
def is_in_amd_ci():
|
99
|
+
"""Return whether it is in an AMD CI runner."""
|
100
|
+
return get_bool_env_var("SGLANG_AMD_CI")
|
101
|
+
|
102
|
+
|
96
103
|
if is_in_ci():
|
97
104
|
DEFAULT_PORT_FOR_SRT_TEST_RUNNER = (
|
98
105
|
5000 + int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")[0]) * 100
|
@@ -103,6 +110,9 @@ else:
|
|
103
110
|
)
|
104
111
|
DEFAULT_URL_FOR_TEST = f"http://127.0.0.1:{DEFAULT_PORT_FOR_SRT_TEST_RUNNER + 1000}"
|
105
112
|
|
113
|
+
if is_in_amd_ci():
|
114
|
+
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 3000
|
115
|
+
|
106
116
|
|
107
117
|
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
|
108
118
|
assert url is not None
|
@@ -300,13 +310,33 @@ def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
|
|
300
310
|
return args
|
301
311
|
|
302
312
|
|
313
|
+
def auto_config_device() -> str:
|
314
|
+
"""Auto-config available device platform"""
|
315
|
+
|
316
|
+
try:
|
317
|
+
device = get_device()
|
318
|
+
except (RuntimeError, ImportError) as e:
|
319
|
+
print(f"Warning: {e} - Falling back to CPU")
|
320
|
+
device = "cpu"
|
321
|
+
|
322
|
+
return device
|
323
|
+
|
324
|
+
|
303
325
|
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
|
304
326
|
parser.add_argument("--parallel", type=int, default=64)
|
305
327
|
parser.add_argument("--host", type=str, default="http://127.0.0.1")
|
306
328
|
parser.add_argument("--port", type=int, default=30000)
|
307
329
|
parser.add_argument("--backend", type=str, default="srt")
|
330
|
+
parser.add_argument(
|
331
|
+
"--device",
|
332
|
+
type=str,
|
333
|
+
default="auto",
|
334
|
+
choices=["auto", "cuda", "rocm", "cpu"],
|
335
|
+
help="Device type (auto/cuda/rocm/cpu). Auto will detect available platforms",
|
336
|
+
)
|
308
337
|
parser.add_argument("--result-file", type=str, default="result.jsonl")
|
309
338
|
args = parser.parse_args()
|
339
|
+
|
310
340
|
return args
|
311
341
|
|
312
342
|
|
@@ -392,11 +422,25 @@ def popen_launch_server(
|
|
392
422
|
base_url: str,
|
393
423
|
timeout: float,
|
394
424
|
api_key: Optional[str] = None,
|
395
|
-
other_args: list[str] =
|
425
|
+
other_args: list[str] = [],
|
396
426
|
env: Optional[dict] = None,
|
397
427
|
return_stdout_stderr: Optional[tuple] = None,
|
428
|
+
device: str = "auto",
|
398
429
|
pd_separated: bool = False,
|
399
430
|
):
|
431
|
+
"""Launch a server process with automatic device detection.
|
432
|
+
|
433
|
+
Args:
|
434
|
+
device: Device type ("auto", "cuda", "rocm" or "cpu").
|
435
|
+
If "auto", will detect available platforms automatically.
|
436
|
+
"""
|
437
|
+
# Auto-detect device if needed
|
438
|
+
if device == "auto":
|
439
|
+
device = auto_config_device()
|
440
|
+
print(f"Auto-configed device: {device}", flush=True)
|
441
|
+
other_args = list(other_args)
|
442
|
+
other_args += ["--device", str(device)]
|
443
|
+
|
400
444
|
_, host, port = base_url.split(":")
|
401
445
|
host = host[2:]
|
402
446
|
|
@@ -452,6 +496,15 @@ def popen_launch_server(
|
|
452
496
|
start_time = time.perf_counter()
|
453
497
|
with requests.Session() as session:
|
454
498
|
while time.perf_counter() - start_time < timeout:
|
499
|
+
|
500
|
+
return_code = process.poll()
|
501
|
+
if return_code is not None:
|
502
|
+
# Server failed to start (non-zero exit code) or crashed
|
503
|
+
raise Exception(
|
504
|
+
f"Server process exited with code {return_code}. "
|
505
|
+
"Check server logs for errors."
|
506
|
+
)
|
507
|
+
|
455
508
|
try:
|
456
509
|
headers = {
|
457
510
|
"Content-Type": "application/json; charset=utf-8",
|
@@ -622,6 +675,7 @@ def get_benchmark_args(
|
|
622
675
|
disable_stream=False,
|
623
676
|
disable_ignore_eos=False,
|
624
677
|
seed: int = 0,
|
678
|
+
device="auto",
|
625
679
|
pd_separated: bool = False,
|
626
680
|
):
|
627
681
|
return SimpleNamespace(
|
@@ -652,6 +706,7 @@ def get_benchmark_args(
|
|
652
706
|
profile=None,
|
653
707
|
lora_name=None,
|
654
708
|
prompt_suffix="",
|
709
|
+
device=device,
|
655
710
|
pd_separated=pd_separated,
|
656
711
|
)
|
657
712
|
|
@@ -671,7 +726,10 @@ def run_bench_serving(
|
|
671
726
|
disable_ignore_eos=False,
|
672
727
|
need_warmup=False,
|
673
728
|
seed: int = 0,
|
729
|
+
device="auto",
|
674
730
|
):
|
731
|
+
if device == "auto":
|
732
|
+
device = auto_config_device()
|
675
733
|
# Launch the server
|
676
734
|
base_url = DEFAULT_URL_FOR_TEST
|
677
735
|
process = popen_launch_server(
|
@@ -695,6 +753,7 @@ def run_bench_serving(
|
|
695
753
|
disable_stream=disable_stream,
|
696
754
|
disable_ignore_eos=disable_ignore_eos,
|
697
755
|
seed=seed,
|
756
|
+
device=device,
|
698
757
|
)
|
699
758
|
|
700
759
|
try:
|
@@ -745,6 +804,18 @@ def run_bench_serving_multi(
|
|
745
804
|
|
746
805
|
|
747
806
|
def run_bench_one_batch(model, other_args):
|
807
|
+
"""Launch a offline process with automatic device detection.
|
808
|
+
|
809
|
+
Args:
|
810
|
+
device: Device type ("auto", "cuda", "rocm" or "cpu").
|
811
|
+
If "auto", will detect available platforms automatically.
|
812
|
+
"""
|
813
|
+
# Auto-detect device if needed
|
814
|
+
|
815
|
+
device = auto_config_device()
|
816
|
+
print(f"Auto-configed device: {device}", flush=True)
|
817
|
+
other_args += ["--device", str(device)]
|
818
|
+
|
748
819
|
command = [
|
749
820
|
"python3",
|
750
821
|
"-m",
|
@@ -876,20 +947,24 @@ def calculate_rouge_l(output_strs_list1, output_strs_list2):
|
|
876
947
|
return rouge_l_scores
|
877
948
|
|
878
949
|
|
879
|
-
STDERR_FILENAME = "stderr.txt"
|
880
|
-
STDOUT_FILENAME = "stdout.txt"
|
950
|
+
STDERR_FILENAME = "/tmp/stderr.txt"
|
951
|
+
STDOUT_FILENAME = "/tmp/stdout.txt"
|
881
952
|
|
882
953
|
|
883
954
|
def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
|
884
955
|
"""Print the output in real time with another thread."""
|
885
956
|
while not os.path.exists(filename):
|
886
|
-
time.sleep(
|
957
|
+
time.sleep(0.01)
|
887
958
|
|
888
959
|
pt = 0
|
889
960
|
while pt >= 0:
|
890
961
|
if pt > 0 and not os.path.exists(filename):
|
891
962
|
break
|
892
|
-
|
963
|
+
try:
|
964
|
+
lines = open(filename).readlines()
|
965
|
+
except FileNotFoundError:
|
966
|
+
print(f"{pt=}, {os.path.exists(filename)=}")
|
967
|
+
raise
|
893
968
|
for line in lines[pt:]:
|
894
969
|
print(line, end="", flush=True)
|
895
970
|
output_lines.append(line)
|
sglang/utils.py
CHANGED
@@ -512,3 +512,12 @@ async def async_stream_and_merge(llm, prompt, sampling_params):
|
|
512
512
|
cleaned_chunk = trim_overlap(final_text, chunk_text)
|
513
513
|
final_text += cleaned_chunk
|
514
514
|
yield cleaned_chunk # yield the non-overlapping portion
|
515
|
+
|
516
|
+
|
517
|
+
def resolve_obj_by_qualname(qualname: str) -> Any:
|
518
|
+
"""
|
519
|
+
Resolve an object by its fully qualified name.
|
520
|
+
"""
|
521
|
+
module_name, obj_name = qualname.rsplit(".", 1)
|
522
|
+
module = importlib.import_module(module_name)
|
523
|
+
return getattr(module, obj_name)
|
sglang/version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "0.4.
|
1
|
+
__version__ = "0.4.7.post1"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: sglang
|
3
|
-
Version: 0.4.
|
3
|
+
Version: 0.4.7.post1
|
4
4
|
Summary: SGLang is yet another fast serving framework for large language models and vision language models.
|
5
5
|
License: Apache License
|
6
6
|
Version 2.0, January 2004
|
@@ -218,6 +218,7 @@ Requires-Dist: numpy
|
|
218
218
|
Requires-Dist: IPython
|
219
219
|
Requires-Dist: setproctitle
|
220
220
|
Provides-Extra: runtime-common
|
221
|
+
Requires-Dist: blobfile==3.0.0; extra == "runtime-common"
|
221
222
|
Requires-Dist: compressed-tensors; extra == "runtime-common"
|
222
223
|
Requires-Dist: datasets; extra == "runtime-common"
|
223
224
|
Requires-Dist: fastapi; extra == "runtime-common"
|
@@ -239,30 +240,32 @@ Requires-Dist: pynvml; extra == "runtime-common"
|
|
239
240
|
Requires-Dist: python-multipart; extra == "runtime-common"
|
240
241
|
Requires-Dist: pyzmq>=25.1.2; extra == "runtime-common"
|
241
242
|
Requires-Dist: soundfile==0.13.1; extra == "runtime-common"
|
243
|
+
Requires-Dist: scipy; extra == "runtime-common"
|
242
244
|
Requires-Dist: torchao==0.9.0; extra == "runtime-common"
|
243
|
-
Requires-Dist: transformers==4.
|
245
|
+
Requires-Dist: transformers==4.52.3; extra == "runtime-common"
|
244
246
|
Requires-Dist: uvicorn; extra == "runtime-common"
|
245
247
|
Requires-Dist: uvloop; extra == "runtime-common"
|
246
248
|
Requires-Dist: xgrammar==0.1.19; extra == "runtime-common"
|
247
|
-
Requires-Dist: blobfile==3.0.0; extra == "runtime-common"
|
248
249
|
Provides-Extra: srt
|
249
250
|
Requires-Dist: sglang[runtime_common]; extra == "srt"
|
250
|
-
Requires-Dist: sgl-kernel==0.1.
|
251
|
-
Requires-Dist: flashinfer_python==0.2.
|
252
|
-
Requires-Dist: torch==2.
|
253
|
-
Requires-Dist:
|
251
|
+
Requires-Dist: sgl-kernel==0.1.9; extra == "srt"
|
252
|
+
Requires-Dist: flashinfer_python==0.2.6.post1; extra == "srt"
|
253
|
+
Requires-Dist: torch==2.7.1; extra == "srt"
|
254
|
+
Requires-Dist: torchaudio==2.7.1; extra == "srt"
|
255
|
+
Requires-Dist: torchvision==0.22.1; extra == "srt"
|
254
256
|
Requires-Dist: cuda-python; extra == "srt"
|
255
257
|
Requires-Dist: outlines<=0.1.11,>=0.0.44; extra == "srt"
|
256
258
|
Requires-Dist: einops; extra == "srt"
|
257
259
|
Provides-Extra: blackwell
|
258
260
|
Requires-Dist: sglang[runtime_common]; extra == "blackwell"
|
259
261
|
Requires-Dist: sgl-kernel; extra == "blackwell"
|
260
|
-
Requires-Dist: torch; extra == "blackwell"
|
261
|
-
Requires-Dist:
|
262
|
+
Requires-Dist: torch==2.7.1; extra == "blackwell"
|
263
|
+
Requires-Dist: torchaudio==2.7.1; extra == "blackwell"
|
264
|
+
Requires-Dist: torchvision==0.22.1; extra == "blackwell"
|
262
265
|
Requires-Dist: cuda-python; extra == "blackwell"
|
263
266
|
Requires-Dist: outlines<=0.1.11,>=0.0.44; extra == "blackwell"
|
264
267
|
Requires-Dist: einops; extra == "blackwell"
|
265
|
-
Requires-Dist: flashinfer_python==0.2.
|
268
|
+
Requires-Dist: flashinfer_python==0.2.6.post1; extra == "blackwell"
|
266
269
|
Provides-Extra: srt-hip
|
267
270
|
Requires-Dist: sglang[runtime_common]; extra == "srt-hip"
|
268
271
|
Requires-Dist: torch; extra == "srt-hip"
|
@@ -277,7 +280,7 @@ Requires-Dist: outlines<=0.1.11,>=0.0.44; extra == "srt-hpu"
|
|
277
280
|
Provides-Extra: srt-cpu
|
278
281
|
Requires-Dist: sglang[runtime_common]; extra == "srt-cpu"
|
279
282
|
Requires-Dist: outlines<=0.1.11,>=0.0.44; extra == "srt-cpu"
|
280
|
-
Requires-Dist:
|
283
|
+
Requires-Dist: einops; extra == "srt-cpu"
|
281
284
|
Provides-Extra: srt-npu
|
282
285
|
Requires-Dist: sglang[runtime_common]; extra == "srt-npu"
|
283
286
|
Requires-Dist: outlines<=0.1.11,>=0.0.44; extra == "srt-npu"
|
@@ -368,7 +371,7 @@ Dynamic: license-file
|
|
368
371
|
|
369
372
|
--------------------------------------------------------------------------------
|
370
373
|
|
371
|
-
| [**Blog**](https://lmsys.org/blog/
|
374
|
+
| [**Blog**](https://lmsys.org/blog/2025-05-05-large-scale-ep/)
|
372
375
|
| [**Documentation**](https://docs.sglang.ai/)
|
373
376
|
| [**Join Slack**](https://slack.sglang.ai/)
|
374
377
|
| [**Join Bi-Weekly Development Meeting**](https://meeting.sglang.ai/)
|
@@ -400,7 +403,7 @@ SGLang is a fast serving framework for large language models and vision language
|
|
400
403
|
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
|
401
404
|
The core features include:
|
402
405
|
|
403
|
-
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, continuous batching,
|
406
|
+
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, prefill-decode disaggregation, speculative decoding, continuous batching, paged attention, tensor parallelism, pipeline parallelism, expert parallelism, structured outputs, chunked prefill, quantization (FP8/INT4/AWQ/GPTQ), and multi-lora batching.
|
404
407
|
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
|
405
408
|
- **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, Qwen, DeepSeek, LLaVA, etc.), embedding models (e5-mistral, gte, mcdse) and reward models (Skywork), with easy extensibility for integrating new models.
|
406
409
|
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption.
|
@@ -419,7 +422,7 @@ Learn more in the release blogs: [v0.2 blog](https://lmsys.org/blog/2024-07-25-s
|
|
419
422
|
[Development Roadmap (2025 H1)](https://github.com/sgl-project/sglang/issues/4042)
|
420
423
|
|
421
424
|
## Adoption and Sponsorship
|
422
|
-
SGLang has been deployed at large scale,
|
425
|
+
SGLang has been deployed at large scale, generating trillions of tokens in production every day. It is trusted and adopted by a broad range of leading enterprises and institutions, including xAI, NVIDIA, AMD, Google Cloud, Oracle Cloud, LinkedIn, Cursor, Voltage Park, Atlas Cloud, DataCrunch, Baseten, Nebius, Novita, InnoMatrix, RunPod, Stanford, UC Berkeley, UCLA, ETCHED, Jam & Tea Studios, Hyperbolic, as well as major technology organizations across North America and Asia. As an open-source LLM inference engine, SGLang has become the de facto standard in the industry, with production deployments running on over 100,000 GPUs worldwide.
|
423
426
|
|
424
427
|
<img src="https://raw.githubusercontent.com/sgl-project/sgl-learning-materials/refs/heads/main/slides/adoption.png" alt="logo" width="800" margin="10px"></img>
|
425
428
|
|