sglang 0.4.5.post1__py3-none-any.whl → 0.4.5.post3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +2 -4
- sglang/bench_one_batch.py +2 -2
- sglang/bench_serving.py +3 -6
- sglang/compile_deep_gemm.py +136 -0
- sglang/lang/backend/anthropic.py +0 -4
- sglang/lang/backend/base_backend.py +1 -1
- sglang/lang/backend/openai.py +6 -2
- sglang/lang/backend/runtime_endpoint.py +5 -1
- sglang/lang/backend/vertexai.py +0 -1
- sglang/lang/compiler.py +1 -7
- sglang/lang/tracer.py +3 -7
- sglang/srt/_custom_ops.py +0 -2
- sglang/srt/configs/model_config.py +4 -1
- sglang/srt/constrained/outlines_jump_forward.py +14 -1
- sglang/srt/constrained/triton_ops/bitmask_ops.py +141 -0
- sglang/srt/constrained/xgrammar_backend.py +27 -4
- sglang/srt/custom_op.py +0 -62
- sglang/srt/disaggregation/decode.py +105 -6
- sglang/srt/disaggregation/mini_lb.py +74 -9
- sglang/srt/disaggregation/mooncake/conn.py +33 -63
- sglang/srt/disaggregation/mooncake/transfer_engine.py +30 -61
- sglang/srt/disaggregation/nixl/__init__.py +1 -0
- sglang/srt/disaggregation/nixl/conn.py +622 -0
- sglang/srt/disaggregation/prefill.py +137 -17
- sglang/srt/disaggregation/utils.py +32 -0
- sglang/srt/entrypoints/engine.py +4 -0
- sglang/srt/entrypoints/http_server.py +3 -7
- sglang/srt/entrypoints/verl_engine.py +7 -5
- sglang/srt/function_call_parser.py +60 -0
- sglang/srt/layers/activation.py +6 -8
- sglang/srt/layers/attention/flashattention_backend.py +883 -209
- sglang/srt/layers/attention/flashinfer_backend.py +5 -2
- sglang/srt/layers/attention/torch_native_backend.py +6 -1
- sglang/srt/layers/attention/triton_backend.py +6 -0
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +5 -5
- sglang/srt/layers/attention/triton_ops/extend_attention.py +18 -7
- sglang/srt/layers/attention/triton_ops/prefill_attention.py +7 -3
- sglang/srt/layers/dp_attention.py +1 -1
- sglang/srt/layers/layernorm.py +20 -5
- sglang/srt/layers/linear.py +17 -3
- sglang/srt/layers/moe/ep_moe/layer.py +17 -29
- sglang/srt/layers/moe/fused_moe_native.py +4 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +14 -19
- sglang/srt/layers/moe/fused_moe_triton/layer.py +7 -0
- sglang/srt/layers/moe/topk.py +27 -30
- sglang/srt/layers/parameter.py +0 -2
- sglang/srt/layers/quantization/__init__.py +1 -0
- sglang/srt/layers/quantization/blockwise_int8.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +9 -2
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +16 -44
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +2 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +153 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +4 -7
- sglang/srt/layers/quantization/deep_gemm.py +378 -0
- sglang/srt/layers/quantization/fp8.py +115 -132
- sglang/srt/layers/quantization/fp8_kernel.py +213 -88
- sglang/srt/layers/quantization/fp8_utils.py +189 -264
- sglang/srt/layers/quantization/gptq.py +13 -7
- sglang/srt/layers/quantization/modelopt_quant.py +2 -2
- sglang/srt/layers/quantization/moe_wna16.py +2 -0
- sglang/srt/layers/quantization/utils.py +5 -11
- sglang/srt/layers/quantization/w8a8_fp8.py +2 -0
- sglang/srt/layers/quantization/w8a8_int8.py +7 -7
- sglang/srt/layers/radix_attention.py +15 -0
- sglang/srt/layers/rotary_embedding.py +9 -8
- sglang/srt/layers/sampler.py +7 -12
- sglang/srt/lora/backend/base_backend.py +18 -2
- sglang/srt/lora/backend/flashinfer_backend.py +1 -1
- sglang/srt/lora/backend/triton_backend.py +1 -1
- sglang/srt/lora/layers.py +1 -1
- sglang/srt/lora/lora.py +1 -1
- sglang/srt/lora/lora_manager.py +1 -1
- sglang/srt/managers/data_parallel_controller.py +7 -1
- sglang/srt/managers/detokenizer_manager.py +0 -1
- sglang/srt/managers/io_struct.py +15 -3
- sglang/srt/managers/mm_utils.py +4 -3
- sglang/srt/managers/multimodal_processor.py +0 -2
- sglang/srt/managers/multimodal_processors/base_processor.py +3 -2
- sglang/srt/managers/schedule_batch.py +15 -4
- sglang/srt/managers/scheduler.py +28 -77
- sglang/srt/managers/tokenizer_manager.py +116 -29
- sglang/srt/managers/tp_worker.py +1 -0
- sglang/srt/mem_cache/hiradix_cache.py +41 -29
- sglang/srt/mem_cache/memory_pool.py +38 -15
- sglang/srt/model_executor/cuda_graph_runner.py +15 -10
- sglang/srt/model_executor/model_runner.py +39 -31
- sglang/srt/models/bert.py +398 -0
- sglang/srt/models/deepseek.py +1 -1
- sglang/srt/models/deepseek_nextn.py +74 -70
- sglang/srt/models/deepseek_v2.py +292 -348
- sglang/srt/models/llama.py +5 -5
- sglang/srt/models/minicpm3.py +31 -203
- sglang/srt/models/minicpmo.py +17 -6
- sglang/srt/models/qwen2.py +4 -1
- sglang/srt/models/qwen2_moe.py +14 -13
- sglang/srt/models/qwen3.py +335 -0
- sglang/srt/models/qwen3_moe.py +423 -0
- sglang/srt/openai_api/adapter.py +71 -4
- sglang/srt/openai_api/protocol.py +6 -1
- sglang/srt/reasoning_parser.py +0 -1
- sglang/srt/sampling/sampling_batch_info.py +2 -3
- sglang/srt/server_args.py +86 -72
- sglang/srt/speculative/build_eagle_tree.py +2 -2
- sglang/srt/speculative/eagle_utils.py +2 -2
- sglang/srt/speculative/eagle_worker.py +6 -14
- sglang/srt/utils.py +62 -6
- sglang/test/runners.py +5 -1
- sglang/test/test_block_fp8.py +167 -0
- sglang/test/test_custom_ops.py +1 -1
- sglang/test/test_utils.py +3 -1
- sglang/version.py +1 -1
- {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post3.dist-info}/METADATA +5 -5
- {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post3.dist-info}/RECORD +116 -110
- {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post3.dist-info}/WHEEL +1 -1
- sglang/lang/__init__.py +0 -0
- sglang/srt/lora/backend/__init__.py +0 -25
- sglang/srt/server.py +0 -18
- {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post3.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,335 @@
|
|
1
|
+
# Adapted from qwen2.py
|
2
|
+
|
3
|
+
from functools import partial
|
4
|
+
from typing import Any, Dict, Iterable, Optional, Tuple
|
5
|
+
|
6
|
+
import torch
|
7
|
+
from torch import nn
|
8
|
+
|
9
|
+
from sglang.srt.distributed import (
|
10
|
+
get_tensor_model_parallel_rank,
|
11
|
+
get_tensor_model_parallel_world_size,
|
12
|
+
split_tensor_along_last_dim,
|
13
|
+
tensor_model_parallel_all_gather,
|
14
|
+
)
|
15
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
16
|
+
from sglang.srt.layers.linear import QKVParallelLinear, RowParallelLinear
|
17
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
18
|
+
from sglang.srt.layers.pooler import Pooler, PoolingType
|
19
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
20
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
21
|
+
from sglang.srt.layers.rotary_embedding import get_rope
|
22
|
+
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
|
23
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
24
|
+
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
25
|
+
from sglang.srt.models.qwen2 import Qwen2MLP as Qwen3MLP
|
26
|
+
from sglang.srt.models.qwen2 import Qwen2Model
|
27
|
+
from sglang.srt.utils import add_prefix
|
28
|
+
|
29
|
+
Qwen3Config = None
|
30
|
+
|
31
|
+
|
32
|
+
class Qwen3Attention(nn.Module):
|
33
|
+
def __init__(
|
34
|
+
self,
|
35
|
+
hidden_size: int,
|
36
|
+
num_heads: int,
|
37
|
+
num_kv_heads: int,
|
38
|
+
layer_id: int = 0,
|
39
|
+
rope_theta: float = 1000000,
|
40
|
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
41
|
+
head_dim: Optional[int] = None,
|
42
|
+
max_position_embeddings: int = 32768,
|
43
|
+
quant_config: Optional[QuantizationConfig] = None,
|
44
|
+
rms_norm_eps: float = None,
|
45
|
+
attention_bias: bool = False,
|
46
|
+
prefix: str = "",
|
47
|
+
) -> None:
|
48
|
+
super().__init__()
|
49
|
+
self.hidden_size = hidden_size
|
50
|
+
self.tp_size = get_tensor_model_parallel_world_size()
|
51
|
+
self.total_num_heads = num_heads
|
52
|
+
assert self.total_num_heads % self.tp_size == 0
|
53
|
+
self.num_heads = self.total_num_heads // self.tp_size
|
54
|
+
self.total_num_kv_heads = num_kv_heads
|
55
|
+
if self.total_num_kv_heads >= self.tp_size:
|
56
|
+
# Number of KV heads is greater than TP size, so we partition
|
57
|
+
# the KV heads across multiple tensor parallel GPUs.
|
58
|
+
assert self.total_num_kv_heads % self.tp_size == 0
|
59
|
+
else:
|
60
|
+
# Number of KV heads is less than TP size, so we replicate
|
61
|
+
# the KV heads across multiple tensor parallel GPUs.
|
62
|
+
assert self.tp_size % self.total_num_kv_heads == 0
|
63
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // self.tp_size)
|
64
|
+
self.head_dim = head_dim or hidden_size // self.total_num_heads
|
65
|
+
self.q_size = self.num_heads * self.head_dim
|
66
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
67
|
+
self.scaling = self.head_dim**-0.5
|
68
|
+
self.rope_theta = rope_theta
|
69
|
+
self.max_position_embeddings = max_position_embeddings
|
70
|
+
self.tp_rank = get_tensor_model_parallel_rank()
|
71
|
+
|
72
|
+
self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
|
73
|
+
self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
|
74
|
+
|
75
|
+
self.qkv_proj = QKVParallelLinear(
|
76
|
+
hidden_size,
|
77
|
+
self.head_dim,
|
78
|
+
self.total_num_heads,
|
79
|
+
self.total_num_kv_heads,
|
80
|
+
bias=attention_bias,
|
81
|
+
quant_config=quant_config,
|
82
|
+
prefix=add_prefix("qkv_proj", prefix),
|
83
|
+
)
|
84
|
+
self.o_proj = RowParallelLinear(
|
85
|
+
self.total_num_heads * self.head_dim,
|
86
|
+
hidden_size,
|
87
|
+
bias=attention_bias,
|
88
|
+
quant_config=quant_config,
|
89
|
+
prefix=add_prefix("o_proj", prefix),
|
90
|
+
)
|
91
|
+
|
92
|
+
self.rotary_emb = get_rope(
|
93
|
+
self.head_dim,
|
94
|
+
rotary_dim=self.head_dim,
|
95
|
+
max_position=max_position_embeddings,
|
96
|
+
base=rope_theta,
|
97
|
+
rope_scaling=rope_scaling,
|
98
|
+
)
|
99
|
+
self.attn = RadixAttention(
|
100
|
+
self.num_heads,
|
101
|
+
self.head_dim,
|
102
|
+
self.scaling,
|
103
|
+
num_kv_heads=self.num_kv_heads,
|
104
|
+
layer_id=layer_id,
|
105
|
+
prefix=add_prefix("attn", prefix),
|
106
|
+
)
|
107
|
+
|
108
|
+
def _apply_qk_norm(
|
109
|
+
self, q: torch.Tensor, k: torch.Tensor
|
110
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
111
|
+
q_by_head = q.reshape(-1, self.head_dim)
|
112
|
+
q_by_head = self.q_norm(q_by_head)
|
113
|
+
q = q_by_head.view(q.shape)
|
114
|
+
k_by_head = k.reshape(-1, self.head_dim)
|
115
|
+
k_by_head = self.k_norm(k_by_head)
|
116
|
+
k = k_by_head.view(k.shape)
|
117
|
+
return q, k
|
118
|
+
|
119
|
+
def forward(
|
120
|
+
self,
|
121
|
+
positions: torch.Tensor,
|
122
|
+
hidden_states: torch.Tensor,
|
123
|
+
forward_batch: ForwardBatch,
|
124
|
+
) -> torch.Tensor:
|
125
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
126
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
127
|
+
q, k = self._apply_qk_norm(q, k)
|
128
|
+
q, k = self.rotary_emb(positions, q, k)
|
129
|
+
attn_output = self.attn(q, k, v, forward_batch)
|
130
|
+
output, _ = self.o_proj(attn_output)
|
131
|
+
return output
|
132
|
+
|
133
|
+
|
134
|
+
class Qwen3DecoderLayer(nn.Module):
|
135
|
+
def __init__(
|
136
|
+
self,
|
137
|
+
config: Qwen3Config,
|
138
|
+
layer_id: int = 0,
|
139
|
+
quant_config: Optional[QuantizationConfig] = None,
|
140
|
+
prefix: str = "",
|
141
|
+
) -> None:
|
142
|
+
super().__init__()
|
143
|
+
self.hidden_size = config.hidden_size
|
144
|
+
rope_theta = getattr(config, "rope_theta", 1000000)
|
145
|
+
rope_scaling = getattr(config, "rope_scaling", None)
|
146
|
+
max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
|
147
|
+
head_dim = getattr(config, "head_dim", None)
|
148
|
+
self.self_attn = Qwen3Attention(
|
149
|
+
hidden_size=self.hidden_size,
|
150
|
+
num_heads=config.num_attention_heads,
|
151
|
+
num_kv_heads=config.num_key_value_heads,
|
152
|
+
layer_id=layer_id,
|
153
|
+
rope_theta=rope_theta,
|
154
|
+
rope_scaling=rope_scaling,
|
155
|
+
head_dim=head_dim,
|
156
|
+
max_position_embeddings=max_position_embeddings,
|
157
|
+
quant_config=quant_config,
|
158
|
+
rms_norm_eps=config.rms_norm_eps,
|
159
|
+
attention_bias=config.attention_bias,
|
160
|
+
prefix=add_prefix("self_attn", prefix),
|
161
|
+
)
|
162
|
+
self.mlp = Qwen3MLP(
|
163
|
+
hidden_size=self.hidden_size,
|
164
|
+
intermediate_size=config.intermediate_size,
|
165
|
+
hidden_act=config.hidden_act,
|
166
|
+
quant_config=quant_config,
|
167
|
+
prefix=add_prefix("mlp", prefix),
|
168
|
+
)
|
169
|
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
170
|
+
self.post_attention_layernorm = RMSNorm(
|
171
|
+
config.hidden_size, eps=config.rms_norm_eps
|
172
|
+
)
|
173
|
+
|
174
|
+
def forward(
|
175
|
+
self,
|
176
|
+
positions: torch.Tensor,
|
177
|
+
hidden_states: torch.Tensor,
|
178
|
+
forward_batch: ForwardBatch,
|
179
|
+
residual: Optional[torch.Tensor],
|
180
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
181
|
+
# Self Attention
|
182
|
+
if residual is None:
|
183
|
+
residual = hidden_states
|
184
|
+
hidden_states = self.input_layernorm(hidden_states)
|
185
|
+
else:
|
186
|
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
187
|
+
hidden_states = self.self_attn(
|
188
|
+
positions=positions,
|
189
|
+
hidden_states=hidden_states,
|
190
|
+
forward_batch=forward_batch,
|
191
|
+
)
|
192
|
+
|
193
|
+
# Fully Connected
|
194
|
+
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
195
|
+
hidden_states = self.mlp(hidden_states)
|
196
|
+
return hidden_states, residual
|
197
|
+
|
198
|
+
|
199
|
+
class Qwen3Model(Qwen2Model):
|
200
|
+
def __init__(
|
201
|
+
self,
|
202
|
+
config: Qwen3Config,
|
203
|
+
quant_config: Optional[QuantizationConfig] = None,
|
204
|
+
prefix: str = "",
|
205
|
+
) -> None:
|
206
|
+
super().__init__(
|
207
|
+
config=config,
|
208
|
+
quant_config=quant_config,
|
209
|
+
prefix=prefix,
|
210
|
+
decoder_layer_type=Qwen3DecoderLayer,
|
211
|
+
)
|
212
|
+
|
213
|
+
|
214
|
+
class Qwen3ForCausalLM(nn.Module):
|
215
|
+
# BitandBytes specific attributes
|
216
|
+
default_bitsandbytes_target_modules = [
|
217
|
+
".gate_proj.",
|
218
|
+
".down_proj.",
|
219
|
+
".up_proj.",
|
220
|
+
".q_proj.",
|
221
|
+
".k_proj.",
|
222
|
+
".v_proj.",
|
223
|
+
".o_proj.",
|
224
|
+
]
|
225
|
+
bitsandbytes_stacked_params_mapping = {
|
226
|
+
# shard_name, weight_name, index
|
227
|
+
"q_proj": ("qkv_proj", 0),
|
228
|
+
"k_proj": ("qkv_proj", 1),
|
229
|
+
"v_proj": ("qkv_proj", 2),
|
230
|
+
"gate_proj": ("gate_up_proj", 0),
|
231
|
+
"up_proj": ("gate_up_proj", 1),
|
232
|
+
}
|
233
|
+
|
234
|
+
def __init__(
|
235
|
+
self,
|
236
|
+
config: Qwen3Config,
|
237
|
+
quant_config: Optional[QuantizationConfig] = None,
|
238
|
+
prefix: str = "",
|
239
|
+
) -> None:
|
240
|
+
super().__init__()
|
241
|
+
self.config = config
|
242
|
+
self.quant_config = quant_config
|
243
|
+
self.model = Qwen3Model(
|
244
|
+
config, quant_config=quant_config, prefix=add_prefix("model", prefix)
|
245
|
+
)
|
246
|
+
if config.tie_word_embeddings:
|
247
|
+
self.lm_head = self.model.embed_tokens
|
248
|
+
else:
|
249
|
+
self.lm_head = ParallelLMHead(
|
250
|
+
config.vocab_size,
|
251
|
+
config.hidden_size,
|
252
|
+
quant_config=quant_config,
|
253
|
+
prefix=add_prefix("lm_head", prefix),
|
254
|
+
)
|
255
|
+
self.logits_processor = LogitsProcessor(config)
|
256
|
+
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
|
257
|
+
|
258
|
+
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
259
|
+
return self.model.get_input_embeddings(input_ids)
|
260
|
+
|
261
|
+
@torch.no_grad()
|
262
|
+
def forward(
|
263
|
+
self,
|
264
|
+
input_ids: torch.Tensor,
|
265
|
+
positions: torch.Tensor,
|
266
|
+
forward_batch: ForwardBatch,
|
267
|
+
input_embeds: torch.Tensor = None,
|
268
|
+
get_embedding: bool = False,
|
269
|
+
) -> torch.Tensor:
|
270
|
+
hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
|
271
|
+
if not get_embedding:
|
272
|
+
return self.logits_processor(
|
273
|
+
input_ids, hidden_states, self.lm_head, forward_batch
|
274
|
+
)
|
275
|
+
else:
|
276
|
+
return self.pooler(hidden_states, forward_batch)
|
277
|
+
|
278
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
279
|
+
stacked_params_mapping = [
|
280
|
+
# (param_name, shard_name, shard_id)
|
281
|
+
("qkv_proj", "q_proj", "q"),
|
282
|
+
("qkv_proj", "k_proj", "k"),
|
283
|
+
("qkv_proj", "v_proj", "v"),
|
284
|
+
("gate_up_proj", "gate_proj", 0),
|
285
|
+
("gate_up_proj", "up_proj", 1),
|
286
|
+
]
|
287
|
+
|
288
|
+
params_dict = dict(self.named_parameters())
|
289
|
+
for name, loaded_weight in weights:
|
290
|
+
if "rotary_emb.inv_freq" in name or "projector" in name:
|
291
|
+
continue
|
292
|
+
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
293
|
+
# Models trained using ColossalAI may include these tensors in
|
294
|
+
# the checkpoint. Skip them.
|
295
|
+
continue
|
296
|
+
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
297
|
+
continue
|
298
|
+
if name.startswith("model.vision_tower") and name not in params_dict:
|
299
|
+
continue
|
300
|
+
|
301
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
302
|
+
if weight_name not in name:
|
303
|
+
continue
|
304
|
+
name = name.replace(weight_name, param_name)
|
305
|
+
# Skip loading extra bias for GPTQ models.
|
306
|
+
if name.endswith(".bias") and name not in params_dict:
|
307
|
+
continue
|
308
|
+
param = params_dict[name]
|
309
|
+
weight_loader = param.weight_loader
|
310
|
+
weight_loader(param, loaded_weight, shard_id)
|
311
|
+
break
|
312
|
+
else:
|
313
|
+
# Skip loading extra bias for GPTQ models.
|
314
|
+
if name.endswith(".bias") and name not in params_dict:
|
315
|
+
continue
|
316
|
+
param = params_dict[name]
|
317
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
318
|
+
weight_loader(param, loaded_weight)
|
319
|
+
|
320
|
+
def get_embed_and_head(self):
|
321
|
+
return self.model.embed_tokens.weight, self.lm_head.weight
|
322
|
+
|
323
|
+
def set_embed_and_head(self, embed, head):
|
324
|
+
del self.model.embed_tokens.weight
|
325
|
+
del self.lm_head.weight
|
326
|
+
self.model.embed_tokens.weight = embed
|
327
|
+
self.lm_head.weight = head
|
328
|
+
torch.cuda.empty_cache()
|
329
|
+
torch.cuda.synchronize()
|
330
|
+
|
331
|
+
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
|
332
|
+
self.model.load_kv_cache_scales(quantization_param_path)
|
333
|
+
|
334
|
+
|
335
|
+
EntryClass = Qwen3ForCausalLM
|