sglang 0.4.5.post1__py3-none-any.whl → 0.4.5.post2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. sglang/__init__.py +2 -4
  2. sglang/bench_one_batch.py +2 -2
  3. sglang/bench_serving.py +0 -4
  4. sglang/lang/backend/anthropic.py +0 -4
  5. sglang/lang/backend/base_backend.py +1 -1
  6. sglang/lang/backend/openai.py +1 -1
  7. sglang/lang/backend/vertexai.py +0 -1
  8. sglang/lang/compiler.py +1 -7
  9. sglang/lang/tracer.py +3 -7
  10. sglang/srt/_custom_ops.py +0 -2
  11. sglang/srt/constrained/outlines_jump_forward.py +14 -1
  12. sglang/srt/constrained/triton_ops/bitmask_ops.py +141 -0
  13. sglang/srt/constrained/xgrammar_backend.py +26 -4
  14. sglang/srt/custom_op.py +0 -62
  15. sglang/srt/disaggregation/decode.py +62 -6
  16. sglang/srt/disaggregation/mini_lb.py +5 -1
  17. sglang/srt/disaggregation/mooncake/conn.py +32 -62
  18. sglang/srt/disaggregation/mooncake/transfer_engine.py +30 -61
  19. sglang/srt/disaggregation/prefill.py +40 -4
  20. sglang/srt/disaggregation/utils.py +15 -0
  21. sglang/srt/entrypoints/verl_engine.py +7 -5
  22. sglang/srt/layers/activation.py +6 -8
  23. sglang/srt/layers/attention/flashattention_backend.py +114 -71
  24. sglang/srt/layers/attention/flashinfer_backend.py +5 -2
  25. sglang/srt/layers/attention/torch_native_backend.py +6 -1
  26. sglang/srt/layers/attention/triton_backend.py +6 -0
  27. sglang/srt/layers/attention/triton_ops/extend_attention.py +13 -2
  28. sglang/srt/layers/layernorm.py +1 -1
  29. sglang/srt/layers/linear.py +17 -3
  30. sglang/srt/layers/moe/ep_moe/layer.py +15 -29
  31. sglang/srt/layers/moe/fused_moe_native.py +4 -0
  32. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +14 -19
  33. sglang/srt/layers/moe/fused_moe_triton/layer.py +7 -0
  34. sglang/srt/layers/moe/topk.py +27 -30
  35. sglang/srt/layers/parameter.py +0 -2
  36. sglang/srt/layers/quantization/__init__.py +1 -0
  37. sglang/srt/layers/quantization/blockwise_int8.py +2 -0
  38. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +8 -2
  39. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +16 -44
  40. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +4 -7
  41. sglang/srt/layers/quantization/fp8.py +115 -132
  42. sglang/srt/layers/quantization/fp8_kernel.py +213 -57
  43. sglang/srt/layers/quantization/fp8_utils.py +187 -262
  44. sglang/srt/layers/quantization/moe_wna16.py +2 -0
  45. sglang/srt/layers/quantization/utils.py +5 -11
  46. sglang/srt/layers/quantization/w8a8_fp8.py +2 -0
  47. sglang/srt/layers/quantization/w8a8_int8.py +7 -7
  48. sglang/srt/layers/radix_attention.py +15 -0
  49. sglang/srt/layers/rotary_embedding.py +3 -2
  50. sglang/srt/layers/sampler.py +5 -10
  51. sglang/srt/lora/backend/base_backend.py +18 -2
  52. sglang/srt/lora/backend/flashinfer_backend.py +1 -1
  53. sglang/srt/lora/backend/triton_backend.py +1 -1
  54. sglang/srt/lora/layers.py +1 -1
  55. sglang/srt/lora/lora.py +1 -1
  56. sglang/srt/lora/lora_manager.py +1 -1
  57. sglang/srt/managers/detokenizer_manager.py +0 -1
  58. sglang/srt/managers/io_struct.py +1 -0
  59. sglang/srt/managers/mm_utils.py +4 -3
  60. sglang/srt/managers/multimodal_processor.py +0 -2
  61. sglang/srt/managers/multimodal_processors/base_processor.py +3 -2
  62. sglang/srt/managers/schedule_batch.py +2 -4
  63. sglang/srt/managers/scheduler.py +12 -71
  64. sglang/srt/managers/tokenizer_manager.py +1 -0
  65. sglang/srt/mem_cache/hiradix_cache.py +5 -1
  66. sglang/srt/mem_cache/memory_pool.py +7 -2
  67. sglang/srt/model_executor/cuda_graph_runner.py +2 -2
  68. sglang/srt/model_executor/model_runner.py +20 -27
  69. sglang/srt/models/bert.py +398 -0
  70. sglang/srt/models/deepseek.py +1 -1
  71. sglang/srt/models/deepseek_nextn.py +74 -70
  72. sglang/srt/models/deepseek_v2.py +289 -348
  73. sglang/srt/models/llama.py +5 -5
  74. sglang/srt/models/minicpm3.py +29 -201
  75. sglang/srt/models/qwen2.py +4 -1
  76. sglang/srt/models/qwen2_moe.py +14 -13
  77. sglang/srt/models/qwen3.py +335 -0
  78. sglang/srt/models/qwen3_moe.py +423 -0
  79. sglang/srt/reasoning_parser.py +0 -1
  80. sglang/srt/sampling/sampling_batch_info.py +2 -3
  81. sglang/srt/server_args.py +34 -32
  82. sglang/srt/speculative/eagle_worker.py +4 -7
  83. sglang/srt/utils.py +16 -1
  84. sglang/test/runners.py +5 -1
  85. sglang/test/test_block_fp8.py +167 -0
  86. sglang/test/test_custom_ops.py +1 -1
  87. sglang/version.py +1 -1
  88. {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post2.dist-info}/METADATA +3 -3
  89. {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post2.dist-info}/RECORD +92 -91
  90. {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post2.dist-info}/WHEEL +1 -1
  91. sglang/lang/__init__.py +0 -0
  92. sglang/srt/lora/backend/__init__.py +0 -25
  93. sglang/srt/server.py +0 -18
  94. {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post2.dist-info}/licenses/LICENSE +0 -0
  95. {sglang-0.4.5.post1.dist-info → sglang-0.4.5.post2.dist-info}/top_level.txt +0 -0
@@ -7,6 +7,7 @@ import torch
7
7
  from sglang.srt.layers.activation import SiluAndMul
8
8
  from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_moe
9
9
  from sglang.srt.layers.quantization.fp8_kernel import (
10
+ per_tensor_quant_mla_deep_gemm_masked_fp8,
10
11
  per_tensor_quant_mla_fp8,
11
12
  per_token_group_quant_fp8,
12
13
  static_quant_fp8,
@@ -212,6 +213,62 @@ class TestPerTensorQuantMlaFP8(CustomTestCase):
212
213
  self._per_tensor_quant_mla_fp8(*params)
213
214
 
214
215
 
216
+ class TestPerTokenGroupQuantMlaDeepGemmMaskedFP8(CustomTestCase):
217
+ DTYPES = [torch.half, torch.bfloat16, torch.float32]
218
+ B = [128]
219
+ NUM_TOKENS = [7, 83, 2048, 1024 * 16]
220
+ D = [512, 128]
221
+ GROUP_SIZE = [128]
222
+ SEEDS = [0]
223
+
224
+ @classmethod
225
+ def setUpClass(cls):
226
+ if not torch.cuda.is_available():
227
+ raise unittest.SkipTest("CUDA is not available")
228
+ torch.set_default_device("cuda")
229
+
230
+ def _per_token_group_quant_mla_deep_gemm_masked_fp8(
231
+ self, b, num_tokens, d, dtype, group_size, seed
232
+ ):
233
+ torch.manual_seed(seed)
234
+
235
+ x = torch.rand(b, num_tokens, d, dtype=dtype)
236
+
237
+ with torch.inference_mode():
238
+ ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size, 1e-12)
239
+ out, scale, _, _, _ = per_tensor_quant_mla_deep_gemm_masked_fp8(
240
+ x, group_size
241
+ )
242
+ out = out[:, :num_tokens, :]
243
+ scale = scale[:, :num_tokens, :]
244
+
245
+ self.assertTrue(
246
+ torch.allclose(
247
+ out.to(torch.float32), ref_out.to(torch.float32), rtol=0.20, atol=1e-2
248
+ )
249
+ )
250
+ self.assertTrue(torch.allclose(scale, ref_scale))
251
+
252
+ def test_per_token_group_quant_mla_deep_gemm_masked_fp8(self):
253
+ for params in itertools.product(
254
+ self.B,
255
+ self.NUM_TOKENS,
256
+ self.D,
257
+ self.DTYPES,
258
+ self.GROUP_SIZE,
259
+ self.SEEDS,
260
+ ):
261
+ with self.subTest(
262
+ b=params[0],
263
+ num_tokens=params[1],
264
+ d=params[2],
265
+ dtype=params[3],
266
+ group_size=params[4],
267
+ seed=params[5],
268
+ ):
269
+ self._per_token_group_quant_mla_deep_gemm_masked_fp8(*params)
270
+
271
+
215
272
  # For test
216
273
  def native_w8a8_block_fp8_matmul(A, B, As, Bs, block_size, output_dtype=torch.float16):
217
274
  """This function performs matrix multiplication with block-wise quantization using native torch.
@@ -485,5 +542,115 @@ class TestW8A8BlockFP8FusedMoE(CustomTestCase):
485
542
  self._w8a8_block_fp8_fused_moe(*params)
486
543
 
487
544
 
545
+ # For test
546
+ def torch_w8a8_block_fp8_bmm(a, a_s, w, w_s, block_shape, out_dtype):
547
+ """This function performs bmm with block-wise quantization using native torch."""
548
+
549
+ B, N, _ = w.shape
550
+ _, M, _ = a.shape
551
+ out = torch.empty((B, M, N), dtype=out_dtype, device=a.device)
552
+
553
+ for i in range(B):
554
+ out[i] = native_w8a8_block_fp8_matmul(
555
+ a[i], w[i], a_s[i], w_s[i], block_shape, output_dtype=out_dtype
556
+ )
557
+
558
+ return out
559
+
560
+
561
+ class TestW8A8BlockFP8BatchedDeepGemm(CustomTestCase):
562
+ DTYPES = [torch.bfloat16]
563
+ M = [1, 33, 64, 222, 8192]
564
+ N = [128, 512]
565
+ K = [128, 512]
566
+ BATCH = [128]
567
+ BLOCK_SIZE = [[128, 128]]
568
+ SEEDS = [0]
569
+
570
+ @classmethod
571
+ def setUpClass(cls):
572
+ if not torch.cuda.is_available():
573
+ raise unittest.SkipTest("CUDA is not available")
574
+ try:
575
+ import deep_gemm
576
+ except ImportError:
577
+ raise unittest.SkipTest("DeepGEMM is not available")
578
+ torch.set_default_device("cuda")
579
+
580
+ def _w8a8_block_fp8_batched_deep_gemm(self, M, N, K, B, block_size, dtype, seed):
581
+ torch.manual_seed(seed)
582
+ factor_for_scale = 1e-2
583
+ fp8_info = torch.finfo(torch.float8_e4m3fn)
584
+ fp8_max, fp8_min = fp8_info.max, fp8_info.min
585
+
586
+ a_fp32 = torch.randn((B, M, K), dtype=torch.float32) / 10
587
+ a = a_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
588
+
589
+ w_fp32 = (torch.rand((B, N, K), dtype=torch.float32) - 0.5) * 2 * fp8_max
590
+ w = w_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
591
+
592
+ block_n, block_k = block_size[0], block_size[1]
593
+ n_tiles_w = (N + block_n - 1) // block_n
594
+ k_tiles_w = (K + block_k - 1) // block_k
595
+
596
+ w_s = (
597
+ torch.rand((B, n_tiles_w, k_tiles_w), dtype=torch.float32)
598
+ * factor_for_scale
599
+ )
600
+ a_s = torch.rand((B, M, k_tiles_w), dtype=torch.float32) * factor_for_scale
601
+
602
+ ae = a.new_empty(B, (M + 255) // 256 * 256, K)
603
+ ae_s = a_s.new_empty(B, (M + 255) // 256 * 256, k_tiles_w)
604
+ oe = torch.empty((B, (M + 255) // 256 * 256, N), dtype=dtype)
605
+ ae[:, :M, :] = a
606
+ ae_s[:, :M, :] = a_s
607
+
608
+ masked_m = torch.full((B,), M, dtype=torch.int)
609
+ expected_m = M
610
+ lhs = (
611
+ ae,
612
+ ae_s,
613
+ )
614
+ rhs = (
615
+ w,
616
+ w_s,
617
+ )
618
+
619
+ from deep_gemm import m_grouped_gemm_fp8_fp8_bf16_nt_masked
620
+
621
+ with torch.inference_mode():
622
+ ref_out = torch_w8a8_block_fp8_bmm(a, a_s, w, w_s, block_size, dtype)
623
+ m_grouped_gemm_fp8_fp8_bf16_nt_masked(lhs, rhs, oe, masked_m, expected_m)
624
+ out = oe[:, :M, :]
625
+
626
+ self.assertTrue(
627
+ torch.mean(torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)))
628
+ / torch.mean(torch.abs(ref_out.to(torch.float32)))
629
+ < 0.0001
630
+ )
631
+
632
+ def test_w8a8_block_fp8_batched_deep_gemm(self):
633
+
634
+ for params in itertools.product(
635
+ self.M,
636
+ self.N,
637
+ self.K,
638
+ self.BATCH,
639
+ self.BLOCK_SIZE,
640
+ self.DTYPES,
641
+ self.SEEDS,
642
+ ):
643
+ with self.subTest(
644
+ M=params[0],
645
+ N=params[1],
646
+ K=params[2],
647
+ B=params[3],
648
+ block_size=params[4],
649
+ dtype=params[5],
650
+ seed=params[6],
651
+ ):
652
+ self._w8a8_block_fp8_batched_deep_gemm(*params)
653
+
654
+
488
655
  if __name__ == "__main__":
489
656
  unittest.main(verbosity=2)
@@ -3,7 +3,7 @@
3
3
  import pytest
4
4
  import torch
5
5
 
6
- from sglang.srt.custom_op import scaled_fp8_quant
6
+ from sglang.srt.layers.quantization.fp8_kernel import scaled_fp8_quant
7
7
  from sglang.srt.utils import is_cuda
8
8
 
9
9
 
sglang/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.4.5.post1"
1
+ __version__ = "0.4.5.post2"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sglang
3
- Version: 0.4.5.post1
3
+ Version: 0.4.5.post2
4
4
  Summary: SGLang is yet another fast serving framework for large language models and vision language models.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -246,7 +246,7 @@ Requires-Dist: compressed-tensors; extra == "runtime-common"
246
246
  Requires-Dist: xgrammar==0.1.17; extra == "runtime-common"
247
247
  Provides-Extra: srt
248
248
  Requires-Dist: sglang[runtime_common]; extra == "srt"
249
- Requires-Dist: sgl-kernel==0.0.9.post1; extra == "srt"
249
+ Requires-Dist: sgl-kernel==0.0.9.post2; extra == "srt"
250
250
  Requires-Dist: flashinfer_python==0.2.3; extra == "srt"
251
251
  Requires-Dist: torch==2.5.1; extra == "srt"
252
252
  Requires-Dist: torchvision==0.20.1; extra == "srt"
@@ -381,7 +381,7 @@ SGLang is a fast serving framework for large language models and vision language
381
381
  It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
382
382
  The core features include:
383
383
 
384
- - **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, continuous batching, token attention (paged attention), speculative decoding, tensor parallelism, chunked prefill, structured outputs, and quantization (FP8/INT4/AWQ/GPTQ).
384
+ - **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, continuous batching, token attention (paged attention), speculative decoding, tensor parallelism, chunked prefill, structured outputs, quantization (FP8/INT4/AWQ/GPTQ), and multi-lora batching.
385
385
  - **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
386
386
  - **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, QWen, DeepSeek, LLaVA, etc.), embedding models (e5-mistral, gte, mcdse) and reward models (Skywork), with easy extensibility for integrating new models.
387
387
  - **Active Community**: SGLang is open-source and backed by an active community with industry adoption.
@@ -1,44 +1,42 @@
1
- sglang/__init__.py,sha256=8J5PHcfRJul4R1NJnt0BtW05aVQNWqp8PyalLPOTZCA,1669
1
+ sglang/__init__.py,sha256=T-fZEjKP66Q1q3PB56oREs5U3zf6bL0fNcdIbW8jMhE,1652
2
2
  sglang/api.py,sha256=vHiKBg8wwIdmrpnGclop5BzJ-1Q88emrlrfLwNCHg98,7010
3
3
  sglang/bench_offline_throughput.py,sha256=OQb-AjL4UNymmir02ht43uzgaNsnO_I11nXSowKMqBI,13841
4
- sglang/bench_one_batch.py,sha256=upXSMMlhO53J2cAP9lAb3KWt0nTEUdkNRWGk0lobS08,18887
4
+ sglang/bench_one_batch.py,sha256=9-LFvhT0rjNa-Z5L0g5OpKfD6J4sQviRQbos42Fwkmc,18932
5
5
  sglang/bench_one_batch_server.py,sha256=8VYNhaQbWGP8TkNVuy_sPjD5FiuVZHamtGRWKwa-Z-Q,5962
6
- sglang/bench_serving.py,sha256=ek6D6uw0IlsMb0lhg57rBq7q4au7Os78GUMXopy0Wfk,57702
6
+ sglang/bench_serving.py,sha256=6SnFF7rku8iDDW2qbIyqgBYsdZ3q3li5YH3zhhQH0E4,57540
7
7
  sglang/check_env.py,sha256=76itNLUw9KlqbiY1BI4u4YaMZaqyCNcrCLUIb6aHflM,8396
8
8
  sglang/global_config.py,sha256=xzLdk8W53fneFblNh8iIjGF9C3-7mnzR1-LleD9Btxg,1495
9
9
  sglang/launch_server.py,sha256=mDXfwha8LHpWQJekcCosR98QhCQsbmilsBlI5jAIgg0,420
10
10
  sglang/llama3_eval.py,sha256=gWSboDchIGybIce88bJlrCG0yiLZ513mw4gcutJlzGM,10017
11
11
  sglang/utils.py,sha256=GIcgiRHkZ-gyPxXOdn1qFF41jkg4-YdDxbPc4mzO-qk,16159
12
- sglang/version.py,sha256=mfIdQ0Yo6GF2VyWIDGyBUw_42D590eNsz05qnm3UXM4,28
13
- sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
+ sglang/version.py,sha256=0X83evIykSgmyAZc6vNVTXV2UQlVTx0omf8sSLruwLk,28
14
13
  sglang/lang/chat_template.py,sha256=MwNL5dNTe8g_l2ljZubnrazEgT2xEv-9O2D0Ezwxy4I,19658
15
14
  sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
16
- sglang/lang/compiler.py,sha256=o1C6G3TzhjSlsH-doTPy5oiVehr57dxNTa5oZw5TTAI,7639
15
+ sglang/lang/compiler.py,sha256=MAuzoOOpb98njJ7Io2SDmFkhTroDYiq0te0ZpfHkMY4,7597
17
16
  sglang/lang/interpreter.py,sha256=OH1SFCm4rUCPO32MTo8j5V2Z13Jic7_r1GQOP1-aHaw,33234
18
17
  sglang/lang/ir.py,sha256=gssBGxqQEVJmjR_PqG2yah48AsInGaO3CmnQ2boJThc,18769
19
- sglang/lang/tracer.py,sha256=o-jLAPPSuy2vBfsGGrTAnbuWtORzQ50B4C_P5zvYkx8,8291
18
+ sglang/lang/tracer.py,sha256=20B9w2W3d0D6xSUGZjKFszFuZAzsa3gvgdIgsXR8GtU,8176
20
19
  sglang/lang/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
- sglang/lang/backend/anthropic.py,sha256=EXRX7xJgA5KZszX7toSLVnKzFQ5EO0Loj-YjHFtxSxg,2081
22
- sglang/lang/backend/base_backend.py,sha256=tdoh9YF3CyekY1BKiX9n7-aA4srDWIuA4RDJLM7q8qg,1985
20
+ sglang/lang/backend/anthropic.py,sha256=qXWqqFlk0-nC62QCcYIRjLTc4AHrdTKpl7hCeDzROUs,2019
21
+ sglang/lang/backend/base_backend.py,sha256=tEutGCU5tni1xGlrIjAVvA9aflJBt2duKrIDzqabJWc,1975
23
22
  sglang/lang/backend/litellm.py,sha256=ugmL7sfUxkUHVbHtwNzHgdQAEd4UCjNQboFuE3KThcY,2450
24
- sglang/lang/backend/openai.py,sha256=6I1udBC9obVpJG0GerbFVbWCbwLKkF2DoPdHBCnqPzs,16341
23
+ sglang/lang/backend/openai.py,sha256=n47Zq1GTFc5x1DpN6CYL9cF6dfrsM7iJndnf5jRKU14,16331
25
24
  sglang/lang/backend/runtime_endpoint.py,sha256=CAVh3X9F80t_2tkJECF__7AdCQtqDg1AHDqIoKIPnvs,16755
26
- sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
27
- sglang/srt/_custom_ops.py,sha256=lUBwC5R2UfjFMA1EtC5Kh2IngsqBJM9IuMW46kJWcjE,3647
25
+ sglang/lang/backend/vertexai.py,sha256=gz0uNYyBb88jbPYz6ZIJ774fefrcbuVdoK33bphUZpI,4827
26
+ sglang/srt/_custom_ops.py,sha256=L7NuEaRD_Q6Q54n0NZnLXgWZURbnn8Tkg4NQedE6zgA,3616
28
27
  sglang/srt/aio_rwlock.py,sha256=6LYtOdeTUY3hkfa1dmYkgsaF2ttrwIF3hUWz2AZ2fqw,2970
29
28
  sglang/srt/code_completion_parser.py,sha256=HhEUzdL-FVBsOot9tKDKA1l8Gdx8qsF1RRg-zHNpmLQ,5400
30
29
  sglang/srt/conversation.py,sha256=WP72AZrZpiqc5RowucT2tW3jVCb1pb4veW_kpwYS4yY,28785
31
- sglang/srt/custom_op.py,sha256=bIZ__3FiZvkbsN9O_jeLy_49X7ZbYbw0VxoL80uWwaI,3715
30
+ sglang/srt/custom_op.py,sha256=J1PUcGaeJJjfAjp06BQsLpUkKyR1zsh9MvDiDlqqJsg,1129
32
31
  sglang/srt/function_call_parser.py,sha256=buYENeNEP5bhsvD424yGCa9wOqSfVOZSRn6zLiSJp5I,23733
33
32
  sglang/srt/hf_transformers_utils.py,sha256=N2f-gA8yUq-UP_TJT276gNbDNzmddWsmWnq3px6TIj8,9342
34
33
  sglang/srt/mm_utils.py,sha256=1ScBunw_x4W8ebM_AcJ62-1T2mfT8NlMJqdAhkF1lb0,12367
35
34
  sglang/srt/model_parallel.py,sha256=eLXZhvJ4wG6dh0FontNCIdVZvHYdWgaeY-5cu7TD9tE,6078
36
35
  sglang/srt/patch_torch.py,sha256=OUPCGQSQz3MVZB1zZ_Eq8lXiw0uIKJ_HWjqQolI8FsM,3088
37
- sglang/srt/reasoning_parser.py,sha256=45xsU9RCPfyG4_Zx4y3-JPyNgAtrqwKI4j5R2NT4g1s,5594
38
- sglang/srt/server.py,sha256=PrQb9r6L9syWHKlggbbiQYsKtpwSmECqozRbf8qnoV8,874
39
- sglang/srt/server_args.py,sha256=k42YCDTbEEZZShmoaorQGNRwMxYACDSpvGW2toTb2DQ,53778
36
+ sglang/srt/reasoning_parser.py,sha256=JnaEVW0KG1yJpn9uxmrjwErb9imzni05QDFjExryoqM,5584
37
+ sglang/srt/server_args.py,sha256=2K5KQJgJ8T2q1XAnMIuIRTN5p5soFStsHPPb3n5yhJk,54193
40
38
  sglang/srt/torch_memory_saver_adapter.py,sha256=KG3wM9-xZsSdsmORofArnNR7hH55GEyFxaderCDcK9w,1853
41
- sglang/srt/utils.py,sha256=KAEwcTWJZInclD6tGvIEDcXpVW726l6n86FcbrHoCng,60992
39
+ sglang/srt/utils.py,sha256=tbigwWXEsPOCD4rrOA4fzdZa4Qcf76GsagmgGW1DX4U,61565
42
40
  sglang/srt/warmup.py,sha256=FmJiYfjRr3X_eAe7ojQaPoN17LvHpjDmRWRnO-k86AQ,1469
43
41
  sglang/srt/configs/__init__.py,sha256=vulncVn70WqIT6s0HaB8p_Q6FjOiaLwNZWpoJS9FIuQ,399
44
42
  sglang/srt/configs/chatglm.py,sha256=j-b0YkdYUmQm2y1kNmMJtKeACxWKmBbvNNkDWbs6kbI,2907
@@ -61,18 +59,19 @@ sglang/srt/connector/serde/serde.py,sha256=n59I2MXLa7WCyN_8pEd8L-scJk7lMhmEX-GOU
61
59
  sglang/srt/constrained/base_grammar_backend.py,sha256=ljTVWpBo3bolce-E_-mtHIY2XWez4qcyDPeaIeZyIhM,7454
62
60
  sglang/srt/constrained/llguidance_backend.py,sha256=Kgd-PQVBQlKWsz506OpF_xSdNBhEbvFywzICTZg21iM,5729
63
61
  sglang/srt/constrained/outlines_backend.py,sha256=XbmkZSJzJnnY7k11uj8Et3StfuOiFwRs3ID4IRYAA4Q,6839
64
- sglang/srt/constrained/outlines_jump_forward.py,sha256=iZWXeR3gNYoMubLGyFmLPO4V2YsN5DiGjD71Xk9iFaE,6418
62
+ sglang/srt/constrained/outlines_jump_forward.py,sha256=Gyubp-FVetxd6wP4FA_kD6cCXIRfr8k_ZDviJyte048,6824
65
63
  sglang/srt/constrained/reasoner_grammar_backend.py,sha256=XFxdZqvPofmtCeIMqR10NOyph06HwbdXfiVI8rIoV5s,3646
66
- sglang/srt/constrained/xgrammar_backend.py,sha256=Xf4CiU30XCa_RM4bgFkCw1yLeH4wijfewUHIYjnkv-k,6247
67
- sglang/srt/disaggregation/decode.py,sha256=qV0TU_nasIWTCXAngB7g3t5uJ1a8nmYW-KGXdIzaG0I,18624
68
- sglang/srt/disaggregation/mini_lb.py,sha256=ZU4M7ZtdKUDzpmNMT_NDFnTdbHzoGIxXSHW2PLdnoLs,7511
69
- sglang/srt/disaggregation/prefill.py,sha256=AeO4VcCKJ6X3c-GVY81G2aGA0bz9nNXiYNRXFOBWzWo,9954
70
- sglang/srt/disaggregation/utils.py,sha256=gbJIFpYM8XpW4aTThPGhny79jl9aBxOIiT2swJpS_Y8,2017
64
+ sglang/srt/constrained/xgrammar_backend.py,sha256=pWyJL15D7kdiavcAG7_hMZEfSXbNbcxGE68qtrsLFsU,7288
65
+ sglang/srt/constrained/triton_ops/bitmask_ops.py,sha256=WjTen9iuuFWLzkE1mAHQZB9_7aIy5QH8Wjf-lB-Fams,4614
66
+ sglang/srt/disaggregation/decode.py,sha256=cB8Dc4eyH6BfRqwhgEyU3yvCw1XbFBaYlC9UaeMNERA,20948
67
+ sglang/srt/disaggregation/mini_lb.py,sha256=7SJIcXPt-Fqpbs4dj93-4M30zFGY1AOEu6FCGlU1Uqg,7643
68
+ sglang/srt/disaggregation/prefill.py,sha256=gm1VCWXv_s8iy2bR8RCYV1qbtdq8wW1dkoZmCURd3Fs,11453
69
+ sglang/srt/disaggregation/utils.py,sha256=fXFdNQ9Mt-EnKqPfUpjG-f6bQhLKYxwKRppzWvWBBvY,2540
71
70
  sglang/srt/disaggregation/base/__init__.py,sha256=KR8xXoRCDAy2U623mfP6ujXu42m1_F9EiudjrKu2I_A,130
72
71
  sglang/srt/disaggregation/base/conn.py,sha256=gpf32bhYXWm_iaYB6WcrDaJ-UoL1ZzPI_xpi5pMhRQo,2443
73
72
  sglang/srt/disaggregation/mooncake/__init__.py,sha256=1vacEHmWjf7zgbMPzsXKB08FqNKNCquJdUiDlO41BOk,122
74
- sglang/srt/disaggregation/mooncake/conn.py,sha256=LkM9X7Rf3H4hjfSUQh4Yq7icvryTrPg_tszb3_hakcg,22210
75
- sglang/srt/disaggregation/mooncake/transfer_engine.py,sha256=qy-0HYLhaz90ompOtcOvB5jZhI97iAH1tl7dNvbleGc,3457
73
+ sglang/srt/disaggregation/mooncake/conn.py,sha256=byeMgsi3Ape6sTNbF9KIvuq_R6FZMaCwEk5VoLqzeUg,21117
74
+ sglang/srt/disaggregation/mooncake/transfer_engine.py,sha256=MxDAB9ZetRF1pFS2LP3FVHPtQ1HjIt_SK3UMaYHZ94o,2604
76
75
  sglang/srt/distributed/__init__.py,sha256=jFOcyt-wFAPMBUAf9zkZalNQlt-4rqmT6pCKBz1E4qo,149
77
76
  sglang/srt/distributed/communication_op.py,sha256=IBnFUdMftK_VSTMMMitGveonorFUUVNL4guqO31cMSc,1130
78
77
  sglang/srt/distributed/parallel_state.py,sha256=hoTgLYfHIKMb_tSwBTauuusJZ8oY9BsiubTTOF8UfIw,50713
@@ -89,45 +88,45 @@ sglang/srt/entrypoints/EngineBase.py,sha256=xoyvp6XAeDLY2_Q2Ng33H-fRhrXHv2ldJJKd
89
88
  sglang/srt/entrypoints/engine.py,sha256=cO-Yq5i_hrn_yaAuhkHKkUUVXQmHXcTV4B-l76LjbwU,22137
90
89
  sglang/srt/entrypoints/http_server.py,sha256=wYjyyiajP6SWa3auZHZIUJv30zioB0IwdFKXHlyT5zo,28431
91
90
  sglang/srt/entrypoints/http_server_engine.py,sha256=ihA6y3GXRs28Y9U3SgdQcJQjnw_SVIby7QrVgiafX04,4846
92
- sglang/srt/entrypoints/verl_engine.py,sha256=sqQKt-HnEdCfR7CkiyskY7E_BeQMxASMDe_Hq91ni1I,6949
93
- sglang/srt/layers/activation.py,sha256=1ykXZO0BGz7DFVE-EK26b02I5AgH2IuU4PQB6oUcF4M,6003
91
+ sglang/srt/entrypoints/verl_engine.py,sha256=XLYdwTwhH0jTjw8xczgZXWfBXMRb_ur2bg4TN0dTwfI,6975
92
+ sglang/srt/layers/activation.py,sha256=pshilucJ66qSotOjvP7p3LmTBPVY6xBKkbwEpTLX_WY,5974
94
93
  sglang/srt/layers/dp_attention.py,sha256=Tfw2BydGPAeLcDlyl0jzBLOtkiygJhgAcf63RGZhrEE,7535
95
94
  sglang/srt/layers/elementwise.py,sha256=XCrR2i-9dP-H6jQo2zUuquwZrsl_wEQqj5Wxk6WUf7o,13987
96
- sglang/srt/layers/layernorm.py,sha256=189bORMggKhYcEYEjl6JRcuIoUPllHo3SheoH6YiORY,4546
97
- sglang/srt/layers/linear.py,sha256=etyzpgJbOUWCiu8abUovZQ8IFJ3ObeqOVHocBzFZOP0,51517
95
+ sglang/srt/layers/layernorm.py,sha256=Z0N8S6vUX8F9SmPQi80pjaa6KGw5YJZYuVEqfgiZGV8,4546
96
+ sglang/srt/layers/linear.py,sha256=nC9MxJrFap1BEyqgFlBySH4IeQruIbcBp32cOhUl5Fw,52149
98
97
  sglang/srt/layers/logits_processor.py,sha256=Vp8ibljVEezTr54xzeOcjiJR7JdYO8ItkO5nLIIMVu0,24206
99
- sglang/srt/layers/parameter.py,sha256=0OTMtmsNds42e3z3wHTRJiUfxCWFwSL6DHrqgeTgGt8,15151
98
+ sglang/srt/layers/parameter.py,sha256=zqWyEzpWzP4NNTjq3G9khq6XofgpcmJqQLg6Vd4WyWE,15084
100
99
  sglang/srt/layers/pooler.py,sha256=rj2lygvleBnyLCBZ8I11HGMgpfIDsT0l3PIkshJwdu4,1606
101
- sglang/srt/layers/radix_attention.py,sha256=VeE8wX-8eNaSfw2JYzrek7EjgdVltEujnkMa_u92hCc,2865
102
- sglang/srt/layers/rotary_embedding.py,sha256=qvRNHWJxsyz897ntsEEr9iTj9ZNV_HgWUH7PvBE9ydw,45738
103
- sglang/srt/layers/sampler.py,sha256=yipSyN5UWGwGS-BC-WzWMmelys4CCDtK_8b1OpaK6sM,11622
100
+ sglang/srt/layers/radix_attention.py,sha256=xcsEmKLZYu7K3RaYnMX67H86XLiKD8AGu0Ob-4oV8aU,3247
101
+ sglang/srt/layers/rotary_embedding.py,sha256=-LXRtNCoawKiKwrtyhO91bMRBxKf8Vh06fF4P0zSJ0Y,45775
102
+ sglang/srt/layers/sampler.py,sha256=pvtlV2L5RYiwsCr4A0tE1h_nou9grFbktFR8bcHMiLg,11404
104
103
  sglang/srt/layers/torchao_utils.py,sha256=Ws24FdRBSkTpyeyA6bQrdDm-W5wfDxKvSIPUSahyMfA,4063
105
104
  sglang/srt/layers/vocab_parallel_embedding.py,sha256=QUxd4sELx6p3dHvEKmccPZ-phdd_9EjNdwjH3SJ9zxI,22238
106
105
  sglang/srt/layers/attention/base_attn_backend.py,sha256=X_GIbQuU9njtUEGdUP7E_KRhmGxj3UyPHNESlL3QaQ8,3264
107
106
  sglang/srt/layers/attention/double_sparsity_backend.py,sha256=2ZRL_gYz14idoVqQzeQ6N77nXer0f_8_TUYw40XUUz0,9161
108
- sglang/srt/layers/attention/flashattention_backend.py,sha256=QKr_X_7fp96cbghJJj3qlzfN_ZeIZ-0a4wUMcSwwj-o,49327
109
- sglang/srt/layers/attention/flashinfer_backend.py,sha256=QqHbVoXp9LqoVvoGebXoo9GcrU7LaRRRh5sG93Daa0s,46277
107
+ sglang/srt/layers/attention/flashattention_backend.py,sha256=9dv3cj7fRODFbc0v2pRLxmkFcSfLH5M-iVU_PpfaP3A,51364
108
+ sglang/srt/layers/attention/flashinfer_backend.py,sha256=YtMTgMhxxNrAbSoWTPJczgY4SR3WjnAPXPoJ2d5PUZY,46394
110
109
  sglang/srt/layers/attention/flashinfer_mla_backend.py,sha256=pnVhvVEK87iFW8gUb1G7X7c1tqro8R2DSEOFCnlV8Bo,30301
111
110
  sglang/srt/layers/attention/flashmla_backend.py,sha256=1RPFNtQOBw6BWxIjrzfJgA9Nx92udLbR-S5KXmqjxS8,10536
112
- sglang/srt/layers/attention/torch_native_backend.py,sha256=KABmBrMqKa4x08kkQYdIcZUGydvmaVJIUfo3y8jhFHI,9270
113
- sglang/srt/layers/attention/triton_backend.py,sha256=cyxOaUU1CNhaEezJH9j0dd20cwxwIVGGN3jNXFTVkIY,26714
111
+ sglang/srt/layers/attention/torch_native_backend.py,sha256=K5hUqBgakk2COSQqsaxWs0yEVOHS-7BlOygZTOeI8kE,9444
112
+ sglang/srt/layers/attention/triton_backend.py,sha256=oEEiUwHbm4rNw5ExbQ2c3n0TwAgkk77yuLFenj9bHOo,26902
114
113
  sglang/srt/layers/attention/utils.py,sha256=J9mA-cbZT3uTlaKXo0HEAaeMei_TS2o4McTna9LVDCE,2750
115
114
  sglang/srt/layers/attention/vision.py,sha256=H7dQofAlZjC48Dr6bo4HBsZSLDhdrbHKChyGejeaEGo,11886
116
115
  sglang/srt/layers/attention/triton_ops/decode_attention.py,sha256=DPu_aCPgwPqKWZPEQmp_xA7MPbpV2ip-MEICCB470Ao,19120
117
116
  sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py,sha256=BXUY8ARHBF2s9x9waiEwfZwcMgvuaJA0gxb4OeUZ_tY,31167
118
- sglang/srt/layers/attention/triton_ops/extend_attention.py,sha256=hbBvnhc2zqu-E3HNROVXyNOZbtDkVRuFus-yTjmE0Sg,13668
117
+ sglang/srt/layers/attention/triton_ops/extend_attention.py,sha256=6MOrfQDVJQMTUXv0T3vUSF7JA67hVXxWqIbfDGBdKYM,13965
119
118
  sglang/srt/layers/attention/triton_ops/prefill_attention.py,sha256=Y66gZ37u0GKMPtI8n5MbO6uOxRuGEmKIG0IPbJTOqAM,6213
120
119
  sglang/srt/layers/attention/triton_ops/rocm_mla_decode_rope.py,sha256=664WnAJ91EiCUZOcnVDfbTQf4uGJ4ZDZB1CbxpEUFZc,13866
121
- sglang/srt/layers/moe/fused_moe_native.py,sha256=bf0po921lY9xnlZivdJly0bGIYFlLqp5v8Mz7tG5bdg,4451
120
+ sglang/srt/layers/moe/fused_moe_native.py,sha256=IWoRLIEMhXH8KAB9jt5QSnhUtHn4SnbJ9dDO1LNTZ9o,4659
122
121
  sglang/srt/layers/moe/router.py,sha256=5Aeqoix_AS4uymb665OJE904wVSBkQeFdZP4e7KKPvg,10530
123
- sglang/srt/layers/moe/topk.py,sha256=xjkfC50rapfX27nI2078SoKGXAo82waQVArPVDH8Ehc,10843
122
+ sglang/srt/layers/moe/topk.py,sha256=K-VU64nWBV07bu1Okn-uYbhz9gylq-KFNRYn2SFzu28,11129
124
123
  sglang/srt/layers/moe/ep_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
125
124
  sglang/srt/layers/moe/ep_moe/kernels.py,sha256=ijqRzS-tb0LGnDU5hW-g0JH104ppADrWaUIDGxb9Feo,22919
126
- sglang/srt/layers/moe/ep_moe/layer.py,sha256=1TmWnxv-bW1Qbgru-V-vGnt3ruuTIwHQy0Y5ZA_xzvE,36824
125
+ sglang/srt/layers/moe/ep_moe/layer.py,sha256=Qotud38bCHg1tUtNKNjHPl4yHAD8ofELjtb8zcoePss,36350
127
126
  sglang/srt/layers/moe/ep_moe/token_dispatcher.py,sha256=zQV7Qr-Zrcr3D3efVvZepRQM02bj5djHPsijPssavk8,20430
128
127
  sglang/srt/layers/moe/fused_moe_triton/__init__.py,sha256=h9yMFAL_bagUf-qBED8gSWdCOb7d8IdA-pE-L_nIg8E,842
129
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py,sha256=6WbcChGdZmSXl5_WlpC0w1cn_QH69mvICQt0pMBO_nk,55474
130
- sglang/srt/layers/moe/fused_moe_triton/layer.py,sha256=43-UL9KEMoaiC0cRSzWFbg2PADtcoxfZqjZ6TOvQ7Vk,24551
128
+ sglang/srt/layers/moe/fused_moe_triton/fused_moe.py,sha256=DRkGQ6vuk4d786_UWMBqYlw-9o75k-T_rdtLQLZldK4,55410
129
+ sglang/srt/layers/moe/fused_moe_triton/layer.py,sha256=XofcceHnkmqhVczEIVqGSbsxps5LiYTGcaCk1Say9YM,24951
131
130
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json",sha256=iNGsE2ZeVnQEnN4A8UJ9Jv0d3hbRF2MJ9oBgjup5Szk,2737
132
131
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json",sha256=JJN0hryyLr5Zv3dSS7C8cPFhAwTT6XxUVnBGMZvV6JA,2752
133
132
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json",sha256=ouRyZ5PEMPP2njPftCNhs-1g1y6wueWLmhI7G1SjV1k,4131
@@ -262,29 +261,29 @@ sglang/srt/layers/moe/fused_moe_triton/layer.py,sha256=43-UL9KEMoaiC0cRSzWFbg2PA
262
261
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json",sha256=-RzUWSIAAsg6iA-8SPMa68hPpBVoUyMJs3dLP7edRu0,4323
263
262
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json",sha256=sY2nWMPh9lsIkhPCjkHO245wpnfFbrHmzdcZDVFPVww,3265
264
263
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json",sha256=Uz5X80VcNBOaxshwVNUEittHk2zqB4HQCfTJ4TPG5aM,3274
265
- sglang/srt/layers/quantization/__init__.py,sha256=g5VWhdnQuyxFEcPyMhreR8QlEn3tXaCH34QPdAdufZQ,12369
264
+ sglang/srt/layers/quantization/__init__.py,sha256=UOQcyCvKFkX0u_OPPex7X5X98iUR3lXgBnLbffu0n9g,12424
266
265
  sglang/srt/layers/quantization/awq.py,sha256=VImnVCU_QBLFba6S88T0dJ-vLy6SMm3OLIMEdllDfVI,6663
267
266
  sglang/srt/layers/quantization/base_config.py,sha256=jWk_egQrVNMYmQgbTI9vkcgzScLFjB5_sywFlAfE5J0,4776
268
- sglang/srt/layers/quantization/blockwise_int8.py,sha256=yE8ARplbha1sW1Szl-mgsRDzGTRpEZY_zAKkCJIu680,15010
269
- sglang/srt/layers/quantization/fp8.py,sha256=bYj6-xRO-bXsrDDaYzA2sKTmOvznLu7ZVoAtGR7cKjM,41834
270
- sglang/srt/layers/quantization/fp8_kernel.py,sha256=F49gP48suKwzO1QejmGSV6XrBSOgwW-bsaM-rvUB_mE,27460
271
- sglang/srt/layers/quantization/fp8_utils.py,sha256=ymdhxw-vMfJIzxW0uFg_iDTzlurN_R9dFXyEmYXsluI,22516
267
+ sglang/srt/layers/quantization/blockwise_int8.py,sha256=cu9-JiCZDfMfvB97Kv_-eEG87VX5bRFIllFkzpO_xIg,15122
268
+ sglang/srt/layers/quantization/fp8.py,sha256=Niu89OfZd4pIpkwZ1zd2Hrlffx0c5L5zkix6Lzi0Vys,40970
269
+ sglang/srt/layers/quantization/fp8_kernel.py,sha256=oYq-j5moiilrTndKTqF4mRxCvhB1nSYhPMC9VeqcR4w,32964
270
+ sglang/srt/layers/quantization/fp8_utils.py,sha256=LwP0Z8jPlaWpGBKVd27xqSk0ATzuB9CeLNEXiPm8wXs,18583
272
271
  sglang/srt/layers/quantization/gptq.py,sha256=e4rMz374-yQQqeAI77WPxfcAaRk38GeN2akEpvnC_Do,15141
273
272
  sglang/srt/layers/quantization/int8_kernel.py,sha256=GfRn_imIw8kNgqdtb2lr7BettjgDgimbl1Rubnamjh8,11352
274
273
  sglang/srt/layers/quantization/int8_utils.py,sha256=YK9CS-lb_n91kNCTKK5o5apYF31V2giDg5G5VKrpcUA,2356
275
274
  sglang/srt/layers/quantization/kv_cache.py,sha256=-yaFTdB75T0BbvQeuIpH6rZoL3R8t6OIJVGB-xdtpCw,3492
276
275
  sglang/srt/layers/quantization/modelopt_quant.py,sha256=Ff7qMv7CCWj0QY5gkDnwlQYLH1mbMtopbw8jXMLndXg,16616
277
- sglang/srt/layers/quantization/moe_wna16.py,sha256=3Z8Eq4_ehTN5EEotlYC09FpUNmF8VO8uv7QzUqJa0QI,19371
278
- sglang/srt/layers/quantization/utils.py,sha256=QqGFwRnFenOm5HfyLoS4D06_LyvNWgOggAiFtZXTpQ4,5637
279
- sglang/srt/layers/quantization/w8a8_fp8.py,sha256=wY9Ztw9RM5Vd3MHMLauy0KD8xcQ8JZUB_M4LeyE8-UU,11654
280
- sglang/srt/layers/quantization/w8a8_int8.py,sha256=fIoSGeaL5kZNrExKAKWBgJc9hNXns_w9zP7vw2dVPHA,8892
276
+ sglang/srt/layers/quantization/moe_wna16.py,sha256=KtFr4lIslMA12yx4JjXXPOsa5OHjxXWA6scYCRQnFMQ,19483
277
+ sglang/srt/layers/quantization/utils.py,sha256=3fP11UCSWkFWW7oTfQ6_3I1ZXfHvRL4WIlTAXnT1Ues,5442
278
+ sglang/srt/layers/quantization/w8a8_fp8.py,sha256=VhM36MKz02W3uPCi-9Ap0XpQPXBdL88ny3l_aEtUq2M,11766
279
+ sglang/srt/layers/quantization/w8a8_int8.py,sha256=_oOJMkMrRMU2WvzAsNsQubQaVYcJJx9kr7Pps5MW2dw,9002
281
280
  sglang/srt/layers/quantization/compressed_tensors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
282
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py,sha256=Z2h9WQ74Umun_0wj8I5fr-ScRfuSrpSU9otI29jLAM8,25606
283
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py,sha256=RYX3vJ0Dh984KktTkNr1Zt578W9gp-YFY5nDiOpd7IQ,27073
281
+ sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py,sha256=ssrSfCJ9ORpxsXNfCiKioxmrwY0alPTPd52YLEqiqlk,25634
282
+ sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py,sha256=no7gs-M8eEYvNd0XPoVudfb1mBweoSFfcHYoWytJeAY,26199
284
283
  sglang/srt/layers/quantization/compressed_tensors/utils.py,sha256=mnUmKWFQUnY8bVoFHUuNVwqsfS-cefeR-ofyaihCXcY,7621
285
284
  sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py,sha256=qcdRgoUNJWXqSimns-D987TW0OTk3uFuWNBX8Z6H8Fk,246
286
285
  sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py,sha256=tdKJC8c3SX8T3z8JL-1YCsg4ftcv55Wxt0vZrYftpX8,1635
287
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py,sha256=BSgSFFeuBHSnZxvVpNDojeGCx0ClDDH04aTjdBUyE6U,5940
286
+ sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py,sha256=NZurhURFpZKqfMfgyd7oHLTLThm_8AO7xBCY8F6i3Gk,5881
288
287
  "sglang/srt/layers/quantization/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json",sha256=RdHQxWXwXqvio31192vsLaKjEr4f_DjpMPKlarY1IAk,3251
289
288
  "sglang/srt/layers/quantization/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128, 128].json",sha256=0vLaJgo5B9ti-XMFKJuvSoMGjsZQ-RhHSx4cC8Xji-U,3254
290
289
  "sglang/srt/layers/quantization/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=tkLjwLC_aVXhzuvo-2QHkojXZauPJsf3jNHFn1S7uRA,3244
@@ -437,16 +436,15 @@ sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a
437
436
  "sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=PD4AJYCkHfy2ivv9baMouFXzBTy0eKMumbAfxfm91HI,3256
438
437
  "sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128, 128].json",sha256=FImA-TJ_tQDjqwoNWxS--sRDoKDXf9gamlME3tkxH58,3252
439
438
  "sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=FFBjSWlpKXMxfAUUYUqXbOK_Hd7qBeBsfbcaa9uB4qY,3249
440
- sglang/srt/lora/layers.py,sha256=eqU5PxLx9jsmp0fxQ-e9mlSD0Zz4Y9Uan_x9Z5-y1EQ,11835
441
- sglang/srt/lora/lora.py,sha256=9BpasJObx-XL_qSoQhheGaYBJ3PlKqJAARvruIOJE0w,7514
439
+ sglang/srt/lora/layers.py,sha256=cu1kqDCuH05ck8HVtwmVuMVBzcPJZeDY3mk486teB4E,11848
440
+ sglang/srt/lora/lora.py,sha256=uNvbjZ_Wr1SLI9-ElRJA_JKwkibSGroP5Bfpsr9MI-Y,7527
442
441
  sglang/srt/lora/lora_config.py,sha256=qDgMTx_69jyJUl29O5FxLzYa0BMhqYVXWXfyyVOvGm0,1684
443
- sglang/srt/lora/lora_manager.py,sha256=Gpkq4N_cJGMIDtxUCScwP4LGcHyUJZ457EI_ti30_A8,9187
442
+ sglang/srt/lora/lora_manager.py,sha256=nyqkm7RLoQE6myfqcH9r0zwME4aEZ3pFkVjY36QTlvA,9200
444
443
  sglang/srt/lora/mem_pool.py,sha256=xUFoHUDJgX9lt2YugD9HUY5tIMnJiazYMZ6LYqSGv-E,9633
445
444
  sglang/srt/lora/utils.py,sha256=GjEBgsGhDhX4NqVqeaciznQ8RotKZmb2c-nw4YMLHxA,5251
446
- sglang/srt/lora/backend/__init__.py,sha256=FziFT8HguMFj-h0tUCc4_UEbtOWMlYi4gNlYJcArWh4,671
447
- sglang/srt/lora/backend/base_backend.py,sha256=tGpABAn3DVC8GONf8USkaxkzkpVsDYfgKrnLCsXpivo,4558
448
- sglang/srt/lora/backend/flashinfer_backend.py,sha256=VmDSY2YqTLK2EBeqdMiNoirPxDifCMmfiCB3HNwpgvE,4138
449
- sglang/srt/lora/backend/triton_backend.py,sha256=_QbqggFPHMPWgx3PI15yyyfxBCTxSpGA209x_frI12E,2517
445
+ sglang/srt/lora/backend/base_backend.py,sha256=EIz8I-GIrdmK4fISw3ENhbJVVITaxKfyLxHXGPU4fPs,5044
446
+ sglang/srt/lora/backend/flashinfer_backend.py,sha256=el6IAB4kTgDTbwCggmqFuukliyoapN5X6FLksG-4wJ8,4151
447
+ sglang/srt/lora/backend/triton_backend.py,sha256=uqwBGlguXX8EkCKjSPqac6SPTgcKA31u3u6HkKPQcos,2530
450
448
  sglang/srt/lora/triton_ops/__init__.py,sha256=JGOYPIn1XbGcyJTbt8A0qoc02PYONSGNNjGkC8yJpAM,283
451
449
  sglang/srt/lora/triton_ops/gate_up_lora_b.py,sha256=CDGt7lpu9GjykgMtmwbZ3PEqjTlRYyh28AUlj1cRcmw,5279
452
450
  sglang/srt/lora/triton_ops/qkv_lora_b.py,sha256=HTfU3HxxxVyaG_aJrrVjPJTnqf62yvepcKJKYkG0XJQ,5944
@@ -455,21 +453,21 @@ sglang/srt/lora/triton_ops/sgemm_lora_b.py,sha256=Q58UzWUb3QFqY_ZxWA3poN373N0Hwk
455
453
  sglang/srt/managers/cache_controller.py,sha256=d4RGqbut1FlzJnpqr7WY_TYmRjYPS07OoOVbztjs5xI,18959
456
454
  sglang/srt/managers/configure_logging.py,sha256=fOJaXAQ1n9m-8KPJndpsKvS885i69SMafoEADLIVfIM,1633
457
455
  sglang/srt/managers/data_parallel_controller.py,sha256=Xkj2n9uDyq7a-AVDZlfzeuNkC4ibsSftb1_bed9hgQ4,10318
458
- sglang/srt/managers/detokenizer_manager.py,sha256=HTfpJWMF1EImhKOnLJ96xPmYXm71xzaisLMfxg3zpgs,10111
456
+ sglang/srt/managers/detokenizer_manager.py,sha256=3S3aRvKSi75RQSxEEQkeyxKDNNunWiw9wlwsbT1VXSo,10099
459
457
  sglang/srt/managers/expert_distribution.py,sha256=r3o5RGI0gnV7xb60AApqKYa0oiSB37oB7hQBX7P3xZM,3225
460
- sglang/srt/managers/io_struct.py,sha256=88tlo4xLTqpb_qv2mJpJPZQxpcWCK3xW34GUij05McQ,30860
461
- sglang/srt/managers/mm_utils.py,sha256=BdeiJG1vR89v8j9NwdHdanZlX5iiyxYWwHL5T0CjwUg,15537
462
- sglang/srt/managers/multimodal_processor.py,sha256=37SSZIdhdmcGaZSH2A2GLdntcbIxDUiomX6WR_BpmtQ,2132
463
- sglang/srt/managers/schedule_batch.py,sha256=4Xi7SdCiTKWraU8xQJQT1XYGMNt8TUW0dsZaNMDLutM,62509
458
+ sglang/srt/managers/io_struct.py,sha256=nNRAJXJpJvZFHFkOPHVa9TkzawlhZlfHpu4qlZsYPWw,30897
459
+ sglang/srt/managers/mm_utils.py,sha256=P-UbCdzasK0yR-xn6Lrk3ILct3uJrIBuXSDrtRZlB_A,15542
460
+ sglang/srt/managers/multimodal_processor.py,sha256=XlRYvNhF6XOssreRX9DZPhLSpps_VE62gSKw3EGdNPo,2088
461
+ sglang/srt/managers/schedule_batch.py,sha256=pPKw8z7B_6tA9OZoMU2r_KPJzAx3aNjylZx2Hm1bEcw,62407
464
462
  sglang/srt/managers/schedule_policy.py,sha256=E1qVq2G3jptKdX9nlqfayeRBUll9xB6bK8nBf3EW32E,19469
465
- sglang/srt/managers/scheduler.py,sha256=89db4YxUDZyrEZAKdbrxNIWk3EPob2aqvtZK4G8E2D0,82318
463
+ sglang/srt/managers/scheduler.py,sha256=SujQHQOzw-O1NDxgMF8JWI0nF-EdRDC2ynKOXp69cNo,79876
466
464
  sglang/srt/managers/scheduler_output_processor_mixin.py,sha256=u2sj6MViFTov0lVZSysZ-wph2pEqRCtCjwA1UdttZ7I,26338
467
465
  sglang/srt/managers/session_controller.py,sha256=o-ifit0n4_xHLNmyD0Ams8FxGRgxFybX-Vz1hwgr3UQ,5755
468
- sglang/srt/managers/tokenizer_manager.py,sha256=ncPzDWeTgqi--V2LgRrzVIGp2aPl9Dcsv3qWCLDTBE4,46665
466
+ sglang/srt/managers/tokenizer_manager.py,sha256=ukKGBjsVdI-FS3NF3sywxAHpWvK_eEOCDsfI0mPPPqw,46706
469
467
  sglang/srt/managers/tp_worker.py,sha256=khF-hXOrtF_IesOyUSjEBjb7fAh3CakdiKR7Ebj2wp8,8894
470
468
  sglang/srt/managers/tp_worker_overlap_thread.py,sha256=3_ZJ8Rq7v2ZDaRNTRu5Dy8AbqiAlJQp3IAKnn_WAwd8,9127
471
469
  sglang/srt/managers/utils.py,sha256=5i75uLlQOF_5CaT02CrWtwozMTtwTg2_nLP8Dtr-JZQ,1536
472
- sglang/srt/managers/multimodal_processors/base_processor.py,sha256=5pkKBqajyBRv7uM183NnrhTMYybC0HeUzHID_OkEnfA,9859
470
+ sglang/srt/managers/multimodal_processors/base_processor.py,sha256=M36x_Emm-IdpFiQpii3qyQZ79O7NZsyJgDT5gk08Plo,9923
473
471
  sglang/srt/managers/multimodal_processors/clip.py,sha256=lRc2mcuDbAhZVf-0EfkO81pqDiol9zLvTpDqtPIBQ2k,1525
474
472
  sglang/srt/managers/multimodal_processors/deepseek_vl_v2.py,sha256=j7j1D38azudJjYthVpdz7jxQ9Z7SjwQfskpOIshAdiY,3147
475
473
  sglang/srt/managers/multimodal_processors/gemma3.py,sha256=UlkyIoc8XOw69iFBYiBYLx--pdfnM4JfCFtwRrd3w-o,2267
@@ -482,28 +480,29 @@ sglang/srt/managers/multimodal_processors/qwen_vl.py,sha256=67EmFiAkvZncU-eqiiS0
482
480
  sglang/srt/mem_cache/base_prefix_cache.py,sha256=NY62Zo0A0tLJ7ObRLOQqQcXCxoJUDZsK8f5U4dNQjKc,973
483
481
  sglang/srt/mem_cache/chunk_cache.py,sha256=it5SfL1FwMbrdeOH-I-Eu_i-I9hFB1xL-z_brIUoCkk,1835
484
482
  sglang/srt/mem_cache/flush_cache.py,sha256=GYcxmNXh4hsMpFfNOuCTpKilW7guZwTtAg_usVeM3J0,979
485
- sglang/srt/mem_cache/hiradix_cache.py,sha256=t3zxOCg8A4uMdjrtKbSdDJBwFubqnhfGOEdSs_22Zb4,16161
486
- sglang/srt/mem_cache/memory_pool.py,sha256=MyFVt81pCiiHoO3zRbIP_Z-KSAhHeSQGFQuL_kFL_L4,31638
483
+ sglang/srt/mem_cache/hiradix_cache.py,sha256=hCexDvC_BC5juQHAuzZRE4e9Stirq1ysfsB87uz5BcQ,16340
484
+ sglang/srt/mem_cache/memory_pool.py,sha256=bMzNK-8avd-_rwKqTJHwMiQKXP4rrt6MmXbofFDWihQ,31753
487
485
  sglang/srt/mem_cache/paged_allocator.py,sha256=BrJS0vN1k-vTSgb_M8u_1KoZFRgzgR1WRyImCTq3T0U,9770
488
486
  sglang/srt/mem_cache/radix_cache.py,sha256=Lm-pco6CJ4orb9IfDpbHm5MnyK8Ya0OF1x9p88dv548,14906
489
487
  sglang/srt/metrics/collector.py,sha256=zHg4twFQJvuK1mSme3-EYQa9PJryfp_u7a4RxQ5RcO0,8874
490
488
  sglang/srt/metrics/func_timer.py,sha256=VFyNRrbnKVCwnQsrlLin1lITJfjQpf9m8sGPqL5LIsQ,3438
491
- sglang/srt/model_executor/cuda_graph_runner.py,sha256=ulYmFv0mlQ4aawuFpX2qkaAVx3qE5tEYj4D7hOOEct8,23325
489
+ sglang/srt/model_executor/cuda_graph_runner.py,sha256=ZaN1yPju52iOVQwfCVju2Iw_ci4B87mI_xi21IZFZis,23325
492
490
  sglang/srt/model_executor/forward_batch_info.py,sha256=_qSMTiLxvcPIIgqRfUqG4W--OoirVY7ulcFfZqQIqjo,28689
493
- sglang/srt/model_executor/model_runner.py,sha256=5qvLlql8rIMJUa8DTChrraq_7-s6PusnpdPctED3PJU,46909
491
+ sglang/srt/model_executor/model_runner.py,sha256=mDPja0tc2NNa2UBf1GfpjTtowmCdDncSS06NkwzFnmU,46476
494
492
  sglang/srt/model_loader/__init__.py,sha256=zGZkOBz1zx-pkaIy47BasL3fjDlAcxAXUTjInOhXHAE,919
495
493
  sglang/srt/model_loader/loader.py,sha256=YYmtvkQw0B1qgPw0_gN-K4yy7CEYbTSR__0Dl1Fnm6k,55342
496
494
  sglang/srt/model_loader/utils.py,sha256=0NaMR67fESFopaklmsleiL27XH1QUrjZW246MUu1EJ0,1369
497
495
  sglang/srt/model_loader/weight_utils.py,sha256=yKnau-wH9muczoCpDTCVIqXFqz-QJmEEySplX3bMJWk,32153
498
496
  sglang/srt/models/baichuan.py,sha256=HbvlErnkCSK4pRQYCSDxMcrn-1DQyfiNoeDcnRrJas8,15807
497
+ sglang/srt/models/bert.py,sha256=kHlErDgNX_mIhfWWCnAcH_ncvYg22Y61gI34gW8GuUY,12738
499
498
  sglang/srt/models/chatglm.py,sha256=cajLN9caBl09e0TwOFkiTTKDqwlbmHo_yS-NCjdeQW8,13957
500
499
  sglang/srt/models/clip.py,sha256=fCMtAcaKjruSIWfD4YGb4HXh6Tzp2pjpgDmp5JpwBPU,19794
501
500
  sglang/srt/models/commandr.py,sha256=5Y_b3K0QY7D37nFGkyiGgY38RleRui_GJUYcHSuHUZo,15315
502
501
  sglang/srt/models/dbrx.py,sha256=4pn_fdoATg01VEqNnIAxNEsKV5XU7gwHyd289eydq1s,15598
503
- sglang/srt/models/deepseek.py,sha256=jZFQUVJ753qcI8_3sh6TlLF-8oYiQndQm-3No8FInXk,16910
502
+ sglang/srt/models/deepseek.py,sha256=m8CjJIJiQ9B_ACPy7dwMLfm4kVLXcuW27zDk_lcQ_Dc,16920
504
503
  sglang/srt/models/deepseek_janus_pro.py,sha256=8wAzvcGdyo--3faMN4QtagT1eAZMhMFduvpCXqUS48Q,70456
505
- sglang/srt/models/deepseek_nextn.py,sha256=kca-2Fm2_SmqbOEFfd80pobooi1BXd1oe_4EsUM6SeI,13561
506
- sglang/srt/models/deepseek_v2.py,sha256=LtaJOxEn6ZnsXkiiVdS646u7lw68TeBg3iPy2LGj_cY,70572
504
+ sglang/srt/models/deepseek_nextn.py,sha256=mL2nnblFmeBD8cSf15BmJh_M-8dyCx07sqlicw4rab4,13454
505
+ sglang/srt/models/deepseek_v2.py,sha256=dAjHJ_2aRZSd0OQ0uCinDmRYpVs1tEWEeDfXy_NrdxQ,68369
507
506
  sglang/srt/models/deepseek_vl2.py,sha256=RVvi_3qsfrkqMCCnjjTA8OwUc5ySutc7asAH-rUJLVo,12922
508
507
  sglang/srt/models/exaone.py,sha256=rX7J0xFt9TSt6tMIhnYMkb5KDnqTJIV4BtjPLFwQ8_8,13425
509
508
  sglang/srt/models/gemma.py,sha256=4cdrPISg1VKnsuI-QPTpYvet4BrX8BMKvCIN82iLskw,12641
@@ -517,7 +516,7 @@ sglang/srt/models/granite.py,sha256=5WOJyNYAlt5RNHSexNfPNihhSxIMd7wPzju1cTixKig,
517
516
  sglang/srt/models/grok.py,sha256=vESZeGS4adI_JAerXIkCcTm15-CNiGeS7VHc36C6w1A,28033
518
517
  sglang/srt/models/internlm2.py,sha256=RDAT9drjdgVEFmCMq99RTn3weMQFhl1NHhkhyDX8f7M,13056
519
518
  sglang/srt/models/internlm2_reward.py,sha256=ndfGmyqYZbVZ7C7rJ-v9oK3wa-EpoBGybS8MlyKZi2E,2522
520
- sglang/srt/models/llama.py,sha256=71GmA-_-CNM2kuEJplNg6tfWbjCW31EzkeVIk5ZwNmo,24932
519
+ sglang/srt/models/llama.py,sha256=Y4ROe8ohP84G4vin_Sr_vjG0XRoM5gGgnrojxOXn_uc,24942
521
520
  sglang/srt/models/llama4.py,sha256=JIVS5Q1lnmEpAHDI487gKO_9xfTCehSpzInNQeCg8JU,17940
522
521
  sglang/srt/models/llama_classification.py,sha256=4QWTFaUZIFKYZvEzs8bx8VkOZNIwdYCLrnwrdAw4QK0,3108
523
522
  sglang/srt/models/llama_eagle.py,sha256=OB2lKsjn7BcfCZljklnhk83me8j0PuQmYLou7baNcq4,4866
@@ -527,7 +526,7 @@ sglang/srt/models/llama_reward.py,sha256=LF2nqMV5XOrljGjAwJg43mBv3z6Q040I2EYlgZe
527
526
  sglang/srt/models/llava.py,sha256=KMwNNrlMuMaKEOZMDRBKBQbe6uctpKTLc0zOceyGC34,27242
528
527
  sglang/srt/models/llavavid.py,sha256=q0lHlRnoYHKJZsWnkIQdd6dYAQ26t7XsmrqA0zDGmZc,12829
529
528
  sglang/srt/models/minicpm.py,sha256=m5HFsSJj0Po09LY9R6qj6K4gceqWDMOePz3NDGgMGT4,14691
530
- sglang/srt/models/minicpm3.py,sha256=ZQpk6j2UjtVDR5gA0_jGYvl5Vsvm7NBH7xkpNjqgGw0,26348
529
+ sglang/srt/models/minicpm3.py,sha256=R5-9CHgyUnsnxYPwLP7LQA3AKQ10Igtphs5x7u98Oa4,19367
531
530
  sglang/srt/models/minicpmo.py,sha256=kJnp8UwJTV7kXEpuVWA50ecRsuZyFedHlwkprix8tag,75619
532
531
  sglang/srt/models/minicpmv.py,sha256=79zZn3co9r7SERatx49EuHRoLWRiy6qeaUFgjDWJo2I,40571
533
532
  sglang/srt/models/mistral.py,sha256=EYifJUUzN2Z2-iL37eJiNZF_DB0H4pa0mKlgYRIxM70,838
@@ -540,13 +539,15 @@ sglang/srt/models/olmo2.py,sha256=azmljhJF4ivcQfUtfsAUxq3ducE4tRKTL6iwe0IKYMg,14
540
539
  sglang/srt/models/olmoe.py,sha256=TMzt-yB891bvA4X50xL0NjNnFYSx9imlA7N1EG8KNK0,15949
541
540
  sglang/srt/models/phi3_small.py,sha256=UbqZvpwWolXUPd0zbKgbL93yVXUY1n4kXJLgIe_gjaM,15508
542
541
  sglang/srt/models/qwen.py,sha256=xYkVmMZS2uMqWhfndc8EYm0olpKFnggfuMp_6aobVi4,10758
543
- sglang/srt/models/qwen2.py,sha256=fYE5fkyRYTEVVl8XnQO2-ybj4ZhNtM7Kn12AQt39EDA,16181
542
+ sglang/srt/models/qwen2.py,sha256=ab912Yyk0aXOzI-wrxqN-sNF3bTVkNxB8P2uNcOCv9U,16394
544
543
  sglang/srt/models/qwen2_5_vl.py,sha256=uNnYhY8x-9H1GzUJkj7lUtR5d-0yMRNWUcT7-4qPlMU,22555
545
544
  sglang/srt/models/qwen2_classification.py,sha256=dGrMm4ebd30_lBhHOhaV57ig2iOTx3nqB4GEzsrRIM8,2747
546
545
  sglang/srt/models/qwen2_eagle.py,sha256=Iz0HWL2FgSD3FqoFhfYmbIZeEYkPTJ96lYbkncmHJX4,4644
547
- sglang/srt/models/qwen2_moe.py,sha256=GhDR7pP_G0NZ2HkaFVrBZnbqB0RxxNnH-8HMLwrweE4,18245
546
+ sglang/srt/models/qwen2_moe.py,sha256=bmS2pyHD5zQo5plTCzAo_mjnahVtJ1jaRSURX1PlQC4,18313
548
547
  sglang/srt/models/qwen2_rm.py,sha256=-mQXDEv11p-I1HXgYLTtY6ROem6UYorO958WsDrzsgs,2837
549
548
  sglang/srt/models/qwen2_vl.py,sha256=NCG85isoPkepv5RU-eLh44rCHPhfT3bu7pifNdBEsVw,21612
549
+ sglang/srt/models/qwen3.py,sha256=reaowGkotYAGHS5zTCWrvnyxtu92QKus19n-2amtMa4,12358
550
+ sglang/srt/models/qwen3_moe.py,sha256=Tee7oW6Xvo2pV_Q93y-HKykBFiPjo_-YfeIsIelB3hA,15623
550
551
  sglang/srt/models/registry.py,sha256=inKh9iwOp3LFYm3nqujg-OtABClOP-ifc1stA9cZegA,3434
551
552
  sglang/srt/models/stablelm.py,sha256=0x_31uIr3WcWwecdPAI3ek9KkyKBJS7VwknTk2y0gjY,12281
552
553
  sglang/srt/models/torch_native_llama.py,sha256=5tfFSMAXB3ScToqTALtCXa8Oo-qPCJh-KQCNB6QOlNA,19293
@@ -557,7 +558,7 @@ sglang/srt/openai_api/adapter.py,sha256=DaSU4Pri70s3ZeMHeVzsnKjd8dA9lx_HOmpVs1TE
557
558
  sglang/srt/openai_api/protocol.py,sha256=Y8PFFhLbzhpoERM6-WsTkm-ZuGcE-3tfenh9e-AC1vc,13374
558
559
  sglang/srt/platforms/interface.py,sha256=hym3iooBB4C8if5hDZezgVN6h4NIOu7sg2ZUBIV6XmM,11246
559
560
  sglang/srt/sampling/custom_logit_processor.py,sha256=tDvoLgLqn-sy1qcY6vSrpbnHCeqbdk0uhMOO-uy4p4E,1099
560
- sglang/srt/sampling/sampling_batch_info.py,sha256=wrGGU27mWOi_yCBBCOvTQLBdyTjfkPuj7Hsk0zOFyH8,11989
561
+ sglang/srt/sampling/sampling_batch_info.py,sha256=4LCowU2bk0TOSfIGpEy90N1SpTsiOKK8Rx1ZYcklUFQ,11988
561
562
  sglang/srt/sampling/sampling_params.py,sha256=nXm44Inn91YtrMpAm5mDb6-97owRy-Bh6lZ0BIpw73I,5919
562
563
  sglang/srt/sampling/penaltylib/__init__.py,sha256=mtN8grFEcaBUhl4yBHmw8NNirt_i6uKO2cDNLHOpZQE,496
563
564
  sglang/srt/sampling/penaltylib/frequency_penalty.py,sha256=Loc3qjJTksNc5s-DV7QZHjgqoo5pxk7-nZzxwyhD2tQ,2144
@@ -567,13 +568,13 @@ sglang/srt/sampling/penaltylib/presence_penalty.py,sha256=NRh10AJrrQlGJ6S-enGdRe
567
568
  sglang/srt/speculative/build_eagle_tree.py,sha256=SFQ3eHbhfNxOdxgqDP5wSV_ZlIVqLw7VivycNZ963N0,11690
568
569
  sglang/srt/speculative/eagle_draft_cuda_graph_runner.py,sha256=FP-Dc6K4zaL2KQA8QsNccBM8TXnwREh1I2iPL9KHo8I,9252
569
570
  sglang/srt/speculative/eagle_utils.py,sha256=mv--nBUgAbqP30pU3aGEMwQIHBwwevETUMQSZAelApE,28721
570
- sglang/srt/speculative/eagle_worker.py,sha256=Qvg3B40GKH6vjyrZ9SmiVyW6KbuRJJHYXbnRCvSz3aE,27016
571
+ sglang/srt/speculative/eagle_worker.py,sha256=iQ7E6RLNyxXNs_jqbQ8SpdaXEMIC-ULBslrY9iMTv3g,26865
571
572
  sglang/srt/speculative/spec_info.py,sha256=rhaKG0TzyF9XZYHEWp1jccwTBohSNsUDvxHFtAoOl18,709
572
573
  sglang/test/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
573
574
  sglang/test/few_shot_gsm8k.py,sha256=7VLbWl4nCQs1wjtW4q-46jf9jUCycSs5Iw8v7sUSzBw,4284
574
575
  sglang/test/few_shot_gsm8k_engine.py,sha256=QQbrwOX6-cJDD3RZC_e7zPnt6aSo8JdF8X_lRHSjdDM,3886
575
576
  sglang/test/run_eval.py,sha256=9yO0hXZOcn4abEOs96T-XPguDEklK16Ltco0pGF3zCg,4020
576
- sglang/test/runners.py,sha256=zl_7wdwUbuCSZoA-f94VhnOI36VX_DwCt3cAEzIjm9s,30484
577
+ sglang/test/runners.py,sha256=I2gXi0r663tvGlHLvh-W963Nv2yieA8MWVgwWe9zDbc,30656
577
578
  sglang/test/send_one.py,sha256=6FhbJ3c8RpXxvFTELRXaF97GpT7zXXsCDYZh1DqG22E,2550
578
579
  sglang/test/simple_eval_common.py,sha256=joqrGysuLnJFtzDRIgFkMsRyKUSyjVPFWp0_PHAL3Ik,12378
579
580
  sglang/test/simple_eval_gpqa.py,sha256=8Xt9Bw05c7SZTYrCZgB68OZUqUbLo69ywiyx0bTvSUk,3220
@@ -582,9 +583,9 @@ sglang/test/simple_eval_math.py,sha256=6kGKNwNbLN-Af3Wj8WTimWhH-Xp3enDmSvvSjsgWU
582
583
  sglang/test/simple_eval_mgsm.py,sha256=rd7TSUyxdKbrXaVoewo24V8lCo_6kO8zxPhhmvylpw8,10259
583
584
  sglang/test/simple_eval_mmlu.py,sha256=FkwamjGMjueTixymkedF-YiPloSLiy4ftILFUrKZ9XI,4357
584
585
  sglang/test/test_activation.py,sha256=GeTIJHxlLQfW3kM-X1FGa8Sa3dSGKHEXl5wEy-hfGis,1489
585
- sglang/test/test_block_fp8.py,sha256=6Ux1_E6EWdY184n8tiYOCwbyHVAUEqz9lMhSUDLIOC8,16292
586
+ sglang/test/test_block_fp8.py,sha256=3gOC4Xkxh2LXfT7T2aL8acWzpSdJlRdA3KlO0I1Wtkc,21594
586
587
  sglang/test/test_block_fp8_ep.py,sha256=N1rvqbPErBaFFpeAw8TLYXGNZOoG7cfIBP2p5XbSyMo,10806
587
- sglang/test/test_custom_ops.py,sha256=4X3-odkJntwNtBAuKtCbYHu6peIP6LaI_VwLw7kmDx8,5550
588
+ sglang/test/test_custom_ops.py,sha256=2bSo9P5_rJZYFq8Y8IKRimDfFyZZGJluhL7Ngny0Pf4,5571
588
589
  sglang/test/test_dynamic_grad_mode.py,sha256=L76yUCuk_ymNpXD2CmO8r2GiGjIvD_gtTsuFDs2NolI,1638
589
590
  sglang/test/test_layernorm.py,sha256=2GMWqqNDuGvSMSsEBF5eDCzwVSYA9E6hGhRo6s4ecKg,3764
590
591
  sglang/test/test_programs.py,sha256=VZ3vXtUDBnXz0M7gFdDH8hXg9Wa0j_qI8CVqjEgRN_E,18877
@@ -593,8 +594,8 @@ sglang/test/attention/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3h
593
594
  sglang/test/attention/test_flashattn_backend.py,sha256=_rTG849FwQdVTyGKkqhczaOqngBmRWXFmkl5NnuK1GM,13914
594
595
  sglang/test/attention/test_flashattn_mla_backend.py,sha256=g4O50WblTpM7_Gq2b76k0i25_z01BOUBQ4i6PmyxpO4,10774
595
596
  sglang/test/attention/test_prefix_chunk_info.py,sha256=er0i3KGHMkw-4UZB1GCFd4oYwRcXfU5wpO1ORqpNGGA,7626
596
- sglang-0.4.5.post1.dist-info/licenses/LICENSE,sha256=FJXh51fvTQklojUFY89XVLsjxRcBqOxPs8XNy-2uZ0c,11346
597
- sglang-0.4.5.post1.dist-info/METADATA,sha256=602BdUHYnIS2M5riEnyqkhTpEKDRbH0J0ubdy1FK8fg,25571
598
- sglang-0.4.5.post1.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
599
- sglang-0.4.5.post1.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
600
- sglang-0.4.5.post1.dist-info/RECORD,,
597
+ sglang-0.4.5.post2.dist-info/licenses/LICENSE,sha256=FJXh51fvTQklojUFY89XVLsjxRcBqOxPs8XNy-2uZ0c,11346
598
+ sglang-0.4.5.post2.dist-info/METADATA,sha256=C7YpNRcr_rgjjRxghmVgh_lQdH7BCAgvIZqNYLag3zU,25592
599
+ sglang-0.4.5.post2.dist-info/WHEEL,sha256=pxyMxgL8-pra_rKaQ4drOZAegBVuX-G_4nRHjjgWbmo,91
600
+ sglang-0.4.5.post2.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
601
+ sglang-0.4.5.post2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (78.1.0)
2
+ Generator: setuptools (79.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
sglang/lang/__init__.py DELETED
File without changes