sglang 0.4.4__py3-none-any.whl → 0.4.4.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +2 -0
- sglang/api.py +6 -0
- sglang/bench_one_batch.py +1 -1
- sglang/bench_one_batch_server.py +1 -1
- sglang/bench_serving.py +3 -1
- sglang/check_env.py +3 -4
- sglang/lang/backend/openai.py +18 -5
- sglang/lang/chat_template.py +28 -7
- sglang/lang/interpreter.py +7 -3
- sglang/lang/ir.py +10 -0
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/code_completion_parser.py +174 -0
- sglang/srt/configs/__init__.py +2 -6
- sglang/srt/configs/deepseekvl2.py +667 -0
- sglang/srt/configs/janus_pro.py +3 -4
- sglang/srt/configs/load_config.py +1 -0
- sglang/srt/configs/model_config.py +63 -11
- sglang/srt/configs/utils.py +25 -0
- sglang/srt/connector/__init__.py +51 -0
- sglang/srt/connector/base_connector.py +112 -0
- sglang/srt/connector/redis.py +85 -0
- sglang/srt/connector/s3.py +122 -0
- sglang/srt/connector/serde/__init__.py +31 -0
- sglang/srt/connector/serde/safe_serde.py +29 -0
- sglang/srt/connector/serde/serde.py +43 -0
- sglang/srt/connector/utils.py +35 -0
- sglang/srt/conversation.py +88 -0
- sglang/srt/disaggregation/conn.py +81 -0
- sglang/srt/disaggregation/decode.py +495 -0
- sglang/srt/disaggregation/mini_lb.py +285 -0
- sglang/srt/disaggregation/prefill.py +249 -0
- sglang/srt/disaggregation/utils.py +44 -0
- sglang/srt/distributed/parallel_state.py +10 -3
- sglang/srt/entrypoints/engine.py +55 -5
- sglang/srt/entrypoints/http_server.py +71 -12
- sglang/srt/function_call_parser.py +164 -54
- sglang/srt/hf_transformers_utils.py +28 -3
- sglang/srt/layers/activation.py +4 -2
- sglang/srt/layers/attention/base_attn_backend.py +1 -1
- sglang/srt/layers/attention/flashattention_backend.py +295 -0
- sglang/srt/layers/attention/flashinfer_backend.py +1 -1
- sglang/srt/layers/attention/flashmla_backend.py +284 -0
- sglang/srt/layers/attention/triton_backend.py +171 -38
- sglang/srt/layers/attention/triton_ops/decode_attention.py +94 -31
- sglang/srt/layers/attention/triton_ops/extend_attention.py +14 -5
- sglang/srt/layers/attention/utils.py +53 -0
- sglang/srt/layers/attention/vision.py +9 -28
- sglang/srt/layers/dp_attention.py +62 -23
- sglang/srt/layers/elementwise.py +411 -0
- sglang/srt/layers/layernorm.py +24 -2
- sglang/srt/layers/linear.py +17 -5
- sglang/srt/layers/logits_processor.py +26 -7
- sglang/srt/layers/moe/ep_moe/kernels.py +110 -11
- sglang/srt/layers/moe/ep_moe/layer.py +273 -1
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +416 -0
- sglang/srt/layers/moe/fused_moe_native.py +2 -1
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +23 -32
- sglang/srt/layers/moe/fused_moe_triton/layer.py +1 -2
- sglang/srt/layers/moe/router.py +342 -0
- sglang/srt/layers/moe/topk.py +31 -18
- sglang/srt/layers/parameter.py +1 -1
- sglang/srt/layers/quantization/__init__.py +184 -126
- sglang/srt/layers/quantization/base_config.py +5 -0
- sglang/srt/layers/quantization/blockwise_int8.py +1 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +0 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +652 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +658 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +9 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +56 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +162 -0
- sglang/srt/layers/quantization/compressed_tensors/utils.py +218 -0
- sglang/srt/layers/quantization/fp8.py +76 -34
- sglang/srt/layers/quantization/fp8_kernel.py +24 -8
- sglang/srt/layers/quantization/fp8_utils.py +284 -28
- sglang/srt/layers/quantization/gptq.py +36 -9
- sglang/srt/layers/quantization/kv_cache.py +98 -0
- sglang/srt/layers/quantization/modelopt_quant.py +9 -7
- sglang/srt/layers/quantization/utils.py +153 -0
- sglang/srt/layers/quantization/w8a8_fp8.py +70 -19
- sglang/srt/layers/rotary_embedding.py +66 -87
- sglang/srt/layers/sampler.py +1 -1
- sglang/srt/lora/layers.py +68 -0
- sglang/srt/lora/lora.py +2 -22
- sglang/srt/lora/lora_manager.py +47 -23
- sglang/srt/lora/mem_pool.py +110 -51
- sglang/srt/lora/utils.py +12 -1
- sglang/srt/managers/cache_controller.py +4 -5
- sglang/srt/managers/data_parallel_controller.py +31 -9
- sglang/srt/managers/expert_distribution.py +81 -0
- sglang/srt/managers/io_struct.py +39 -3
- sglang/srt/managers/mm_utils.py +373 -0
- sglang/srt/managers/multimodal_processor.py +68 -0
- sglang/srt/managers/multimodal_processors/base_processor.py +275 -0
- sglang/srt/managers/multimodal_processors/deepseek_vl_v2.py +119 -0
- sglang/srt/managers/multimodal_processors/gemma3.py +83 -0
- sglang/srt/managers/{image_processors → multimodal_processors}/janus_pro.py +20 -15
- sglang/srt/managers/{image_processors → multimodal_processors}/llava.py +10 -15
- sglang/srt/managers/multimodal_processors/minicpm.py +167 -0
- sglang/srt/managers/{image_processors → multimodal_processors}/mlama.py +7 -8
- sglang/srt/managers/{image_processors → multimodal_processors}/qwen_vl.py +28 -22
- sglang/srt/managers/schedule_batch.py +134 -31
- sglang/srt/managers/scheduler.py +325 -38
- sglang/srt/managers/scheduler_output_processor_mixin.py +4 -1
- sglang/srt/managers/session_controller.py +1 -1
- sglang/srt/managers/tokenizer_manager.py +59 -23
- sglang/srt/managers/tp_worker.py +1 -1
- sglang/srt/managers/tp_worker_overlap_thread.py +3 -3
- sglang/srt/managers/utils.py +6 -1
- sglang/srt/mem_cache/hiradix_cache.py +27 -8
- sglang/srt/mem_cache/memory_pool.py +258 -98
- sglang/srt/mem_cache/paged_allocator.py +2 -2
- sglang/srt/mem_cache/radix_cache.py +4 -4
- sglang/srt/model_executor/cuda_graph_runner.py +85 -28
- sglang/srt/model_executor/forward_batch_info.py +81 -15
- sglang/srt/model_executor/model_runner.py +70 -6
- sglang/srt/model_loader/loader.py +160 -2
- sglang/srt/model_loader/weight_utils.py +45 -0
- sglang/srt/models/deepseek_janus_pro.py +29 -86
- sglang/srt/models/deepseek_nextn.py +22 -10
- sglang/srt/models/deepseek_v2.py +326 -192
- sglang/srt/models/deepseek_vl2.py +358 -0
- sglang/srt/models/gemma3_causal.py +684 -0
- sglang/srt/models/gemma3_mm.py +462 -0
- sglang/srt/models/grok.py +374 -119
- sglang/srt/models/llama.py +47 -7
- sglang/srt/models/llama_eagle.py +1 -0
- sglang/srt/models/llama_eagle3.py +196 -0
- sglang/srt/models/llava.py +3 -3
- sglang/srt/models/llavavid.py +3 -3
- sglang/srt/models/minicpmo.py +1995 -0
- sglang/srt/models/minicpmv.py +62 -137
- sglang/srt/models/mllama.py +4 -4
- sglang/srt/models/phi3_small.py +1 -1
- sglang/srt/models/qwen2.py +3 -0
- sglang/srt/models/qwen2_5_vl.py +68 -146
- sglang/srt/models/qwen2_classification.py +75 -0
- sglang/srt/models/qwen2_moe.py +9 -1
- sglang/srt/models/qwen2_vl.py +25 -63
- sglang/srt/openai_api/adapter.py +145 -47
- sglang/srt/openai_api/protocol.py +23 -2
- sglang/srt/sampling/sampling_batch_info.py +1 -1
- sglang/srt/sampling/sampling_params.py +6 -6
- sglang/srt/server_args.py +104 -14
- sglang/srt/speculative/build_eagle_tree.py +7 -347
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +41 -5
- sglang/srt/speculative/eagle_utils.py +208 -252
- sglang/srt/speculative/eagle_worker.py +139 -53
- sglang/srt/speculative/spec_info.py +6 -1
- sglang/srt/torch_memory_saver_adapter.py +22 -0
- sglang/srt/utils.py +182 -21
- sglang/test/__init__.py +0 -0
- sglang/test/attention/__init__.py +0 -0
- sglang/test/attention/test_flashattn_backend.py +312 -0
- sglang/test/runners.py +2 -0
- sglang/test/test_activation.py +2 -1
- sglang/test/test_block_fp8.py +5 -4
- sglang/test/test_block_fp8_ep.py +2 -1
- sglang/test/test_dynamic_grad_mode.py +58 -0
- sglang/test/test_layernorm.py +3 -2
- sglang/test/test_utils.py +55 -4
- sglang/utils.py +31 -0
- sglang/version.py +1 -1
- {sglang-0.4.4.dist-info → sglang-0.4.4.post2.dist-info}/METADATA +12 -8
- {sglang-0.4.4.dist-info → sglang-0.4.4.post2.dist-info}/RECORD +171 -125
- {sglang-0.4.4.dist-info → sglang-0.4.4.post2.dist-info}/WHEEL +1 -1
- sglang/srt/configs/qwen2_5_vl_config.py +0 -1006
- sglang/srt/managers/image_processor.py +0 -55
- sglang/srt/managers/image_processors/base_image_processor.py +0 -219
- sglang/srt/managers/image_processors/minicpmv.py +0 -86
- sglang/srt/managers/multi_modality_padding.py +0 -134
- {sglang-0.4.4.dist-info → sglang-0.4.4.post2.dist-info/licenses}/LICENSE +0 -0
- {sglang-0.4.4.dist-info → sglang-0.4.4.post2.dist-info}/top_level.txt +0 -0
sglang/srt/models/llama.py
CHANGED
@@ -17,7 +17,7 @@
|
|
17
17
|
"""Inference-only LLaMA model compatible with HuggingFace weights."""
|
18
18
|
|
19
19
|
import logging
|
20
|
-
from typing import Any, Dict, Iterable, Optional, Tuple
|
20
|
+
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union
|
21
21
|
|
22
22
|
import torch
|
23
23
|
from torch import nn
|
@@ -129,6 +129,8 @@ class LlamaAttention(nn.Module):
|
|
129
129
|
self.head_dim = getattr(
|
130
130
|
config, "head_dim", self.hidden_size // self.total_num_heads
|
131
131
|
)
|
132
|
+
partial_rotary_factor = getattr(config, "partial_rotary_factor", 1)
|
133
|
+
self.rotary_dim = int(partial_rotary_factor * self.head_dim)
|
132
134
|
self.q_size = self.num_heads * self.head_dim
|
133
135
|
self.kv_size = self.num_kv_heads * self.head_dim
|
134
136
|
self.scaling = self.head_dim**-0.5
|
@@ -154,7 +156,7 @@ class LlamaAttention(nn.Module):
|
|
154
156
|
|
155
157
|
self.rotary_emb = get_rope(
|
156
158
|
self.head_dim,
|
157
|
-
rotary_dim=self.
|
159
|
+
rotary_dim=self.rotary_dim,
|
158
160
|
max_position=max_position_embeddings,
|
159
161
|
base=rope_theta,
|
160
162
|
rope_scaling=rope_scaling,
|
@@ -285,6 +287,7 @@ class LlamaModel(nn.Module):
|
|
285
287
|
)
|
286
288
|
|
287
289
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
290
|
+
self.layers_to_capture = []
|
288
291
|
|
289
292
|
def forward(
|
290
293
|
self,
|
@@ -292,13 +295,16 @@ class LlamaModel(nn.Module):
|
|
292
295
|
positions: torch.Tensor,
|
293
296
|
forward_batch: ForwardBatch,
|
294
297
|
input_embeds: torch.Tensor = None,
|
295
|
-
) -> torch.Tensor:
|
298
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
|
296
299
|
if input_embeds is None:
|
297
300
|
hidden_states = self.embed_tokens(input_ids)
|
298
301
|
else:
|
299
302
|
hidden_states = input_embeds
|
300
303
|
residual = None
|
304
|
+
aux_hidden_states = []
|
301
305
|
for i in range(len(self.layers)):
|
306
|
+
if i in self.layers_to_capture:
|
307
|
+
aux_hidden_states.append(hidden_states + residual)
|
302
308
|
layer = self.layers[i]
|
303
309
|
hidden_states, residual = layer(
|
304
310
|
positions,
|
@@ -307,7 +313,11 @@ class LlamaModel(nn.Module):
|
|
307
313
|
residual,
|
308
314
|
)
|
309
315
|
hidden_states, _ = self.norm(hidden_states, residual)
|
310
|
-
|
316
|
+
|
317
|
+
if len(aux_hidden_states) == 0:
|
318
|
+
return hidden_states
|
319
|
+
|
320
|
+
return hidden_states, aux_hidden_states
|
311
321
|
|
312
322
|
# If this function is called, it should always initialize KV cache scale
|
313
323
|
# factors (or else raise an exception). Thus, handled exceptions should
|
@@ -335,7 +345,6 @@ class LlamaModel(nn.Module):
|
|
335
345
|
|
336
346
|
|
337
347
|
class LlamaForCausalLM(nn.Module):
|
338
|
-
|
339
348
|
# BitandBytes specific attributes
|
340
349
|
default_bitsandbytes_target_modules = [
|
341
350
|
".gate_proj.",
|
@@ -391,6 +400,8 @@ class LlamaForCausalLM(nn.Module):
|
|
391
400
|
(".gate_up_proj", ".up_proj", 1),
|
392
401
|
]
|
393
402
|
|
403
|
+
self.capture_aux_hidden_states = False
|
404
|
+
|
394
405
|
@torch.no_grad()
|
395
406
|
def forward(
|
396
407
|
self,
|
@@ -400,10 +411,19 @@ class LlamaForCausalLM(nn.Module):
|
|
400
411
|
input_embeds: torch.Tensor = None,
|
401
412
|
get_embedding: bool = False,
|
402
413
|
) -> LogitsProcessorOutput:
|
403
|
-
|
414
|
+
aux_hidden_states = None
|
415
|
+
if self.capture_aux_hidden_states:
|
416
|
+
hidden_states, aux_hidden_states = self.model(
|
417
|
+
input_ids, positions, forward_batch, input_embeds
|
418
|
+
)
|
419
|
+
else:
|
420
|
+
hidden_states = self.model(
|
421
|
+
input_ids, positions, forward_batch, input_embeds
|
422
|
+
)
|
423
|
+
|
404
424
|
if not get_embedding:
|
405
425
|
return self.logits_processor(
|
406
|
-
input_ids, hidden_states, self.lm_head, forward_batch
|
426
|
+
input_ids, hidden_states, self.lm_head, forward_batch, aux_hidden_states
|
407
427
|
)
|
408
428
|
else:
|
409
429
|
return self.pooler(hidden_states, forward_batch)
|
@@ -586,9 +606,29 @@ class LlamaForCausalLM(nn.Module):
|
|
586
606
|
torch.cuda.empty_cache()
|
587
607
|
torch.cuda.synchronize()
|
588
608
|
|
609
|
+
def get_embed(self):
|
610
|
+
return self.model.embed_tokens.weight
|
611
|
+
|
612
|
+
def set_embed(self, embed):
|
613
|
+
# NOTE: If draft hidden size != target hidden size, the embed weight cannot be shared for EAGLE3
|
614
|
+
if (
|
615
|
+
hasattr(self.config, "target_hidden_size")
|
616
|
+
and self.config.target_hidden_size != self.config.hidden_size
|
617
|
+
):
|
618
|
+
return
|
619
|
+
del self.model.embed_tokens.weight
|
620
|
+
self.model.embed_tokens.weight = embed
|
621
|
+
torch.cuda.empty_cache()
|
622
|
+
torch.cuda.synchronize()
|
623
|
+
|
589
624
|
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
|
590
625
|
self.model.load_kv_cache_scales(quantization_param_path)
|
591
626
|
|
627
|
+
def set_eagle3_layers_to_capture(self):
|
628
|
+
self.capture_aux_hidden_states = True
|
629
|
+
num_layers = self.config.num_hidden_layers
|
630
|
+
self.model.layers_to_capture = [2, num_layers // 2, num_layers - 3]
|
631
|
+
|
592
632
|
|
593
633
|
class Phi3ForCausalLM(LlamaForCausalLM):
|
594
634
|
pass
|
sglang/srt/models/llama_eagle.py
CHANGED
@@ -134,6 +134,7 @@ class LlamaForCausalLMEagle(LlamaForCausalLM):
|
|
134
134
|
)
|
135
135
|
|
136
136
|
self.logits_processor = LogitsProcessor(config)
|
137
|
+
self.capture_aux_hidden_states = False
|
137
138
|
|
138
139
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
139
140
|
for name, loaded_weight in weights:
|
@@ -0,0 +1,196 @@
|
|
1
|
+
"""
|
2
|
+
Copyright 2023-2024 SGLang Team
|
3
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
you may not use this file except in compliance with the License.
|
5
|
+
You may obtain a copy of the License at
|
6
|
+
|
7
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
Unless required by applicable law or agreed to in writing, software
|
10
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
See the License for the specific language governing permissions and
|
13
|
+
limitations under the License.
|
14
|
+
"""
|
15
|
+
|
16
|
+
from sglang.srt.utils import add_prefix
|
17
|
+
|
18
|
+
# Adapted from
|
19
|
+
# https://github.com/SafeAILab/EAGLE/blob/main/eagle/model/cnets.py
|
20
|
+
"""Inference-only LLaMA-EAGLE model compatible with HuggingFace weights."""
|
21
|
+
|
22
|
+
from typing import Iterable, Optional, Tuple
|
23
|
+
|
24
|
+
import torch
|
25
|
+
from torch import nn
|
26
|
+
from transformers import LlamaConfig
|
27
|
+
|
28
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
29
|
+
from sglang.srt.layers.linear import QKVParallelLinear, RowParallelLinear
|
30
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
31
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
32
|
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
33
|
+
ParallelLMHead,
|
34
|
+
VocabParallelEmbedding,
|
35
|
+
)
|
36
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
37
|
+
from sglang.srt.models.llama import LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM
|
38
|
+
|
39
|
+
|
40
|
+
class LlamaDecoderLayer(LlamaDecoderLayer):
|
41
|
+
def __init__(
|
42
|
+
self,
|
43
|
+
config: LlamaConfig,
|
44
|
+
layer_id: int = 0,
|
45
|
+
quant_config: Optional[QuantizationConfig] = None,
|
46
|
+
prefix: str = "",
|
47
|
+
) -> None:
|
48
|
+
super().__init__(config, layer_id, quant_config, prefix)
|
49
|
+
|
50
|
+
# override qkv
|
51
|
+
self.self_attn.qkv_proj = QKVParallelLinear(
|
52
|
+
2 * self.hidden_size,
|
53
|
+
self.self_attn.head_dim,
|
54
|
+
self.self_attn.total_num_heads,
|
55
|
+
self.self_attn.total_num_kv_heads,
|
56
|
+
bias=False,
|
57
|
+
quant_config=quant_config,
|
58
|
+
prefix=add_prefix("qkv_proj", prefix),
|
59
|
+
)
|
60
|
+
|
61
|
+
self.hidden_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
62
|
+
|
63
|
+
def forward(
|
64
|
+
self,
|
65
|
+
positions: torch.Tensor,
|
66
|
+
embeds: torch.Tensor,
|
67
|
+
hidden_states: torch.Tensor,
|
68
|
+
forward_batch: ForwardBatch,
|
69
|
+
residual: Optional[torch.Tensor],
|
70
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
71
|
+
|
72
|
+
residual = hidden_states
|
73
|
+
embeds = self.input_layernorm(embeds)
|
74
|
+
hidden_states = self.hidden_norm(hidden_states)
|
75
|
+
|
76
|
+
hidden_states = torch.cat([embeds, hidden_states], dim=-1)
|
77
|
+
# Self Attention
|
78
|
+
hidden_states = self.self_attn(
|
79
|
+
positions=positions,
|
80
|
+
hidden_states=hidden_states,
|
81
|
+
forward_batch=forward_batch,
|
82
|
+
)
|
83
|
+
|
84
|
+
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
85
|
+
|
86
|
+
# Fully Connected
|
87
|
+
hidden_states = self.mlp(hidden_states)
|
88
|
+
|
89
|
+
return hidden_states, residual
|
90
|
+
|
91
|
+
|
92
|
+
class LlamaModel(nn.Module):
|
93
|
+
def __init__(
|
94
|
+
self,
|
95
|
+
config: LlamaConfig,
|
96
|
+
quant_config: Optional[QuantizationConfig] = None,
|
97
|
+
prefix: str = "",
|
98
|
+
) -> None:
|
99
|
+
super().__init__()
|
100
|
+
self.config = config
|
101
|
+
self.vocab_size = config.vocab_size
|
102
|
+
self.embed_tokens = VocabParallelEmbedding(
|
103
|
+
config.vocab_size,
|
104
|
+
config.hidden_size,
|
105
|
+
prefix=add_prefix("embed_tokens", prefix),
|
106
|
+
)
|
107
|
+
self.midlayer = LlamaDecoderLayer(config, 0, quant_config, prefix)
|
108
|
+
if hasattr(config, "target_hidden_size"):
|
109
|
+
self.fc = torch.nn.Linear(config.target_hidden_size * 3, config.hidden_size)
|
110
|
+
else:
|
111
|
+
self.fc = torch.nn.Linear(config.hidden_size * 3, config.hidden_size)
|
112
|
+
|
113
|
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
114
|
+
|
115
|
+
def forward(
|
116
|
+
self,
|
117
|
+
input_ids: torch.Tensor,
|
118
|
+
positions: torch.Tensor,
|
119
|
+
forward_batch: ForwardBatch,
|
120
|
+
input_embeds: torch.Tensor = None,
|
121
|
+
) -> torch.Tensor:
|
122
|
+
if input_embeds is None:
|
123
|
+
embeds = self.embed_tokens(input_ids)
|
124
|
+
else:
|
125
|
+
embeds = input_embeds
|
126
|
+
|
127
|
+
hidden_states = forward_batch.spec_info.hidden_states
|
128
|
+
if hidden_states.shape[-1] != embeds.shape[-1]:
|
129
|
+
hidden_states = self.fc(hidden_states)
|
130
|
+
|
131
|
+
residual = None
|
132
|
+
hidden_states, residual = self.midlayer(
|
133
|
+
positions,
|
134
|
+
embeds,
|
135
|
+
hidden_states,
|
136
|
+
forward_batch,
|
137
|
+
residual,
|
138
|
+
)
|
139
|
+
|
140
|
+
hidden_states_to_logits, hidden_states_to_aux = self.norm(
|
141
|
+
hidden_states, residual
|
142
|
+
)
|
143
|
+
|
144
|
+
# For draft decode, we capture the hidden state before norm
|
145
|
+
return hidden_states_to_logits, [hidden_states_to_aux]
|
146
|
+
|
147
|
+
|
148
|
+
class LlamaForCausalLMEagle3(LlamaForCausalLM):
|
149
|
+
def __init__(
|
150
|
+
self,
|
151
|
+
config: LlamaConfig,
|
152
|
+
quant_config: Optional[QuantizationConfig] = None,
|
153
|
+
prefix: str = "",
|
154
|
+
) -> None:
|
155
|
+
nn.Module.__init__(self)
|
156
|
+
self.config = config
|
157
|
+
self.quant_config = quant_config
|
158
|
+
|
159
|
+
if self.config.num_hidden_layers != 1:
|
160
|
+
raise ValueError("EAGLE3 currently only supports 1 layer")
|
161
|
+
|
162
|
+
self.model = LlamaModel(
|
163
|
+
config, quant_config=quant_config, prefix=add_prefix("model", prefix)
|
164
|
+
)
|
165
|
+
# Llama 3.2 1B Instruct set tie_word_embeddings to True
|
166
|
+
# Llama 3.1 8B Instruct set tie_word_embeddings to False
|
167
|
+
if self.config.tie_word_embeddings:
|
168
|
+
self.lm_head = self.model.embed_tokens
|
169
|
+
else:
|
170
|
+
self.lm_head = ParallelLMHead(
|
171
|
+
config.draft_vocab_size,
|
172
|
+
config.hidden_size,
|
173
|
+
quant_config=quant_config,
|
174
|
+
prefix=add_prefix("lm_head", prefix),
|
175
|
+
)
|
176
|
+
|
177
|
+
self.logits_processor = LogitsProcessor(config)
|
178
|
+
self.capture_aux_hidden_states = True
|
179
|
+
|
180
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
181
|
+
for name, loaded_weight in weights:
|
182
|
+
if "d2t" in name:
|
183
|
+
# d2t stores diffs between draft id and target id
|
184
|
+
self.hot_token_id = loaded_weight + torch.arange(loaded_weight.shape[0])
|
185
|
+
|
186
|
+
if "d2t" not in name and "t2d" not in name and "lm_head" not in name:
|
187
|
+
new_name = f"model.{name}"
|
188
|
+
super().load_weights([(new_name, loaded_weight)])
|
189
|
+
elif "lm_head" in name:
|
190
|
+
super().load_weights([(name, loaded_weight)])
|
191
|
+
|
192
|
+
def get_hot_token_id(self):
|
193
|
+
return self.hot_token_id
|
194
|
+
|
195
|
+
|
196
|
+
EntryClass = [LlamaForCausalLMEagle3]
|
sglang/srt/models/llava.py
CHANGED
@@ -31,7 +31,7 @@ from transformers import (
|
|
31
31
|
from transformers.models.llava.modeling_llava import LlavaMultiModalProjector
|
32
32
|
|
33
33
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
34
|
-
from sglang.srt.managers.schedule_batch import
|
34
|
+
from sglang.srt.managers.schedule_batch import MultimodalInputs
|
35
35
|
from sglang.srt.mm_utils import (
|
36
36
|
get_anyres_image_grid_shape,
|
37
37
|
unpad_image,
|
@@ -46,7 +46,7 @@ from sglang.srt.utils import add_prefix
|
|
46
46
|
|
47
47
|
|
48
48
|
class LlavaBaseForCausalLM(nn.Module):
|
49
|
-
def pad_input_ids(self, input_ids: List[int], image_inputs:
|
49
|
+
def pad_input_ids(self, input_ids: List[int], image_inputs: MultimodalInputs):
|
50
50
|
image_sizes, pad_values = image_inputs.image_sizes, image_inputs.pad_values
|
51
51
|
|
52
52
|
# hardcode for spatial_unpad + anyres
|
@@ -134,7 +134,7 @@ class LlavaBaseForCausalLM(nn.Module):
|
|
134
134
|
positions: torch.Tensor,
|
135
135
|
forward_batch: ForwardBatch,
|
136
136
|
) -> torch.Tensor:
|
137
|
-
image_inputs = forward_batch.
|
137
|
+
image_inputs = forward_batch.mm_inputs
|
138
138
|
|
139
139
|
if forward_batch.forward_mode.is_extend():
|
140
140
|
# Clamp input ids. This is because the input_ids for the image tokens are
|
sglang/srt/models/llavavid.py
CHANGED
@@ -22,7 +22,7 @@ from transformers import CLIPVisionModel, LlavaConfig
|
|
22
22
|
from transformers.models.llava.modeling_llava import LlavaMultiModalProjector
|
23
23
|
|
24
24
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
25
|
-
from sglang.srt.managers.schedule_batch import
|
25
|
+
from sglang.srt.managers.schedule_batch import MultimodalInputs
|
26
26
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
27
27
|
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
28
28
|
from sglang.srt.models.llama import LlamaForCausalLM
|
@@ -57,7 +57,7 @@ class LlavaVidForCausalLM(nn.Module):
|
|
57
57
|
torch.empty(config.text_config.hidden_size, dtype=torch.float16)
|
58
58
|
)
|
59
59
|
|
60
|
-
def pad_input_ids(self, input_ids: List[int], image_inputs:
|
60
|
+
def pad_input_ids(self, input_ids: List[int], image_inputs: MultimodalInputs):
|
61
61
|
pad_values = image_inputs.pad_values
|
62
62
|
new_image_feature_len = self.image_feature_len
|
63
63
|
|
@@ -112,7 +112,7 @@ class LlavaVidForCausalLM(nn.Module):
|
|
112
112
|
positions: torch.Tensor,
|
113
113
|
forward_batch: ForwardBatch,
|
114
114
|
) -> torch.Tensor:
|
115
|
-
image_inputs = forward_batch.
|
115
|
+
image_inputs = forward_batch.mm_inputs
|
116
116
|
if forward_batch.forward_mode.is_extend():
|
117
117
|
bs = forward_batch.batch_size
|
118
118
|
|