sglang 0.4.5__py3-none-any.whl → 0.4.5.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +21 -0
- sglang/bench_serving.py +10 -4
- sglang/srt/configs/model_config.py +37 -5
- sglang/srt/constrained/base_grammar_backend.py +26 -5
- sglang/srt/constrained/llguidance_backend.py +1 -0
- sglang/srt/constrained/outlines_backend.py +1 -0
- sglang/srt/constrained/reasoner_grammar_backend.py +101 -0
- sglang/srt/constrained/xgrammar_backend.py +1 -0
- sglang/srt/disaggregation/base/__init__.py +8 -0
- sglang/srt/disaggregation/base/conn.py +113 -0
- sglang/srt/disaggregation/decode.py +18 -5
- sglang/srt/disaggregation/mini_lb.py +53 -122
- sglang/srt/disaggregation/mooncake/__init__.py +6 -0
- sglang/srt/disaggregation/mooncake/conn.py +615 -0
- sglang/srt/disaggregation/mooncake/transfer_engine.py +108 -0
- sglang/srt/disaggregation/prefill.py +43 -19
- sglang/srt/disaggregation/utils.py +31 -0
- sglang/srt/entrypoints/EngineBase.py +53 -0
- sglang/srt/entrypoints/engine.py +36 -8
- sglang/srt/entrypoints/http_server.py +37 -8
- sglang/srt/entrypoints/http_server_engine.py +142 -0
- sglang/srt/entrypoints/verl_engine.py +37 -10
- sglang/srt/hf_transformers_utils.py +4 -0
- sglang/srt/layers/attention/flashattention_backend.py +330 -200
- sglang/srt/layers/attention/flashinfer_backend.py +13 -7
- sglang/srt/layers/attention/vision.py +1 -1
- sglang/srt/layers/dp_attention.py +2 -4
- sglang/srt/layers/elementwise.py +15 -2
- sglang/srt/layers/linear.py +1 -0
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +145 -118
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=264,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/{E=257,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json → E=264,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +34 -34
- sglang/srt/layers/moe/fused_moe_triton/configs/E=272,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=272,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=288,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +38 -21
- sglang/srt/layers/moe/router.py +7 -1
- sglang/srt/layers/moe/topk.py +37 -16
- sglang/srt/layers/quantization/__init__.py +12 -5
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +4 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +68 -45
- sglang/srt/layers/quantization/fp8.py +25 -13
- sglang/srt/layers/quantization/fp8_kernel.py +130 -4
- sglang/srt/layers/quantization/fp8_utils.py +34 -6
- sglang/srt/layers/quantization/kv_cache.py +43 -52
- sglang/srt/layers/quantization/modelopt_quant.py +271 -4
- sglang/srt/layers/quantization/w8a8_fp8.py +154 -4
- sglang/srt/layers/quantization/w8a8_int8.py +1 -0
- sglang/srt/layers/radix_attention.py +13 -1
- sglang/srt/layers/rotary_embedding.py +12 -1
- sglang/srt/managers/io_struct.py +254 -97
- sglang/srt/managers/mm_utils.py +3 -2
- sglang/srt/managers/multimodal_processors/base_processor.py +114 -77
- sglang/srt/managers/multimodal_processors/janus_pro.py +3 -1
- sglang/srt/managers/multimodal_processors/mllama4.py +21 -36
- sglang/srt/managers/schedule_batch.py +62 -21
- sglang/srt/managers/scheduler.py +71 -14
- sglang/srt/managers/tokenizer_manager.py +17 -3
- sglang/srt/managers/tp_worker.py +1 -0
- sglang/srt/mem_cache/memory_pool.py +14 -1
- sglang/srt/metrics/collector.py +9 -0
- sglang/srt/model_executor/cuda_graph_runner.py +7 -4
- sglang/srt/model_executor/forward_batch_info.py +234 -15
- sglang/srt/model_executor/model_runner.py +48 -9
- sglang/srt/model_loader/loader.py +31 -4
- sglang/srt/model_loader/weight_utils.py +4 -2
- sglang/srt/models/baichuan.py +2 -0
- sglang/srt/models/chatglm.py +1 -0
- sglang/srt/models/commandr.py +1 -0
- sglang/srt/models/dbrx.py +1 -0
- sglang/srt/models/deepseek.py +1 -0
- sglang/srt/models/deepseek_v2.py +248 -61
- sglang/srt/models/exaone.py +1 -0
- sglang/srt/models/gemma.py +1 -0
- sglang/srt/models/gemma2.py +1 -0
- sglang/srt/models/gemma3_causal.py +1 -0
- sglang/srt/models/gpt2.py +1 -0
- sglang/srt/models/gpt_bigcode.py +1 -0
- sglang/srt/models/granite.py +1 -0
- sglang/srt/models/grok.py +1 -0
- sglang/srt/models/internlm2.py +1 -0
- sglang/srt/models/llama.py +1 -0
- sglang/srt/models/llama4.py +101 -34
- sglang/srt/models/minicpm.py +1 -0
- sglang/srt/models/minicpm3.py +2 -0
- sglang/srt/models/mixtral.py +1 -0
- sglang/srt/models/mixtral_quant.py +1 -0
- sglang/srt/models/mllama.py +51 -8
- sglang/srt/models/mllama4.py +102 -29
- sglang/srt/models/olmo.py +1 -0
- sglang/srt/models/olmo2.py +1 -0
- sglang/srt/models/olmoe.py +1 -0
- sglang/srt/models/phi3_small.py +1 -0
- sglang/srt/models/qwen.py +1 -0
- sglang/srt/models/qwen2.py +1 -0
- sglang/srt/models/qwen2_5_vl.py +35 -70
- sglang/srt/models/qwen2_moe.py +1 -0
- sglang/srt/models/qwen2_vl.py +27 -25
- sglang/srt/models/stablelm.py +1 -0
- sglang/srt/models/xverse.py +1 -0
- sglang/srt/models/xverse_moe.py +1 -0
- sglang/srt/openai_api/adapter.py +4 -1
- sglang/srt/patch_torch.py +11 -0
- sglang/srt/server_args.py +34 -0
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +4 -4
- sglang/srt/speculative/eagle_utils.py +1 -11
- sglang/srt/speculative/eagle_worker.py +6 -2
- sglang/srt/utils.py +120 -9
- sglang/test/attention/test_flashattn_backend.py +259 -221
- sglang/test/attention/test_flashattn_mla_backend.py +285 -0
- sglang/test/attention/test_prefix_chunk_info.py +224 -0
- sglang/test/test_block_fp8.py +57 -0
- sglang/test/test_utils.py +19 -8
- sglang/version.py +1 -1
- {sglang-0.4.5.dist-info → sglang-0.4.5.post1.dist-info}/METADATA +14 -4
- {sglang-0.4.5.dist-info → sglang-0.4.5.post1.dist-info}/RECORD +120 -106
- sglang/srt/disaggregation/conn.py +0 -81
- {sglang-0.4.5.dist-info → sglang-0.4.5.post1.dist-info}/WHEEL +0 -0
- {sglang-0.4.5.dist-info → sglang-0.4.5.post1.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.5.dist-info → sglang-0.4.5.post1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,108 @@
|
|
1
|
+
import json
|
2
|
+
import logging
|
3
|
+
import os
|
4
|
+
import uuid
|
5
|
+
from dataclasses import dataclass
|
6
|
+
|
7
|
+
logger = logging.getLogger(__name__)
|
8
|
+
|
9
|
+
|
10
|
+
@dataclass
|
11
|
+
class MooncakeTransferEngineConfig:
|
12
|
+
local_hostname: str
|
13
|
+
metadata_server: str
|
14
|
+
protocol: str
|
15
|
+
device_name: str
|
16
|
+
|
17
|
+
@staticmethod
|
18
|
+
def from_file(file_path: str) -> "MooncakeTransferEngineConfig":
|
19
|
+
"""Load the config from a JSON file."""
|
20
|
+
with open(file_path) as fin:
|
21
|
+
config = json.load(fin)
|
22
|
+
return MooncakeTransferEngineConfig(
|
23
|
+
local_hostname=config.get("local_hostname", None),
|
24
|
+
metadata_server=config.get("metadata_server"),
|
25
|
+
protocol=config.get("protocol", "rdma"),
|
26
|
+
device_name=config.get("device_name", ""),
|
27
|
+
)
|
28
|
+
|
29
|
+
@staticmethod
|
30
|
+
def load_from_env() -> "MooncakeTransferEngineConfig":
|
31
|
+
"""Load config from a file specified in the environment variable."""
|
32
|
+
config_file_path = os.getenv("MOONCAKE_CONFIG_PATH")
|
33
|
+
if config_file_path is None:
|
34
|
+
raise ValueError(
|
35
|
+
"The environment variable 'MOONCAKE_CONFIG_PATH' is not set."
|
36
|
+
)
|
37
|
+
return MooncakeTransferEngineConfig.from_file(config_file_path)
|
38
|
+
|
39
|
+
|
40
|
+
class MooncakeTransferEngine:
|
41
|
+
|
42
|
+
def __init__(self):
|
43
|
+
try:
|
44
|
+
from mooncake.engine import TransferEngine
|
45
|
+
except ImportError as e:
|
46
|
+
raise ImportError(
|
47
|
+
"Please install mooncake by following the instructions at "
|
48
|
+
"https://github.com/kvcache-ai/Mooncake/blob/main/doc/en/build.md " # noqa: E501
|
49
|
+
"to run SGLang with MooncakeTransferEngine."
|
50
|
+
) from e
|
51
|
+
|
52
|
+
self.engine = TransferEngine()
|
53
|
+
|
54
|
+
try:
|
55
|
+
self.config = MooncakeTransferEngineConfig.load_from_env()
|
56
|
+
logger.info("Mooncake Configuration loaded successfully.")
|
57
|
+
except ValueError as e:
|
58
|
+
logger.error(e)
|
59
|
+
raise
|
60
|
+
except Exception as exc:
|
61
|
+
logger.error("An error occurred while loading the configuration: %s", exc)
|
62
|
+
raise
|
63
|
+
|
64
|
+
self.config = MooncakeTransferEngineConfig.load_from_env()
|
65
|
+
|
66
|
+
session_suffix = "_" + str(uuid.uuid4())
|
67
|
+
self.session_id = self.config.local_hostname + session_suffix
|
68
|
+
self.initialize(
|
69
|
+
self.session_id,
|
70
|
+
self.config.metadata_server,
|
71
|
+
self.config.protocol,
|
72
|
+
self.config.device_name,
|
73
|
+
)
|
74
|
+
|
75
|
+
def register(self, ptr, length):
|
76
|
+
self.engine.register_memory(ptr, length)
|
77
|
+
|
78
|
+
def deregister(self, ptr):
|
79
|
+
self.engine.unregister_memory(ptr)
|
80
|
+
|
81
|
+
def initialize(
|
82
|
+
self,
|
83
|
+
local_hostname: str,
|
84
|
+
metadata_server: str,
|
85
|
+
protocol: str,
|
86
|
+
device_name: str,
|
87
|
+
) -> None:
|
88
|
+
"""Initialize the mooncake instance."""
|
89
|
+
self.engine.initialize(local_hostname, metadata_server, protocol, device_name)
|
90
|
+
|
91
|
+
def transfer_sync(
|
92
|
+
self, session_id: str, buffer: int, peer_buffer_address: int, length: int
|
93
|
+
) -> int:
|
94
|
+
"""Synchronously transfer data to the specified address."""
|
95
|
+
|
96
|
+
ret = self.engine.transfer_sync_write(
|
97
|
+
session_id, buffer, peer_buffer_address, length
|
98
|
+
)
|
99
|
+
if ret < 0:
|
100
|
+
logger.error("Transfer Return Error")
|
101
|
+
raise Exception("Transfer Return Error")
|
102
|
+
return ret
|
103
|
+
|
104
|
+
def get_localhost(self):
|
105
|
+
return self.config.local_hostname
|
106
|
+
|
107
|
+
def get_session_id(self):
|
108
|
+
return self.session_id
|
@@ -10,9 +10,9 @@ Life cycle of a request in the prefill server
|
|
10
10
|
2. Waiting Queue
|
11
11
|
a. Use PrefillAdder to pop requests
|
12
12
|
b. Run forward
|
13
|
-
c. Add the request to
|
13
|
+
c. Add the request to Inflight Queue
|
14
14
|
|
15
|
-
3.
|
15
|
+
3. Inflight Queue
|
16
16
|
a. Poll (non-blocking) the sender of the request
|
17
17
|
b. Once the transfer has finished, return the request
|
18
18
|
"""
|
@@ -24,9 +24,13 @@ from typing import TYPE_CHECKING, List, Optional
|
|
24
24
|
|
25
25
|
import torch
|
26
26
|
|
27
|
-
from sglang.srt.disaggregation.
|
27
|
+
from sglang.srt.disaggregation.base import BaseKVManager, KVArgs, KVPoll
|
28
28
|
from sglang.srt.disaggregation.utils import (
|
29
|
+
DisaggregationMode,
|
30
|
+
KVClassType,
|
29
31
|
ReqToMetadataIdxAllocator,
|
32
|
+
TransferBackend,
|
33
|
+
get_kv_class,
|
30
34
|
poll_and_all_reduce,
|
31
35
|
)
|
32
36
|
from sglang.srt.managers.schedule_batch import FINISH_LENGTH, Req, ScheduleBatch
|
@@ -37,6 +41,7 @@ if TYPE_CHECKING:
|
|
37
41
|
from sglang.srt.managers.scheduler import GenerationBatchResult, Scheduler
|
38
42
|
from sglang.srt.mem_cache.memory_pool import KVCache
|
39
43
|
|
44
|
+
|
40
45
|
logger = logging.getLogger(__name__)
|
41
46
|
|
42
47
|
|
@@ -55,6 +60,8 @@ class PrefillBootstrapQueue:
|
|
55
60
|
tp_size: int,
|
56
61
|
bootstrap_port: int,
|
57
62
|
gloo_group: ProcessGroup,
|
63
|
+
transfer_backend: TransferBackend,
|
64
|
+
scheduler: Scheduler,
|
58
65
|
):
|
59
66
|
self.token_to_kv_pool = token_to_kv_pool
|
60
67
|
self.aux_dtype = aux_dtype
|
@@ -63,17 +70,19 @@ class PrefillBootstrapQueue:
|
|
63
70
|
self.req_to_metadata_buffer_idx_allocator = req_to_metadata_buffer_idx_allocator
|
64
71
|
self.tp_rank = tp_rank
|
65
72
|
self.tp_size = tp_size
|
73
|
+
self.transfer_backend = transfer_backend
|
74
|
+
self.scheduler = scheduler
|
66
75
|
self.kv_manager = self._init_kv_manager()
|
67
76
|
self.queue: List[Req] = []
|
68
77
|
self.gloo_group = gloo_group
|
69
78
|
self.bootstrap_port = bootstrap_port
|
70
79
|
|
71
|
-
def
|
80
|
+
def store_prefill_results(self, idx: int, token_id: int):
|
72
81
|
assert token_id >= 0, f"token_id: {token_id} is negative"
|
73
82
|
output_id_buffer = self.metadata_buffers[0]
|
74
83
|
output_id_buffer[idx] = token_id
|
75
84
|
|
76
|
-
def _init_kv_manager(self) ->
|
85
|
+
def _init_kv_manager(self) -> BaseKVManager:
|
77
86
|
kv_args = KVArgs()
|
78
87
|
kv_args.engine_rank = self.tp_rank
|
79
88
|
kv_data_ptrs, kv_data_lens, kv_item_lens = (
|
@@ -95,11 +104,16 @@ class PrefillBootstrapQueue:
|
|
95
104
|
metadata_buffer[0].nbytes for metadata_buffer in self.metadata_buffers
|
96
105
|
]
|
97
106
|
kv_args.ib_device = "mock-ib-device"
|
98
|
-
|
107
|
+
kv_args.gpu_id = self.scheduler.gpu_id
|
108
|
+
kv_manager_class = get_kv_class(self.transfer_backend, KVClassType.MANAGER)
|
109
|
+
kv_manager = kv_manager_class(
|
110
|
+
kv_args, DisaggregationMode.PREFILL, self.scheduler.server_args
|
111
|
+
)
|
99
112
|
return kv_manager
|
100
113
|
|
101
114
|
def add(self, req: Req) -> None:
|
102
|
-
|
115
|
+
kv_sender_class = get_kv_class(self.transfer_backend, KVClassType.SENDER)
|
116
|
+
req.disagg_kv_sender = kv_sender_class(
|
103
117
|
mgr=self.kv_manager,
|
104
118
|
bootstrap_addr=f"{req.bootstrap_host}:{self.bootstrap_port}",
|
105
119
|
bootstrap_room=req.bootstrap_room,
|
@@ -131,7 +145,7 @@ class PrefillBootstrapQueue:
|
|
131
145
|
elif poll == KVPoll.Failed:
|
132
146
|
raise Exception("Bootstrap failed")
|
133
147
|
|
134
|
-
# KV.WaitingForInput
|
148
|
+
# KV.WaitingForInput
|
135
149
|
num_kv_indices = len(req.origin_input_ids)
|
136
150
|
if self.req_to_metadata_buffer_idx_allocator.available_size() == 0:
|
137
151
|
break
|
@@ -161,7 +175,7 @@ class SchedulerDisaggregationPrefillMixin:
|
|
161
175
|
self: Scheduler, batch: ScheduleBatch, result: GenerationBatchResult
|
162
176
|
) -> None:
|
163
177
|
"""
|
164
|
-
Transfer kv for prefill completed requests and add it into
|
178
|
+
Transfer kv for prefill completed requests and add it into disagg_prefill_inflight_queue
|
165
179
|
Adapted from process_batch_result_prefill
|
166
180
|
"""
|
167
181
|
|
@@ -174,7 +188,7 @@ class SchedulerDisaggregationPrefillMixin:
|
|
174
188
|
req.output_ids.append(next_token_id)
|
175
189
|
self.tree_cache.cache_unfinished_req(req) # update the tree and lock
|
176
190
|
self.send_kv_chunk(req, token_id=next_token_id)
|
177
|
-
self.
|
191
|
+
self.disagg_prefill_inflight_queue.append(req)
|
178
192
|
else:
|
179
193
|
# being chunked reqs' prefill is not finished
|
180
194
|
req.is_chunked -= 1
|
@@ -186,35 +200,41 @@ class SchedulerDisaggregationPrefillMixin:
|
|
186
200
|
self.current_stream.synchronize()
|
187
201
|
batch.next_batch_sampling_info.sampling_info_done.set()
|
188
202
|
|
189
|
-
def
|
203
|
+
def process_disagg_prefill_inflight_queue(self: Scheduler) -> None:
|
190
204
|
"""
|
191
205
|
Poll the requests in the middle of transfer. If done, return the request.
|
192
206
|
"""
|
193
|
-
assert len(self.
|
207
|
+
assert len(self.disagg_prefill_inflight_queue) > 0
|
194
208
|
|
195
209
|
done_reqs = []
|
196
210
|
|
197
211
|
polls = poll_and_all_reduce(
|
198
|
-
[req.disagg_kv_sender for req in self.
|
212
|
+
[req.disagg_kv_sender for req in self.disagg_prefill_inflight_queue],
|
199
213
|
self.tp_worker.get_tp_cpu_group(),
|
200
214
|
)
|
201
215
|
|
202
216
|
undone_reqs: List[Req] = []
|
203
|
-
# Check .poll() for the reqs in
|
204
|
-
for req, poll in zip(self.
|
217
|
+
# Check .poll() for the reqs in disagg_prefill_inflight_queue. If Success, respond to the client and remove it from the queue
|
218
|
+
for req, poll in zip(self.disagg_prefill_inflight_queue, polls):
|
205
219
|
if poll in [KVPoll.WaitingForInput, KVPoll.Transferring]:
|
206
220
|
undone_reqs.append(req)
|
207
221
|
elif poll == KVPoll.Success: # transfer done
|
208
222
|
self.tree_cache.cache_finished_req(req) # unlock the tree
|
209
223
|
req.finished_reason = FINISH_LENGTH(length=0)
|
224
|
+
# FIXME: clean up req's data in transfer engine
|
210
225
|
done_reqs.append(req)
|
211
226
|
elif poll == KVPoll.Failed:
|
212
227
|
raise Exception("Transferring failed")
|
213
228
|
|
229
|
+
for req in done_reqs:
|
230
|
+
self.disagg_prefill_pending_queue.req_to_metadata_buffer_idx_allocator.free(
|
231
|
+
req.metadata_buffer_index
|
232
|
+
)
|
233
|
+
|
214
234
|
# Stream requests which have finished transfer
|
215
235
|
self.stream_output(done_reqs, False, None)
|
216
236
|
|
217
|
-
self.
|
237
|
+
self.disagg_prefill_inflight_queue = undone_reqs
|
218
238
|
|
219
239
|
def process_prefill_chunk(self: Scheduler) -> None:
|
220
240
|
if self.last_batch and self.last_batch.forward_mode.is_extend():
|
@@ -236,14 +256,18 @@ class SchedulerDisaggregationPrefillMixin:
|
|
236
256
|
"""
|
237
257
|
start_idx = req.start_send_idx
|
238
258
|
end_idx = min(len(req.fill_ids), len(req.origin_input_ids))
|
259
|
+
|
260
|
+
# Update next start_send_idx
|
261
|
+
req.start_send_idx = end_idx
|
262
|
+
|
239
263
|
kv_indices = (
|
240
264
|
self.req_to_token_pool.req_to_token[req.req_pool_idx][start_idx:end_idx]
|
241
265
|
.cpu()
|
242
266
|
.numpy()
|
243
267
|
)
|
244
|
-
req.start_send_idx = end_idx
|
245
268
|
if token_id is not None:
|
246
|
-
self.disagg_prefill_pending_queue.
|
269
|
+
self.disagg_prefill_pending_queue.store_prefill_results(
|
247
270
|
req.metadata_buffer_index, token_id
|
248
271
|
)
|
249
|
-
|
272
|
+
is_last = token_id is not None
|
273
|
+
req.disagg_kv_sender.send(kv_indices, slice(start_idx, end_idx), is_last)
|
@@ -42,3 +42,34 @@ class ReqToMetadataIdxAllocator:
|
|
42
42
|
|
43
43
|
def free(self, free_index: int):
|
44
44
|
self.free_slots.append(free_index)
|
45
|
+
|
46
|
+
|
47
|
+
class TransferBackend(Enum):
|
48
|
+
MOONCAKE = "mooncake"
|
49
|
+
FAKE = "fake"
|
50
|
+
|
51
|
+
|
52
|
+
class KVClassType(Enum):
|
53
|
+
MANAGER = "manager"
|
54
|
+
SENDER = "sender"
|
55
|
+
RECEIVER = "receiver"
|
56
|
+
BOOTSTRAP_SERVER = "bootstrap_server"
|
57
|
+
|
58
|
+
|
59
|
+
def get_kv_class(transfer_backend: TransferBackend, class_type: KVClassType):
|
60
|
+
if transfer_backend == TransferBackend.MOONCAKE:
|
61
|
+
from sglang.srt.disaggregation.mooncake import (
|
62
|
+
MooncakeKVBootstrapServer,
|
63
|
+
MooncakeKVManager,
|
64
|
+
MooncakeKVReceiver,
|
65
|
+
MooncakeKVSender,
|
66
|
+
)
|
67
|
+
|
68
|
+
class_mapping = {
|
69
|
+
KVClassType.MANAGER: MooncakeKVManager,
|
70
|
+
KVClassType.SENDER: MooncakeKVSender,
|
71
|
+
KVClassType.RECEIVER: MooncakeKVReceiver,
|
72
|
+
KVClassType.BOOTSTRAP_SERVER: MooncakeKVBootstrapServer,
|
73
|
+
}
|
74
|
+
return class_mapping.get(class_type)
|
75
|
+
raise ValueError(f"Unsupported transfer backend: {transfer_backend}")
|
@@ -0,0 +1,53 @@
|
|
1
|
+
from abc import ABC, abstractmethod
|
2
|
+
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
3
|
+
|
4
|
+
import torch
|
5
|
+
|
6
|
+
|
7
|
+
class EngineBase(ABC):
|
8
|
+
"""
|
9
|
+
Abstract base class for engine interfaces that support generation, weight updating, and memory control.
|
10
|
+
This base class provides a unified API for both HTTP-based engines and engines.
|
11
|
+
"""
|
12
|
+
|
13
|
+
@abstractmethod
|
14
|
+
def generate(
|
15
|
+
self,
|
16
|
+
prompt: Optional[Union[List[str], str]] = None,
|
17
|
+
sampling_params: Optional[Union[List[Dict], Dict]] = None,
|
18
|
+
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
|
19
|
+
image_data: Optional[Union[List[str], str]] = None,
|
20
|
+
return_logprob: Optional[Union[List[bool], bool]] = False,
|
21
|
+
logprob_start_len: Optional[Union[List[int], int]] = None,
|
22
|
+
top_logprobs_num: Optional[Union[List[int], int]] = None,
|
23
|
+
token_ids_logprob: Optional[Union[List[List[int]], List[int]]] = None,
|
24
|
+
lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None,
|
25
|
+
custom_logit_processor: Optional[Union[List[str], str]] = None,
|
26
|
+
) -> Union[Dict, Iterator[Dict]]:
|
27
|
+
"""Generate outputs based on given inputs."""
|
28
|
+
pass
|
29
|
+
|
30
|
+
@abstractmethod
|
31
|
+
def update_weights_from_tensor(
|
32
|
+
self,
|
33
|
+
named_tensors: List[Tuple[str, torch.Tensor]],
|
34
|
+
load_format: Optional[str] = None,
|
35
|
+
flush_cache: bool = True,
|
36
|
+
):
|
37
|
+
"""Update model weights with in-memory tensor data."""
|
38
|
+
pass
|
39
|
+
|
40
|
+
@abstractmethod
|
41
|
+
def release_memory_occupation(self):
|
42
|
+
"""Release GPU memory occupation temporarily."""
|
43
|
+
pass
|
44
|
+
|
45
|
+
@abstractmethod
|
46
|
+
def resume_memory_occupation(self):
|
47
|
+
"""Resume GPU memory occupation which is previously released."""
|
48
|
+
pass
|
49
|
+
|
50
|
+
@abstractmethod
|
51
|
+
def shutdown(self):
|
52
|
+
"""Shutdown the engine and clean up resources."""
|
53
|
+
pass
|
sglang/srt/entrypoints/engine.py
CHANGED
@@ -29,6 +29,7 @@ from typing import AsyncIterator, Dict, Iterator, List, Optional, Tuple, Union
|
|
29
29
|
|
30
30
|
import zmq
|
31
31
|
import zmq.asyncio
|
32
|
+
from PIL.Image import Image
|
32
33
|
|
33
34
|
# Fix a bug of Python threading
|
34
35
|
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)
|
@@ -37,6 +38,7 @@ import torch
|
|
37
38
|
import uvloop
|
38
39
|
|
39
40
|
from sglang.srt.code_completion_parser import load_completion_template_for_openai_api
|
41
|
+
from sglang.srt.entrypoints.EngineBase import EngineBase
|
40
42
|
from sglang.srt.managers.data_parallel_controller import (
|
41
43
|
run_data_parallel_controller_process,
|
42
44
|
)
|
@@ -77,7 +79,7 @@ logger = logging.getLogger(__name__)
|
|
77
79
|
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
|
78
80
|
|
79
81
|
|
80
|
-
class Engine:
|
82
|
+
class Engine(EngineBase):
|
81
83
|
"""
|
82
84
|
The entry point to the inference engine.
|
83
85
|
|
@@ -135,9 +137,19 @@ class Engine:
|
|
135
137
|
sampling_params: Optional[Union[List[Dict], Dict]] = None,
|
136
138
|
# The token ids for text; one can either specify text or input_ids.
|
137
139
|
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
|
138
|
-
# The image input. It can be
|
139
|
-
#
|
140
|
-
|
140
|
+
# The image input. It can be an image instance, file name, URL, or base64 encoded string.
|
141
|
+
# Can be formatted as:
|
142
|
+
# - Single image for a single request
|
143
|
+
# - List of images (one per request in a batch)
|
144
|
+
# - List of lists of images (multiple images per request)
|
145
|
+
# See also python/sglang/srt/utils.py:load_image for more details.
|
146
|
+
image_data: Optional[
|
147
|
+
Union[
|
148
|
+
List[List[Union[Image, str]]],
|
149
|
+
List[Union[Image, str]],
|
150
|
+
Union[Image, str],
|
151
|
+
]
|
152
|
+
] = None,
|
141
153
|
return_logprob: Optional[Union[List[bool], bool]] = False,
|
142
154
|
logprob_start_len: Optional[Union[List[int], int]] = None,
|
143
155
|
top_logprobs_num: Optional[Union[List[int], int]] = None,
|
@@ -190,9 +202,19 @@ class Engine:
|
|
190
202
|
sampling_params: Optional[Union[List[Dict], Dict]] = None,
|
191
203
|
# The token ids for text; one can either specify text or input_ids.
|
192
204
|
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
|
193
|
-
# The image input. It can be
|
194
|
-
#
|
195
|
-
|
205
|
+
# The image input. It can be an image instance, file name, URL, or base64 encoded string.
|
206
|
+
# Can be formatted as:
|
207
|
+
# - Single image for a single request
|
208
|
+
# - List of images (one per request in a batch)
|
209
|
+
# - List of lists of images (multiple images per request)
|
210
|
+
# See also python/sglang/srt/utils.py:load_image for more details.
|
211
|
+
image_data: Optional[
|
212
|
+
Union[
|
213
|
+
List[List[Union[Image, str]]],
|
214
|
+
List[Union[Image, str]],
|
215
|
+
Union[Image, str],
|
216
|
+
]
|
217
|
+
] = None,
|
196
218
|
return_logprob: Optional[Union[List[bool], bool]] = False,
|
197
219
|
logprob_start_len: Optional[Union[List[int], int]] = None,
|
198
220
|
top_logprobs_num: Optional[Union[List[int], int]] = None,
|
@@ -228,7 +250,13 @@ class Engine:
|
|
228
250
|
def encode(
|
229
251
|
self,
|
230
252
|
prompt: Union[str, List[str], List[Dict], List[List[Dict]]],
|
231
|
-
image_data: Optional[
|
253
|
+
image_data: Optional[
|
254
|
+
Union[
|
255
|
+
List[List[Union[Image, str]]],
|
256
|
+
List[Union[Image, str]],
|
257
|
+
Union[Image, str],
|
258
|
+
]
|
259
|
+
] = None,
|
232
260
|
) -> Dict:
|
233
261
|
"""
|
234
262
|
The arguments of this function is the same as `sglang/srt/managers/io_struct.py::EmbeddingReqInput`.
|
@@ -25,8 +25,11 @@ import multiprocessing as multiprocessing
|
|
25
25
|
import os
|
26
26
|
import threading
|
27
27
|
import time
|
28
|
+
from ast import Mult
|
28
29
|
from http import HTTPStatus
|
29
|
-
from typing import AsyncIterator, Callable, Dict, Optional
|
30
|
+
from typing import AsyncIterator, Callable, Dict, Optional, Union
|
31
|
+
|
32
|
+
from sglang.srt.model_executor.model_runner import LocalSerializedTensor
|
30
33
|
|
31
34
|
# Fix a bug of Python threading
|
32
35
|
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)
|
@@ -60,6 +63,7 @@ from sglang.srt.managers.io_struct import (
|
|
60
63
|
SetInternalStateReq,
|
61
64
|
UpdateWeightFromDiskReqInput,
|
62
65
|
UpdateWeightsFromDistributedReqInput,
|
66
|
+
UpdateWeightsFromTensorReqInput,
|
63
67
|
VertexGenerateReqInput,
|
64
68
|
)
|
65
69
|
from sglang.srt.managers.tokenizer_manager import TokenizerManager
|
@@ -80,6 +84,7 @@ from sglang.srt.openai_api.protocol import ModelCard, ModelList
|
|
80
84
|
from sglang.srt.reasoning_parser import ReasoningParser
|
81
85
|
from sglang.srt.server_args import ServerArgs
|
82
86
|
from sglang.srt.utils import (
|
87
|
+
MultiprocessingSerializer,
|
83
88
|
add_api_key_middleware,
|
84
89
|
add_prometheus_middleware,
|
85
90
|
delete_directory,
|
@@ -411,6 +416,26 @@ async def init_weights_update_group(
|
|
411
416
|
return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)
|
412
417
|
|
413
418
|
|
419
|
+
@app.post("/update_weights_from_tensor")
|
420
|
+
async def update_weights_from_tensor(
|
421
|
+
obj: UpdateWeightsFromTensorReqInput, request: Request
|
422
|
+
):
|
423
|
+
"""Update the weights from tensor inplace without re-launching the server.
|
424
|
+
Notes:
|
425
|
+
1. Ensure that the model is on the correct device (e.g., GPU) before calling this endpoint. If the model is moved to the CPU unexpectedly, it may cause performance issues or runtime errors.
|
426
|
+
2. HTTP will transmit only the metadata of the tensor, while the tensor itself will be directly copied to the model.
|
427
|
+
3. Any binary data in the named tensors should be base64 encoded.
|
428
|
+
"""
|
429
|
+
|
430
|
+
success, message = await _global_state.tokenizer_manager.update_weights_from_tensor(
|
431
|
+
obj, request
|
432
|
+
)
|
433
|
+
content = {"success": success, "message": message}
|
434
|
+
return ORJSONResponse(
|
435
|
+
content, status_code=200 if success else HTTPStatus.BAD_REQUEST
|
436
|
+
)
|
437
|
+
|
438
|
+
|
414
439
|
@app.post("/update_weights_from_distributed")
|
415
440
|
async def update_weights_from_distributed(
|
416
441
|
obj: UpdateWeightsFromDistributedReqInput, request: Request
|
@@ -785,13 +810,17 @@ def _wait_and_warmup(
|
|
785
810
|
json_data["sampling_params"]["max_new_tokens"] = 0
|
786
811
|
|
787
812
|
try:
|
788
|
-
|
789
|
-
|
790
|
-
|
791
|
-
|
792
|
-
|
793
|
-
|
794
|
-
|
813
|
+
if server_args.disaggregation_mode == "null":
|
814
|
+
res = requests.post(
|
815
|
+
url + request_name,
|
816
|
+
json=json_data,
|
817
|
+
headers=headers,
|
818
|
+
timeout=600,
|
819
|
+
)
|
820
|
+
assert res.status_code == 200, f"{res}"
|
821
|
+
else:
|
822
|
+
# Warmup request currently hangs in disaggregation mode, so we skip it.
|
823
|
+
logger.info("Skipping warmup request in disaggregation mode")
|
795
824
|
except Exception:
|
796
825
|
last_traceback = get_exception_traceback()
|
797
826
|
if pipe_finish_writer is not None:
|
@@ -0,0 +1,142 @@
|
|
1
|
+
import base64
|
2
|
+
import copy
|
3
|
+
import dataclasses
|
4
|
+
import multiprocessing
|
5
|
+
import pickle
|
6
|
+
import threading
|
7
|
+
import time
|
8
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
9
|
+
|
10
|
+
import requests
|
11
|
+
import torch
|
12
|
+
import torch.distributed as dist
|
13
|
+
|
14
|
+
from sglang.srt.entrypoints.EngineBase import EngineBase
|
15
|
+
from sglang.srt.entrypoints.http_server import launch_server
|
16
|
+
from sglang.srt.server_args import ServerArgs
|
17
|
+
from sglang.srt.utils import MultiprocessingSerializer, kill_process_tree
|
18
|
+
|
19
|
+
|
20
|
+
def launch_server_process(server_args: ServerArgs) -> multiprocessing.Process:
|
21
|
+
|
22
|
+
p = multiprocessing.Process(target=launch_server, args=(server_args,))
|
23
|
+
p.start()
|
24
|
+
|
25
|
+
base_url = server_args.url()
|
26
|
+
timeout = 300.0 # Increased timeout to 5 minutes for downloading large models
|
27
|
+
start_time = time.time()
|
28
|
+
|
29
|
+
with requests.Session() as session:
|
30
|
+
while time.time() - start_time < timeout:
|
31
|
+
try:
|
32
|
+
headers = {
|
33
|
+
"Content-Type": "application/json; charset=utf-8",
|
34
|
+
"Authorization": f"Bearer {server_args.api_key}",
|
35
|
+
}
|
36
|
+
response = session.get(f"{base_url}/health_generate", headers=headers)
|
37
|
+
if response.status_code == 200:
|
38
|
+
return p
|
39
|
+
except requests.RequestException:
|
40
|
+
pass
|
41
|
+
|
42
|
+
if not p.is_alive():
|
43
|
+
raise Exception("Server process terminated unexpectedly.")
|
44
|
+
|
45
|
+
time.sleep(2)
|
46
|
+
|
47
|
+
p.terminate()
|
48
|
+
raise TimeoutError("Server failed to start within the timeout period.")
|
49
|
+
|
50
|
+
|
51
|
+
class HttpServerEngineAdapter(EngineBase):
|
52
|
+
"""
|
53
|
+
You can use this class to launch a server from a VerlEngine instance.
|
54
|
+
We recommend using this class only you need to use http server.
|
55
|
+
Otherwise, you can use Engine directly.
|
56
|
+
"""
|
57
|
+
|
58
|
+
def __init__(self, **kwargs):
|
59
|
+
self.server_args = ServerArgs(**kwargs)
|
60
|
+
print(
|
61
|
+
f"Launch HttpServerEngineAdapter at: {self.server_args.host}:{self.server_args.port}"
|
62
|
+
)
|
63
|
+
self.process = launch_server_process(self.server_args)
|
64
|
+
|
65
|
+
def _make_request(self, endpoint: str, payload: Optional[dict] = None):
|
66
|
+
"""Make a POST request to the specified endpoint with the given payload.
|
67
|
+
|
68
|
+
Args:
|
69
|
+
endpoint: The API endpoint to call
|
70
|
+
payload: The JSON payload to send (default: empty dict)
|
71
|
+
|
72
|
+
Returns:
|
73
|
+
The JSON response from the server
|
74
|
+
"""
|
75
|
+
url = f"http://{self.server_args.host}:{self.server_args.port}/{endpoint}"
|
76
|
+
response = requests.post(url, json=payload or {})
|
77
|
+
response.raise_for_status()
|
78
|
+
return response.json()
|
79
|
+
|
80
|
+
def update_weights_from_tensor(
|
81
|
+
self,
|
82
|
+
named_tensors: List[Tuple[str, torch.Tensor]],
|
83
|
+
load_format: Optional[str] = None,
|
84
|
+
flush_cache: bool = False,
|
85
|
+
):
|
86
|
+
"""
|
87
|
+
Update model weights from tensor data. The HTTP server will only post meta data, and the real weights will be copied directly from GPUs.
|
88
|
+
|
89
|
+
Note: The model should be on GPUs rather than CPU for this functionality to work properly.
|
90
|
+
If you encounter issues, ensure your model is loaded on GPU devices rather than CPU.
|
91
|
+
"""
|
92
|
+
|
93
|
+
return self._make_request(
|
94
|
+
"update_weights_from_tensor",
|
95
|
+
{
|
96
|
+
"serialized_named_tensors": [
|
97
|
+
MultiprocessingSerializer.serialize(named_tensors, output_str=True)
|
98
|
+
for _ in range(self.server_args.tp_size)
|
99
|
+
],
|
100
|
+
"load_format": load_format,
|
101
|
+
"flush_cache": flush_cache,
|
102
|
+
},
|
103
|
+
)
|
104
|
+
|
105
|
+
def shutdown(self):
|
106
|
+
kill_process_tree(self.process.pid)
|
107
|
+
|
108
|
+
def generate(
|
109
|
+
self,
|
110
|
+
prompt=None,
|
111
|
+
sampling_params=None,
|
112
|
+
input_ids=None,
|
113
|
+
image_data=None,
|
114
|
+
return_logprob=False,
|
115
|
+
logprob_start_len=None,
|
116
|
+
top_logprobs_num=None,
|
117
|
+
token_ids_logprob=None,
|
118
|
+
lora_path=None,
|
119
|
+
custom_logit_processor=None,
|
120
|
+
):
|
121
|
+
payload = {
|
122
|
+
"text": prompt,
|
123
|
+
"sampling_params": sampling_params,
|
124
|
+
"input_ids": input_ids,
|
125
|
+
"image_data": image_data,
|
126
|
+
"return_logprob": return_logprob,
|
127
|
+
"logprob_start_len": logprob_start_len,
|
128
|
+
"top_logprobs_num": top_logprobs_num,
|
129
|
+
"token_ids_logprob": token_ids_logprob,
|
130
|
+
"lora_path": lora_path,
|
131
|
+
"custom_logit_processor": custom_logit_processor,
|
132
|
+
}
|
133
|
+
# Filter out None values
|
134
|
+
payload = {k: v for k, v in payload.items() if v is not None}
|
135
|
+
|
136
|
+
return self._make_request("generate", payload)
|
137
|
+
|
138
|
+
def release_memory_occupation(self):
|
139
|
+
return self._make_request("release_memory_occupation")
|
140
|
+
|
141
|
+
def resume_memory_occupation(self):
|
142
|
+
return self._make_request("resume_memory_occupation")
|