sglang 0.4.5__py3-none-any.whl → 0.4.5.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +2 -4
- sglang/bench_one_batch.py +23 -2
- sglang/bench_serving.py +6 -4
- sglang/lang/backend/anthropic.py +0 -4
- sglang/lang/backend/base_backend.py +1 -1
- sglang/lang/backend/openai.py +1 -1
- sglang/lang/backend/vertexai.py +0 -1
- sglang/lang/compiler.py +1 -7
- sglang/lang/tracer.py +3 -7
- sglang/srt/_custom_ops.py +0 -2
- sglang/srt/configs/model_config.py +37 -5
- sglang/srt/constrained/base_grammar_backend.py +26 -5
- sglang/srt/constrained/llguidance_backend.py +1 -0
- sglang/srt/constrained/outlines_backend.py +1 -0
- sglang/srt/constrained/outlines_jump_forward.py +14 -1
- sglang/srt/constrained/reasoner_grammar_backend.py +101 -0
- sglang/srt/constrained/triton_ops/bitmask_ops.py +141 -0
- sglang/srt/constrained/xgrammar_backend.py +27 -4
- sglang/srt/custom_op.py +0 -62
- sglang/srt/disaggregation/base/__init__.py +8 -0
- sglang/srt/disaggregation/base/conn.py +113 -0
- sglang/srt/disaggregation/decode.py +80 -11
- sglang/srt/disaggregation/mini_lb.py +58 -123
- sglang/srt/disaggregation/mooncake/__init__.py +6 -0
- sglang/srt/disaggregation/mooncake/conn.py +585 -0
- sglang/srt/disaggregation/mooncake/transfer_engine.py +77 -0
- sglang/srt/disaggregation/prefill.py +82 -22
- sglang/srt/disaggregation/utils.py +46 -0
- sglang/srt/entrypoints/EngineBase.py +53 -0
- sglang/srt/entrypoints/engine.py +36 -8
- sglang/srt/entrypoints/http_server.py +37 -8
- sglang/srt/entrypoints/http_server_engine.py +142 -0
- sglang/srt/entrypoints/verl_engine.py +42 -13
- sglang/srt/hf_transformers_utils.py +4 -0
- sglang/srt/layers/activation.py +6 -8
- sglang/srt/layers/attention/flashattention_backend.py +430 -257
- sglang/srt/layers/attention/flashinfer_backend.py +18 -9
- sglang/srt/layers/attention/torch_native_backend.py +6 -1
- sglang/srt/layers/attention/triton_backend.py +6 -0
- sglang/srt/layers/attention/triton_ops/extend_attention.py +13 -2
- sglang/srt/layers/attention/vision.py +1 -1
- sglang/srt/layers/dp_attention.py +2 -4
- sglang/srt/layers/elementwise.py +15 -2
- sglang/srt/layers/layernorm.py +1 -1
- sglang/srt/layers/linear.py +18 -3
- sglang/srt/layers/moe/ep_moe/layer.py +15 -29
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +145 -118
- sglang/srt/layers/moe/fused_moe_native.py +4 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/{E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +34 -34
- sglang/srt/layers/moe/fused_moe_triton/configs/E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +46 -34
- sglang/srt/layers/moe/fused_moe_triton/layer.py +7 -0
- sglang/srt/layers/moe/router.py +7 -1
- sglang/srt/layers/moe/topk.py +63 -45
- sglang/srt/layers/parameter.py +0 -2
- sglang/srt/layers/quantization/__init__.py +13 -5
- sglang/srt/layers/quantization/blockwise_int8.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +12 -2
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +72 -77
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +4 -7
- sglang/srt/layers/quantization/fp8.py +131 -136
- sglang/srt/layers/quantization/fp8_kernel.py +328 -46
- sglang/srt/layers/quantization/fp8_utils.py +206 -253
- sglang/srt/layers/quantization/kv_cache.py +43 -52
- sglang/srt/layers/quantization/modelopt_quant.py +271 -4
- sglang/srt/layers/quantization/moe_wna16.py +2 -0
- sglang/srt/layers/quantization/utils.py +5 -11
- sglang/srt/layers/quantization/w8a8_fp8.py +156 -4
- sglang/srt/layers/quantization/w8a8_int8.py +8 -7
- sglang/srt/layers/radix_attention.py +28 -1
- sglang/srt/layers/rotary_embedding.py +15 -3
- sglang/srt/layers/sampler.py +5 -10
- sglang/srt/lora/backend/base_backend.py +18 -2
- sglang/srt/lora/backend/flashinfer_backend.py +1 -1
- sglang/srt/lora/backend/triton_backend.py +1 -1
- sglang/srt/lora/layers.py +1 -1
- sglang/srt/lora/lora.py +1 -1
- sglang/srt/lora/lora_manager.py +1 -1
- sglang/srt/managers/detokenizer_manager.py +0 -1
- sglang/srt/managers/io_struct.py +255 -97
- sglang/srt/managers/mm_utils.py +7 -5
- sglang/srt/managers/multimodal_processor.py +0 -2
- sglang/srt/managers/multimodal_processors/base_processor.py +117 -79
- sglang/srt/managers/multimodal_processors/janus_pro.py +3 -1
- sglang/srt/managers/multimodal_processors/mllama4.py +21 -36
- sglang/srt/managers/schedule_batch.py +64 -25
- sglang/srt/managers/scheduler.py +80 -82
- sglang/srt/managers/tokenizer_manager.py +18 -3
- sglang/srt/managers/tp_worker.py +1 -0
- sglang/srt/mem_cache/hiradix_cache.py +5 -1
- sglang/srt/mem_cache/memory_pool.py +21 -3
- sglang/srt/metrics/collector.py +9 -0
- sglang/srt/model_executor/cuda_graph_runner.py +9 -6
- sglang/srt/model_executor/forward_batch_info.py +234 -15
- sglang/srt/model_executor/model_runner.py +67 -35
- sglang/srt/model_loader/loader.py +31 -4
- sglang/srt/model_loader/weight_utils.py +4 -2
- sglang/srt/models/baichuan.py +2 -0
- sglang/srt/models/bert.py +398 -0
- sglang/srt/models/chatglm.py +1 -0
- sglang/srt/models/commandr.py +1 -0
- sglang/srt/models/dbrx.py +1 -0
- sglang/srt/models/deepseek.py +2 -1
- sglang/srt/models/deepseek_nextn.py +74 -70
- sglang/srt/models/deepseek_v2.py +494 -366
- sglang/srt/models/exaone.py +1 -0
- sglang/srt/models/gemma.py +1 -0
- sglang/srt/models/gemma2.py +1 -0
- sglang/srt/models/gemma3_causal.py +1 -0
- sglang/srt/models/gpt2.py +1 -0
- sglang/srt/models/gpt_bigcode.py +1 -0
- sglang/srt/models/granite.py +1 -0
- sglang/srt/models/grok.py +1 -0
- sglang/srt/models/internlm2.py +1 -0
- sglang/srt/models/llama.py +6 -5
- sglang/srt/models/llama4.py +101 -34
- sglang/srt/models/minicpm.py +1 -0
- sglang/srt/models/minicpm3.py +30 -200
- sglang/srt/models/mixtral.py +1 -0
- sglang/srt/models/mixtral_quant.py +1 -0
- sglang/srt/models/mllama.py +51 -8
- sglang/srt/models/mllama4.py +102 -29
- sglang/srt/models/olmo.py +1 -0
- sglang/srt/models/olmo2.py +1 -0
- sglang/srt/models/olmoe.py +1 -0
- sglang/srt/models/phi3_small.py +1 -0
- sglang/srt/models/qwen.py +1 -0
- sglang/srt/models/qwen2.py +5 -1
- sglang/srt/models/qwen2_5_vl.py +35 -70
- sglang/srt/models/qwen2_moe.py +15 -13
- sglang/srt/models/qwen2_vl.py +27 -25
- sglang/srt/models/qwen3.py +335 -0
- sglang/srt/models/qwen3_moe.py +423 -0
- sglang/srt/models/stablelm.py +1 -0
- sglang/srt/models/xverse.py +1 -0
- sglang/srt/models/xverse_moe.py +1 -0
- sglang/srt/openai_api/adapter.py +4 -1
- sglang/srt/patch_torch.py +11 -0
- sglang/srt/reasoning_parser.py +0 -1
- sglang/srt/sampling/sampling_batch_info.py +2 -3
- sglang/srt/server_args.py +55 -19
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +4 -4
- sglang/srt/speculative/eagle_utils.py +1 -11
- sglang/srt/speculative/eagle_worker.py +10 -9
- sglang/srt/utils.py +136 -10
- sglang/test/attention/test_flashattn_backend.py +259 -221
- sglang/test/attention/test_flashattn_mla_backend.py +285 -0
- sglang/test/attention/test_prefix_chunk_info.py +224 -0
- sglang/test/runners.py +5 -1
- sglang/test/test_block_fp8.py +224 -0
- sglang/test/test_custom_ops.py +1 -1
- sglang/test/test_utils.py +19 -8
- sglang/version.py +1 -1
- {sglang-0.4.5.dist-info → sglang-0.4.5.post2.dist-info}/METADATA +15 -5
- {sglang-0.4.5.dist-info → sglang-0.4.5.post2.dist-info}/RECORD +162 -147
- {sglang-0.4.5.dist-info → sglang-0.4.5.post2.dist-info}/WHEEL +1 -1
- sglang/lang/__init__.py +0 -0
- sglang/srt/disaggregation/conn.py +0 -81
- sglang/srt/lora/backend/__init__.py +0 -25
- sglang/srt/server.py +0 -18
- {sglang-0.4.5.dist-info → sglang-0.4.5.post2.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.5.dist-info → sglang-0.4.5.post2.dist-info}/top_level.txt +0 -0
@@ -10,9 +10,9 @@ Life cycle of a request in the prefill server
|
|
10
10
|
2. Waiting Queue
|
11
11
|
a. Use PrefillAdder to pop requests
|
12
12
|
b. Run forward
|
13
|
-
c. Add the request to
|
13
|
+
c. Add the request to Inflight Queue
|
14
14
|
|
15
|
-
3.
|
15
|
+
3. Inflight Queue
|
16
16
|
a. Poll (non-blocking) the sender of the request
|
17
17
|
b. Once the transfer has finished, return the request
|
18
18
|
"""
|
@@ -24,9 +24,15 @@ from typing import TYPE_CHECKING, List, Optional
|
|
24
24
|
|
25
25
|
import torch
|
26
26
|
|
27
|
-
from sglang.srt.disaggregation.
|
27
|
+
from sglang.srt.disaggregation.base import BaseKVManager, KVArgs, KVPoll
|
28
28
|
from sglang.srt.disaggregation.utils import (
|
29
|
+
DisaggregationMode,
|
30
|
+
KVClassType,
|
29
31
|
ReqToMetadataIdxAllocator,
|
32
|
+
TransferBackend,
|
33
|
+
get_kv_class,
|
34
|
+
kv_to_page_indices,
|
35
|
+
kv_to_page_num,
|
30
36
|
poll_and_all_reduce,
|
31
37
|
)
|
32
38
|
from sglang.srt.managers.schedule_batch import FINISH_LENGTH, Req, ScheduleBatch
|
@@ -37,6 +43,7 @@ if TYPE_CHECKING:
|
|
37
43
|
from sglang.srt.managers.scheduler import GenerationBatchResult, Scheduler
|
38
44
|
from sglang.srt.mem_cache.memory_pool import KVCache
|
39
45
|
|
46
|
+
|
40
47
|
logger = logging.getLogger(__name__)
|
41
48
|
|
42
49
|
|
@@ -55,6 +62,8 @@ class PrefillBootstrapQueue:
|
|
55
62
|
tp_size: int,
|
56
63
|
bootstrap_port: int,
|
57
64
|
gloo_group: ProcessGroup,
|
65
|
+
transfer_backend: TransferBackend,
|
66
|
+
scheduler: Scheduler,
|
58
67
|
):
|
59
68
|
self.token_to_kv_pool = token_to_kv_pool
|
60
69
|
self.aux_dtype = aux_dtype
|
@@ -63,17 +72,19 @@ class PrefillBootstrapQueue:
|
|
63
72
|
self.req_to_metadata_buffer_idx_allocator = req_to_metadata_buffer_idx_allocator
|
64
73
|
self.tp_rank = tp_rank
|
65
74
|
self.tp_size = tp_size
|
75
|
+
self.transfer_backend = transfer_backend
|
76
|
+
self.scheduler = scheduler
|
66
77
|
self.kv_manager = self._init_kv_manager()
|
67
78
|
self.queue: List[Req] = []
|
68
79
|
self.gloo_group = gloo_group
|
69
80
|
self.bootstrap_port = bootstrap_port
|
70
81
|
|
71
|
-
def
|
82
|
+
def store_prefill_results(self, idx: int, token_id: int):
|
72
83
|
assert token_id >= 0, f"token_id: {token_id} is negative"
|
73
84
|
output_id_buffer = self.metadata_buffers[0]
|
74
85
|
output_id_buffer[idx] = token_id
|
75
86
|
|
76
|
-
def _init_kv_manager(self) ->
|
87
|
+
def _init_kv_manager(self) -> BaseKVManager:
|
77
88
|
kv_args = KVArgs()
|
78
89
|
kv_args.engine_rank = self.tp_rank
|
79
90
|
kv_data_ptrs, kv_data_lens, kv_item_lens = (
|
@@ -94,12 +105,17 @@ class PrefillBootstrapQueue:
|
|
94
105
|
kv_args.aux_item_lens = [
|
95
106
|
metadata_buffer[0].nbytes for metadata_buffer in self.metadata_buffers
|
96
107
|
]
|
97
|
-
kv_args.ib_device =
|
98
|
-
|
108
|
+
kv_args.ib_device = self.scheduler.server_args.disaggregation_ib_device
|
109
|
+
kv_args.gpu_id = self.scheduler.gpu_id
|
110
|
+
kv_manager_class = get_kv_class(self.transfer_backend, KVClassType.MANAGER)
|
111
|
+
kv_manager = kv_manager_class(
|
112
|
+
kv_args, DisaggregationMode.PREFILL, self.scheduler.server_args
|
113
|
+
)
|
99
114
|
return kv_manager
|
100
115
|
|
101
116
|
def add(self, req: Req) -> None:
|
102
|
-
|
117
|
+
kv_sender_class = get_kv_class(self.transfer_backend, KVClassType.SENDER)
|
118
|
+
req.disagg_kv_sender = kv_sender_class(
|
103
119
|
mgr=self.kv_manager,
|
104
120
|
bootstrap_addr=f"{req.bootstrap_host}:{self.bootstrap_port}",
|
105
121
|
bootstrap_room=req.bootstrap_room,
|
@@ -131,7 +147,7 @@ class PrefillBootstrapQueue:
|
|
131
147
|
elif poll == KVPoll.Failed:
|
132
148
|
raise Exception("Bootstrap failed")
|
133
149
|
|
134
|
-
# KV.WaitingForInput
|
150
|
+
# KV.WaitingForInput
|
135
151
|
num_kv_indices = len(req.origin_input_ids)
|
136
152
|
if self.req_to_metadata_buffer_idx_allocator.available_size() == 0:
|
137
153
|
break
|
@@ -140,7 +156,8 @@ class PrefillBootstrapQueue:
|
|
140
156
|
self.req_to_metadata_buffer_idx_allocator.alloc()
|
141
157
|
)
|
142
158
|
assert req.metadata_buffer_index is not None
|
143
|
-
|
159
|
+
num_pages = kv_to_page_num(num_kv_indices, self.token_to_kv_pool.page_size)
|
160
|
+
req.disagg_kv_sender.init(num_pages, req.metadata_buffer_index)
|
144
161
|
|
145
162
|
bootstrapped_reqs.append(req)
|
146
163
|
indices_to_remove.add(i)
|
@@ -157,11 +174,41 @@ class SchedulerDisaggregationPrefillMixin:
|
|
157
174
|
Mixin for Scheduler to handle disaggregation prefill
|
158
175
|
"""
|
159
176
|
|
177
|
+
@torch.no_grad()
|
178
|
+
def event_loop_normal_disagg_prefill(self):
|
179
|
+
"""A normal scheduler loop for prefill worker in disaggregation mode."""
|
180
|
+
|
181
|
+
while True:
|
182
|
+
recv_reqs = self.recv_requests()
|
183
|
+
self.process_input_requests(recv_reqs)
|
184
|
+
self.waiting_queue.extend(
|
185
|
+
self.disagg_prefill_pending_queue.pop_bootstrapped()
|
186
|
+
)
|
187
|
+
self.process_prefill_chunk()
|
188
|
+
batch = self.get_new_batch_prefill()
|
189
|
+
self.cur_batch = batch
|
190
|
+
|
191
|
+
if batch:
|
192
|
+
result = self.run_batch(batch)
|
193
|
+
self.process_batch_result_disagg_prefill(batch, result)
|
194
|
+
|
195
|
+
if len(self.disagg_prefill_inflight_queue) > 0:
|
196
|
+
self.process_disagg_prefill_inflight_queue()
|
197
|
+
|
198
|
+
if batch is None and len(self.disagg_prefill_inflight_queue) == 0:
|
199
|
+
self.check_memory()
|
200
|
+
self.new_token_ratio = self.init_new_token_ratio
|
201
|
+
|
202
|
+
self.last_batch = batch
|
203
|
+
# HACK (byronhsu): reset the batch_is_full flag because we never enter update_running_batch which resets it
|
204
|
+
# Otherwise, it hangs under high concurrency
|
205
|
+
self.running_batch.batch_is_full = False
|
206
|
+
|
160
207
|
def process_batch_result_disagg_prefill(
|
161
208
|
self: Scheduler, batch: ScheduleBatch, result: GenerationBatchResult
|
162
209
|
) -> None:
|
163
210
|
"""
|
164
|
-
Transfer kv for prefill completed requests and add it into
|
211
|
+
Transfer kv for prefill completed requests and add it into disagg_prefill_inflight_queue
|
165
212
|
Adapted from process_batch_result_prefill
|
166
213
|
"""
|
167
214
|
|
@@ -174,7 +221,7 @@ class SchedulerDisaggregationPrefillMixin:
|
|
174
221
|
req.output_ids.append(next_token_id)
|
175
222
|
self.tree_cache.cache_unfinished_req(req) # update the tree and lock
|
176
223
|
self.send_kv_chunk(req, token_id=next_token_id)
|
177
|
-
self.
|
224
|
+
self.disagg_prefill_inflight_queue.append(req)
|
178
225
|
else:
|
179
226
|
# being chunked reqs' prefill is not finished
|
180
227
|
req.is_chunked -= 1
|
@@ -186,35 +233,41 @@ class SchedulerDisaggregationPrefillMixin:
|
|
186
233
|
self.current_stream.synchronize()
|
187
234
|
batch.next_batch_sampling_info.sampling_info_done.set()
|
188
235
|
|
189
|
-
def
|
236
|
+
def process_disagg_prefill_inflight_queue(self: Scheduler) -> None:
|
190
237
|
"""
|
191
238
|
Poll the requests in the middle of transfer. If done, return the request.
|
192
239
|
"""
|
193
|
-
assert len(self.
|
240
|
+
assert len(self.disagg_prefill_inflight_queue) > 0
|
194
241
|
|
195
242
|
done_reqs = []
|
196
243
|
|
197
244
|
polls = poll_and_all_reduce(
|
198
|
-
[req.disagg_kv_sender for req in self.
|
199
|
-
self.
|
245
|
+
[req.disagg_kv_sender for req in self.disagg_prefill_inflight_queue],
|
246
|
+
self.attn_tp_cpu_group,
|
200
247
|
)
|
201
248
|
|
202
249
|
undone_reqs: List[Req] = []
|
203
|
-
# Check .poll() for the reqs in
|
204
|
-
for req, poll in zip(self.
|
250
|
+
# Check .poll() for the reqs in disagg_prefill_inflight_queue. If Success, respond to the client and remove it from the queue
|
251
|
+
for req, poll in zip(self.disagg_prefill_inflight_queue, polls):
|
205
252
|
if poll in [KVPoll.WaitingForInput, KVPoll.Transferring]:
|
206
253
|
undone_reqs.append(req)
|
207
254
|
elif poll == KVPoll.Success: # transfer done
|
208
255
|
self.tree_cache.cache_finished_req(req) # unlock the tree
|
209
256
|
req.finished_reason = FINISH_LENGTH(length=0)
|
257
|
+
# FIXME: clean up req's data in transfer engine
|
210
258
|
done_reqs.append(req)
|
211
259
|
elif poll == KVPoll.Failed:
|
212
260
|
raise Exception("Transferring failed")
|
213
261
|
|
262
|
+
for req in done_reqs:
|
263
|
+
self.disagg_prefill_pending_queue.req_to_metadata_buffer_idx_allocator.free(
|
264
|
+
req.metadata_buffer_index
|
265
|
+
)
|
266
|
+
|
214
267
|
# Stream requests which have finished transfer
|
215
268
|
self.stream_output(done_reqs, False, None)
|
216
269
|
|
217
|
-
self.
|
270
|
+
self.disagg_prefill_inflight_queue = undone_reqs
|
218
271
|
|
219
272
|
def process_prefill_chunk(self: Scheduler) -> None:
|
220
273
|
if self.last_batch and self.last_batch.forward_mode.is_extend():
|
@@ -236,14 +289,21 @@ class SchedulerDisaggregationPrefillMixin:
|
|
236
289
|
"""
|
237
290
|
start_idx = req.start_send_idx
|
238
291
|
end_idx = min(len(req.fill_ids), len(req.origin_input_ids))
|
292
|
+
|
293
|
+
# Update next start_send_idx
|
294
|
+
req.start_send_idx = end_idx
|
295
|
+
|
239
296
|
kv_indices = (
|
240
297
|
self.req_to_token_pool.req_to_token[req.req_pool_idx][start_idx:end_idx]
|
241
298
|
.cpu()
|
242
299
|
.numpy()
|
243
300
|
)
|
244
|
-
req.start_send_idx = end_idx
|
245
301
|
if token_id is not None:
|
246
|
-
self.disagg_prefill_pending_queue.
|
302
|
+
self.disagg_prefill_pending_queue.store_prefill_results(
|
247
303
|
req.metadata_buffer_index, token_id
|
248
304
|
)
|
249
|
-
|
305
|
+
is_last = token_id is not None
|
306
|
+
page_indices = kv_to_page_indices(
|
307
|
+
kv_indices, self.token_to_kv_pool_allocator.page_size
|
308
|
+
)
|
309
|
+
req.disagg_kv_sender.send(page_indices, slice(start_idx, end_idx), is_last)
|
@@ -4,6 +4,7 @@ from collections import deque
|
|
4
4
|
from enum import Enum
|
5
5
|
from typing import List
|
6
6
|
|
7
|
+
import numpy as np
|
7
8
|
import torch
|
8
9
|
import torch.distributed as dist
|
9
10
|
|
@@ -42,3 +43,48 @@ class ReqToMetadataIdxAllocator:
|
|
42
43
|
|
43
44
|
def free(self, free_index: int):
|
44
45
|
self.free_slots.append(free_index)
|
46
|
+
|
47
|
+
|
48
|
+
class TransferBackend(Enum):
|
49
|
+
MOONCAKE = "mooncake"
|
50
|
+
FAKE = "fake"
|
51
|
+
|
52
|
+
|
53
|
+
class KVClassType(Enum):
|
54
|
+
MANAGER = "manager"
|
55
|
+
SENDER = "sender"
|
56
|
+
RECEIVER = "receiver"
|
57
|
+
BOOTSTRAP_SERVER = "bootstrap_server"
|
58
|
+
|
59
|
+
|
60
|
+
def get_kv_class(transfer_backend: TransferBackend, class_type: KVClassType):
|
61
|
+
if transfer_backend == TransferBackend.MOONCAKE:
|
62
|
+
from sglang.srt.disaggregation.mooncake import (
|
63
|
+
MooncakeKVBootstrapServer,
|
64
|
+
MooncakeKVManager,
|
65
|
+
MooncakeKVReceiver,
|
66
|
+
MooncakeKVSender,
|
67
|
+
)
|
68
|
+
|
69
|
+
class_mapping = {
|
70
|
+
KVClassType.MANAGER: MooncakeKVManager,
|
71
|
+
KVClassType.SENDER: MooncakeKVSender,
|
72
|
+
KVClassType.RECEIVER: MooncakeKVReceiver,
|
73
|
+
KVClassType.BOOTSTRAP_SERVER: MooncakeKVBootstrapServer,
|
74
|
+
}
|
75
|
+
return class_mapping.get(class_type)
|
76
|
+
raise ValueError(f"Unsupported transfer backend: {transfer_backend}")
|
77
|
+
|
78
|
+
|
79
|
+
def kv_to_page_indices(kv_indices: np.ndarray, page_size: int):
|
80
|
+
# 1. The page is guaruanteed to be full except the last page.
|
81
|
+
# 2. page index = kv_index // page_size
|
82
|
+
# The return vector is kv_indices[::page_size] // page_size
|
83
|
+
if page_size == 1: # shortcut
|
84
|
+
return kv_indices
|
85
|
+
return kv_indices[::page_size] // page_size
|
86
|
+
|
87
|
+
|
88
|
+
def kv_to_page_num(num_kv_indices: int, page_size: int):
|
89
|
+
# ceil(num_kv_indices / page_size)
|
90
|
+
return (num_kv_indices + page_size - 1) // page_size
|
@@ -0,0 +1,53 @@
|
|
1
|
+
from abc import ABC, abstractmethod
|
2
|
+
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
3
|
+
|
4
|
+
import torch
|
5
|
+
|
6
|
+
|
7
|
+
class EngineBase(ABC):
|
8
|
+
"""
|
9
|
+
Abstract base class for engine interfaces that support generation, weight updating, and memory control.
|
10
|
+
This base class provides a unified API for both HTTP-based engines and engines.
|
11
|
+
"""
|
12
|
+
|
13
|
+
@abstractmethod
|
14
|
+
def generate(
|
15
|
+
self,
|
16
|
+
prompt: Optional[Union[List[str], str]] = None,
|
17
|
+
sampling_params: Optional[Union[List[Dict], Dict]] = None,
|
18
|
+
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
|
19
|
+
image_data: Optional[Union[List[str], str]] = None,
|
20
|
+
return_logprob: Optional[Union[List[bool], bool]] = False,
|
21
|
+
logprob_start_len: Optional[Union[List[int], int]] = None,
|
22
|
+
top_logprobs_num: Optional[Union[List[int], int]] = None,
|
23
|
+
token_ids_logprob: Optional[Union[List[List[int]], List[int]]] = None,
|
24
|
+
lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None,
|
25
|
+
custom_logit_processor: Optional[Union[List[str], str]] = None,
|
26
|
+
) -> Union[Dict, Iterator[Dict]]:
|
27
|
+
"""Generate outputs based on given inputs."""
|
28
|
+
pass
|
29
|
+
|
30
|
+
@abstractmethod
|
31
|
+
def update_weights_from_tensor(
|
32
|
+
self,
|
33
|
+
named_tensors: List[Tuple[str, torch.Tensor]],
|
34
|
+
load_format: Optional[str] = None,
|
35
|
+
flush_cache: bool = True,
|
36
|
+
):
|
37
|
+
"""Update model weights with in-memory tensor data."""
|
38
|
+
pass
|
39
|
+
|
40
|
+
@abstractmethod
|
41
|
+
def release_memory_occupation(self):
|
42
|
+
"""Release GPU memory occupation temporarily."""
|
43
|
+
pass
|
44
|
+
|
45
|
+
@abstractmethod
|
46
|
+
def resume_memory_occupation(self):
|
47
|
+
"""Resume GPU memory occupation which is previously released."""
|
48
|
+
pass
|
49
|
+
|
50
|
+
@abstractmethod
|
51
|
+
def shutdown(self):
|
52
|
+
"""Shutdown the engine and clean up resources."""
|
53
|
+
pass
|
sglang/srt/entrypoints/engine.py
CHANGED
@@ -29,6 +29,7 @@ from typing import AsyncIterator, Dict, Iterator, List, Optional, Tuple, Union
|
|
29
29
|
|
30
30
|
import zmq
|
31
31
|
import zmq.asyncio
|
32
|
+
from PIL.Image import Image
|
32
33
|
|
33
34
|
# Fix a bug of Python threading
|
34
35
|
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)
|
@@ -37,6 +38,7 @@ import torch
|
|
37
38
|
import uvloop
|
38
39
|
|
39
40
|
from sglang.srt.code_completion_parser import load_completion_template_for_openai_api
|
41
|
+
from sglang.srt.entrypoints.EngineBase import EngineBase
|
40
42
|
from sglang.srt.managers.data_parallel_controller import (
|
41
43
|
run_data_parallel_controller_process,
|
42
44
|
)
|
@@ -77,7 +79,7 @@ logger = logging.getLogger(__name__)
|
|
77
79
|
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
|
78
80
|
|
79
81
|
|
80
|
-
class Engine:
|
82
|
+
class Engine(EngineBase):
|
81
83
|
"""
|
82
84
|
The entry point to the inference engine.
|
83
85
|
|
@@ -135,9 +137,19 @@ class Engine:
|
|
135
137
|
sampling_params: Optional[Union[List[Dict], Dict]] = None,
|
136
138
|
# The token ids for text; one can either specify text or input_ids.
|
137
139
|
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
|
138
|
-
# The image input. It can be
|
139
|
-
#
|
140
|
-
|
140
|
+
# The image input. It can be an image instance, file name, URL, or base64 encoded string.
|
141
|
+
# Can be formatted as:
|
142
|
+
# - Single image for a single request
|
143
|
+
# - List of images (one per request in a batch)
|
144
|
+
# - List of lists of images (multiple images per request)
|
145
|
+
# See also python/sglang/srt/utils.py:load_image for more details.
|
146
|
+
image_data: Optional[
|
147
|
+
Union[
|
148
|
+
List[List[Union[Image, str]]],
|
149
|
+
List[Union[Image, str]],
|
150
|
+
Union[Image, str],
|
151
|
+
]
|
152
|
+
] = None,
|
141
153
|
return_logprob: Optional[Union[List[bool], bool]] = False,
|
142
154
|
logprob_start_len: Optional[Union[List[int], int]] = None,
|
143
155
|
top_logprobs_num: Optional[Union[List[int], int]] = None,
|
@@ -190,9 +202,19 @@ class Engine:
|
|
190
202
|
sampling_params: Optional[Union[List[Dict], Dict]] = None,
|
191
203
|
# The token ids for text; one can either specify text or input_ids.
|
192
204
|
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
|
193
|
-
# The image input. It can be
|
194
|
-
#
|
195
|
-
|
205
|
+
# The image input. It can be an image instance, file name, URL, or base64 encoded string.
|
206
|
+
# Can be formatted as:
|
207
|
+
# - Single image for a single request
|
208
|
+
# - List of images (one per request in a batch)
|
209
|
+
# - List of lists of images (multiple images per request)
|
210
|
+
# See also python/sglang/srt/utils.py:load_image for more details.
|
211
|
+
image_data: Optional[
|
212
|
+
Union[
|
213
|
+
List[List[Union[Image, str]]],
|
214
|
+
List[Union[Image, str]],
|
215
|
+
Union[Image, str],
|
216
|
+
]
|
217
|
+
] = None,
|
196
218
|
return_logprob: Optional[Union[List[bool], bool]] = False,
|
197
219
|
logprob_start_len: Optional[Union[List[int], int]] = None,
|
198
220
|
top_logprobs_num: Optional[Union[List[int], int]] = None,
|
@@ -228,7 +250,13 @@ class Engine:
|
|
228
250
|
def encode(
|
229
251
|
self,
|
230
252
|
prompt: Union[str, List[str], List[Dict], List[List[Dict]]],
|
231
|
-
image_data: Optional[
|
253
|
+
image_data: Optional[
|
254
|
+
Union[
|
255
|
+
List[List[Union[Image, str]]],
|
256
|
+
List[Union[Image, str]],
|
257
|
+
Union[Image, str],
|
258
|
+
]
|
259
|
+
] = None,
|
232
260
|
) -> Dict:
|
233
261
|
"""
|
234
262
|
The arguments of this function is the same as `sglang/srt/managers/io_struct.py::EmbeddingReqInput`.
|
@@ -25,8 +25,11 @@ import multiprocessing as multiprocessing
|
|
25
25
|
import os
|
26
26
|
import threading
|
27
27
|
import time
|
28
|
+
from ast import Mult
|
28
29
|
from http import HTTPStatus
|
29
|
-
from typing import AsyncIterator, Callable, Dict, Optional
|
30
|
+
from typing import AsyncIterator, Callable, Dict, Optional, Union
|
31
|
+
|
32
|
+
from sglang.srt.model_executor.model_runner import LocalSerializedTensor
|
30
33
|
|
31
34
|
# Fix a bug of Python threading
|
32
35
|
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)
|
@@ -60,6 +63,7 @@ from sglang.srt.managers.io_struct import (
|
|
60
63
|
SetInternalStateReq,
|
61
64
|
UpdateWeightFromDiskReqInput,
|
62
65
|
UpdateWeightsFromDistributedReqInput,
|
66
|
+
UpdateWeightsFromTensorReqInput,
|
63
67
|
VertexGenerateReqInput,
|
64
68
|
)
|
65
69
|
from sglang.srt.managers.tokenizer_manager import TokenizerManager
|
@@ -80,6 +84,7 @@ from sglang.srt.openai_api.protocol import ModelCard, ModelList
|
|
80
84
|
from sglang.srt.reasoning_parser import ReasoningParser
|
81
85
|
from sglang.srt.server_args import ServerArgs
|
82
86
|
from sglang.srt.utils import (
|
87
|
+
MultiprocessingSerializer,
|
83
88
|
add_api_key_middleware,
|
84
89
|
add_prometheus_middleware,
|
85
90
|
delete_directory,
|
@@ -411,6 +416,26 @@ async def init_weights_update_group(
|
|
411
416
|
return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)
|
412
417
|
|
413
418
|
|
419
|
+
@app.post("/update_weights_from_tensor")
|
420
|
+
async def update_weights_from_tensor(
|
421
|
+
obj: UpdateWeightsFromTensorReqInput, request: Request
|
422
|
+
):
|
423
|
+
"""Update the weights from tensor inplace without re-launching the server.
|
424
|
+
Notes:
|
425
|
+
1. Ensure that the model is on the correct device (e.g., GPU) before calling this endpoint. If the model is moved to the CPU unexpectedly, it may cause performance issues or runtime errors.
|
426
|
+
2. HTTP will transmit only the metadata of the tensor, while the tensor itself will be directly copied to the model.
|
427
|
+
3. Any binary data in the named tensors should be base64 encoded.
|
428
|
+
"""
|
429
|
+
|
430
|
+
success, message = await _global_state.tokenizer_manager.update_weights_from_tensor(
|
431
|
+
obj, request
|
432
|
+
)
|
433
|
+
content = {"success": success, "message": message}
|
434
|
+
return ORJSONResponse(
|
435
|
+
content, status_code=200 if success else HTTPStatus.BAD_REQUEST
|
436
|
+
)
|
437
|
+
|
438
|
+
|
414
439
|
@app.post("/update_weights_from_distributed")
|
415
440
|
async def update_weights_from_distributed(
|
416
441
|
obj: UpdateWeightsFromDistributedReqInput, request: Request
|
@@ -785,13 +810,17 @@ def _wait_and_warmup(
|
|
785
810
|
json_data["sampling_params"]["max_new_tokens"] = 0
|
786
811
|
|
787
812
|
try:
|
788
|
-
|
789
|
-
|
790
|
-
|
791
|
-
|
792
|
-
|
793
|
-
|
794
|
-
|
813
|
+
if server_args.disaggregation_mode == "null":
|
814
|
+
res = requests.post(
|
815
|
+
url + request_name,
|
816
|
+
json=json_data,
|
817
|
+
headers=headers,
|
818
|
+
timeout=600,
|
819
|
+
)
|
820
|
+
assert res.status_code == 200, f"{res}"
|
821
|
+
else:
|
822
|
+
# Warmup request currently hangs in disaggregation mode, so we skip it.
|
823
|
+
logger.info("Skipping warmup request in disaggregation mode")
|
795
824
|
except Exception:
|
796
825
|
last_traceback = get_exception_traceback()
|
797
826
|
if pipe_finish_writer is not None:
|
@@ -0,0 +1,142 @@
|
|
1
|
+
import base64
|
2
|
+
import copy
|
3
|
+
import dataclasses
|
4
|
+
import multiprocessing
|
5
|
+
import pickle
|
6
|
+
import threading
|
7
|
+
import time
|
8
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
9
|
+
|
10
|
+
import requests
|
11
|
+
import torch
|
12
|
+
import torch.distributed as dist
|
13
|
+
|
14
|
+
from sglang.srt.entrypoints.EngineBase import EngineBase
|
15
|
+
from sglang.srt.entrypoints.http_server import launch_server
|
16
|
+
from sglang.srt.server_args import ServerArgs
|
17
|
+
from sglang.srt.utils import MultiprocessingSerializer, kill_process_tree
|
18
|
+
|
19
|
+
|
20
|
+
def launch_server_process(server_args: ServerArgs) -> multiprocessing.Process:
|
21
|
+
|
22
|
+
p = multiprocessing.Process(target=launch_server, args=(server_args,))
|
23
|
+
p.start()
|
24
|
+
|
25
|
+
base_url = server_args.url()
|
26
|
+
timeout = 300.0 # Increased timeout to 5 minutes for downloading large models
|
27
|
+
start_time = time.time()
|
28
|
+
|
29
|
+
with requests.Session() as session:
|
30
|
+
while time.time() - start_time < timeout:
|
31
|
+
try:
|
32
|
+
headers = {
|
33
|
+
"Content-Type": "application/json; charset=utf-8",
|
34
|
+
"Authorization": f"Bearer {server_args.api_key}",
|
35
|
+
}
|
36
|
+
response = session.get(f"{base_url}/health_generate", headers=headers)
|
37
|
+
if response.status_code == 200:
|
38
|
+
return p
|
39
|
+
except requests.RequestException:
|
40
|
+
pass
|
41
|
+
|
42
|
+
if not p.is_alive():
|
43
|
+
raise Exception("Server process terminated unexpectedly.")
|
44
|
+
|
45
|
+
time.sleep(2)
|
46
|
+
|
47
|
+
p.terminate()
|
48
|
+
raise TimeoutError("Server failed to start within the timeout period.")
|
49
|
+
|
50
|
+
|
51
|
+
class HttpServerEngineAdapter(EngineBase):
|
52
|
+
"""
|
53
|
+
You can use this class to launch a server from a VerlEngine instance.
|
54
|
+
We recommend using this class only you need to use http server.
|
55
|
+
Otherwise, you can use Engine directly.
|
56
|
+
"""
|
57
|
+
|
58
|
+
def __init__(self, **kwargs):
|
59
|
+
self.server_args = ServerArgs(**kwargs)
|
60
|
+
print(
|
61
|
+
f"Launch HttpServerEngineAdapter at: {self.server_args.host}:{self.server_args.port}"
|
62
|
+
)
|
63
|
+
self.process = launch_server_process(self.server_args)
|
64
|
+
|
65
|
+
def _make_request(self, endpoint: str, payload: Optional[dict] = None):
|
66
|
+
"""Make a POST request to the specified endpoint with the given payload.
|
67
|
+
|
68
|
+
Args:
|
69
|
+
endpoint: The API endpoint to call
|
70
|
+
payload: The JSON payload to send (default: empty dict)
|
71
|
+
|
72
|
+
Returns:
|
73
|
+
The JSON response from the server
|
74
|
+
"""
|
75
|
+
url = f"http://{self.server_args.host}:{self.server_args.port}/{endpoint}"
|
76
|
+
response = requests.post(url, json=payload or {})
|
77
|
+
response.raise_for_status()
|
78
|
+
return response.json()
|
79
|
+
|
80
|
+
def update_weights_from_tensor(
|
81
|
+
self,
|
82
|
+
named_tensors: List[Tuple[str, torch.Tensor]],
|
83
|
+
load_format: Optional[str] = None,
|
84
|
+
flush_cache: bool = False,
|
85
|
+
):
|
86
|
+
"""
|
87
|
+
Update model weights from tensor data. The HTTP server will only post meta data, and the real weights will be copied directly from GPUs.
|
88
|
+
|
89
|
+
Note: The model should be on GPUs rather than CPU for this functionality to work properly.
|
90
|
+
If you encounter issues, ensure your model is loaded on GPU devices rather than CPU.
|
91
|
+
"""
|
92
|
+
|
93
|
+
return self._make_request(
|
94
|
+
"update_weights_from_tensor",
|
95
|
+
{
|
96
|
+
"serialized_named_tensors": [
|
97
|
+
MultiprocessingSerializer.serialize(named_tensors, output_str=True)
|
98
|
+
for _ in range(self.server_args.tp_size)
|
99
|
+
],
|
100
|
+
"load_format": load_format,
|
101
|
+
"flush_cache": flush_cache,
|
102
|
+
},
|
103
|
+
)
|
104
|
+
|
105
|
+
def shutdown(self):
|
106
|
+
kill_process_tree(self.process.pid)
|
107
|
+
|
108
|
+
def generate(
|
109
|
+
self,
|
110
|
+
prompt=None,
|
111
|
+
sampling_params=None,
|
112
|
+
input_ids=None,
|
113
|
+
image_data=None,
|
114
|
+
return_logprob=False,
|
115
|
+
logprob_start_len=None,
|
116
|
+
top_logprobs_num=None,
|
117
|
+
token_ids_logprob=None,
|
118
|
+
lora_path=None,
|
119
|
+
custom_logit_processor=None,
|
120
|
+
):
|
121
|
+
payload = {
|
122
|
+
"text": prompt,
|
123
|
+
"sampling_params": sampling_params,
|
124
|
+
"input_ids": input_ids,
|
125
|
+
"image_data": image_data,
|
126
|
+
"return_logprob": return_logprob,
|
127
|
+
"logprob_start_len": logprob_start_len,
|
128
|
+
"top_logprobs_num": top_logprobs_num,
|
129
|
+
"token_ids_logprob": token_ids_logprob,
|
130
|
+
"lora_path": lora_path,
|
131
|
+
"custom_logit_processor": custom_logit_processor,
|
132
|
+
}
|
133
|
+
# Filter out None values
|
134
|
+
payload = {k: v for k, v in payload.items() if v is not None}
|
135
|
+
|
136
|
+
return self._make_request("generate", payload)
|
137
|
+
|
138
|
+
def release_memory_occupation(self):
|
139
|
+
return self._make_request("release_memory_occupation")
|
140
|
+
|
141
|
+
def resume_memory_occupation(self):
|
142
|
+
return self._make_request("resume_memory_occupation")
|