sglang 0.4.4.post4__py3-none-any.whl → 0.4.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/lang/chat_template.py +24 -0
- sglang/srt/configs/model_config.py +4 -0
- sglang/srt/conversation.py +29 -4
- sglang/srt/layers/attention/flashattention_backend.py +286 -9
- sglang/srt/layers/moe/fused_moe_native.py +5 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=144,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=16,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=16,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=20,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=24,N=1024,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +13 -3
- sglang/srt/layers/moe/fused_moe_triton/layer.py +7 -0
- sglang/srt/layers/quantization/__init__.py +1 -0
- sglang/srt/layers/quantization/blockwise_int8.py +2 -0
- sglang/srt/layers/quantization/fp8.py +3 -1
- sglang/srt/layers/quantization/moe_wna16.py +2 -0
- sglang/srt/layers/quantization/w8a8_int8.py +2 -0
- sglang/srt/layers/radix_attention.py +2 -0
- sglang/srt/layers/rotary_embedding.py +63 -0
- sglang/srt/managers/multimodal_processors/mllama4.py +161 -0
- sglang/srt/model_executor/model_runner.py +1 -0
- sglang/srt/models/llama.py +12 -4
- sglang/srt/models/llama4.py +420 -0
- sglang/srt/models/mllama4.py +154 -0
- sglang/version.py +1 -1
- {sglang-0.4.4.post4.dist-info → sglang-0.4.5.dist-info}/METADATA +1 -1
- {sglang-0.4.4.post4.dist-info → sglang-0.4.5.dist-info}/RECORD +32 -22
- {sglang-0.4.4.post4.dist-info → sglang-0.4.5.dist-info}/WHEEL +0 -0
- {sglang-0.4.4.post4.dist-info → sglang-0.4.5.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.4.post4.dist-info → sglang-0.4.5.dist-info}/top_level.txt +0 -0
| @@ -0,0 +1,161 @@ | |
| 1 | 
            +
            from typing import List, Mapping, Optional, Tuple, Union
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            from PIL import Image
         | 
| 5 | 
            +
            from transformers import Llama4Processor
         | 
| 6 | 
            +
            from transformers.image_utils import SizeDict
         | 
| 7 | 
            +
            from transformers.models.llama4.image_processing_llama4 import (
         | 
| 8 | 
            +
                find_supported_resolutions,
         | 
| 9 | 
            +
                get_best_fit,
         | 
| 10 | 
            +
            )
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from sglang.srt.managers.multimodal_processors.base_processor import (
         | 
| 13 | 
            +
                BaseMultimodalProcessor,
         | 
| 14 | 
            +
                MultimodalSpecialTokens,
         | 
| 15 | 
            +
            )
         | 
| 16 | 
            +
            from sglang.srt.managers.schedule_batch import Modality, MultimodalDataItem
         | 
| 17 | 
            +
            from sglang.srt.models.mllama4 import Llama4ForConditionalGeneration
         | 
| 18 | 
            +
            from sglang.srt.utils import load_image
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            class Mllama4ImageProcessor(BaseMultimodalProcessor):
         | 
| 22 | 
            +
                models = [Llama4ForConditionalGeneration]
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                def __init__(self, hf_config, server_args, _processor):
         | 
| 25 | 
            +
                    super().__init__(hf_config, server_args, _processor)
         | 
| 26 | 
            +
                    self.vision_config = hf_config.vision_config
         | 
| 27 | 
            +
                    self.text_config = hf_config.text_config
         | 
| 28 | 
            +
                    self.multimodal_tokens = MultimodalSpecialTokens(
         | 
| 29 | 
            +
                        image_token=_processor.image_token
         | 
| 30 | 
            +
                    )
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                async def process_mm_data_async(
         | 
| 33 | 
            +
                    self,
         | 
| 34 | 
            +
                    image_data: List[Union[str, bytes]],
         | 
| 35 | 
            +
                    input_text,
         | 
| 36 | 
            +
                    max_req_input_len=None,
         | 
| 37 | 
            +
                    *args,
         | 
| 38 | 
            +
                    **kwargs,
         | 
| 39 | 
            +
                ):
         | 
| 40 | 
            +
                    if not image_data:
         | 
| 41 | 
            +
                        return None
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                    if isinstance(input_text, list):
         | 
| 44 | 
            +
                        assert len(input_text) and isinstance(input_text[0], int)
         | 
| 45 | 
            +
                        input_text = self._processor.tokenizer.decode(input_text)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    # Process images and text using the base processor's load_mm_data method
         | 
| 48 | 
            +
                    processed_data = self.load_mm_data(
         | 
| 49 | 
            +
                        prompt=input_text,
         | 
| 50 | 
            +
                        multimodal_tokens=self.multimodal_tokens,
         | 
| 51 | 
            +
                        max_req_input_len=max_req_input_len or 4096,
         | 
| 52 | 
            +
                        image_data=image_data,
         | 
| 53 | 
            +
                        return_text=True,
         | 
| 54 | 
            +
                    )
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                    # Process the images using the processor
         | 
| 57 | 
            +
                    processor = Llama4Processor.from_pretrained(
         | 
| 58 | 
            +
                        self.server_args.model_path, **kwargs
         | 
| 59 | 
            +
                    )
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    # Process the prompt and images
         | 
| 62 | 
            +
                    image_inputs = processor(
         | 
| 63 | 
            +
                        text=processed_data.input_text,
         | 
| 64 | 
            +
                        images=processed_data.images,
         | 
| 65 | 
            +
                        return_tensors="pt",
         | 
| 66 | 
            +
                    )
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    # Handle image resolutions and aspect ratios
         | 
| 69 | 
            +
                    if "pixel_values" in image_inputs:
         | 
| 70 | 
            +
                        image_processor = processor.image_processor
         | 
| 71 | 
            +
                        tokenizer = self._processor.tokenizer
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                        # Calculate tile size and find supported resolutions
         | 
| 74 | 
            +
                        tile_size = self.vision_config.image_size
         | 
| 75 | 
            +
                        max_num_tiles = getattr(self.vision_config, "max_patches", 1)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                        possible_resolutions = find_supported_resolutions(
         | 
| 78 | 
            +
                            max_num_chunks=max_num_tiles,
         | 
| 79 | 
            +
                            patch_size=SizeDict(height=tile_size, width=tile_size),
         | 
| 80 | 
            +
                        )
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                        # Find best fit for each image
         | 
| 83 | 
            +
                        best_fit_sizes = [
         | 
| 84 | 
            +
                            get_best_fit(
         | 
| 85 | 
            +
                                (image.size[1], image.size[0]),  # (height, width)
         | 
| 86 | 
            +
                                torch.tensor(possible_resolutions),
         | 
| 87 | 
            +
                                resize_to_max_canvas=image_processor.resize_to_max_canvas,
         | 
| 88 | 
            +
                            )
         | 
| 89 | 
            +
                            for image in processed_data.images
         | 
| 90 | 
            +
                        ]
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                        # Calculate aspect ratios and patches per image
         | 
| 93 | 
            +
                        aspect_ratios = [
         | 
| 94 | 
            +
                            (image_size[0] // tile_size, image_size[1] // tile_size)
         | 
| 95 | 
            +
                            for image_size in best_fit_sizes
         | 
| 96 | 
            +
                        ]
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                        patches_per_image = [
         | 
| 99 | 
            +
                            1 if r_h * r_w == 1 else 1 + r_h * r_w for (r_h, r_w) in aspect_ratios
         | 
| 100 | 
            +
                        ]
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                        # Add to image_inputs
         | 
| 103 | 
            +
                        image_inputs["aspect_ratios"] = aspect_ratios
         | 
| 104 | 
            +
                        image_inputs["patches_per_image"] = torch.tensor(patches_per_image)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                        # Process embed_is_patch
         | 
| 107 | 
            +
                        vocab = tokenizer.get_vocab()
         | 
| 108 | 
            +
                        patch_id = vocab.get(processor.img_patch_token, -1)
         | 
| 109 | 
            +
                        image_end_id = vocab.get(processor.end_of_img_token, -1)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                        if patch_id != -1 and image_end_id != -1:
         | 
| 112 | 
            +
                            input_ids = image_inputs["input_ids"].view(-1)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                            # Remove BOS token if present
         | 
| 115 | 
            +
                            if input_ids.size(0) > 0 and input_ids[0] == tokenizer.bos_token_id:
         | 
| 116 | 
            +
                                input_ids = input_ids[1:]
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                            # Find image end indices and split input_ids
         | 
| 119 | 
            +
                            image_end_indices = (input_ids == image_end_id).nonzero().view(-1)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                            if image_end_indices.size(0) > 0:
         | 
| 122 | 
            +
                                # Split at image boundaries
         | 
| 123 | 
            +
                                split_indices = (image_end_indices + 1)[:-1]
         | 
| 124 | 
            +
                                split_input_ids = torch.tensor_split(input_ids, split_indices)
         | 
| 125 | 
            +
                                split_input_ids = [x for x in split_input_ids if x.numel() > 0]
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                                # Create embed_is_patch for each image
         | 
| 128 | 
            +
                                embed_is_patch = []
         | 
| 129 | 
            +
                                for per_image_input_ids in split_input_ids:
         | 
| 130 | 
            +
                                    embed_is_patch.append(per_image_input_ids == patch_id)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                                image_inputs["embed_is_patch"] = embed_is_patch
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    # Convert to the format expected by SGLang
         | 
| 135 | 
            +
                    image_inputs["input_ids"] = image_inputs["input_ids"].tolist()[0]
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    # Add metadata for image processing
         | 
| 138 | 
            +
                    image_inputs["mm_items"] = [
         | 
| 139 | 
            +
                        MultimodalDataItem(
         | 
| 140 | 
            +
                            pixel_values=image_inputs["pixel_values"],
         | 
| 141 | 
            +
                            modality=Modality.IMAGE,
         | 
| 142 | 
            +
                            # Add additional metadata needed for Llama4 vision processing
         | 
| 143 | 
            +
                            embed_is_patch=image_inputs.get("embed_is_patch", None),
         | 
| 144 | 
            +
                            aspect_ratios=image_inputs.get("aspect_ratios", None),
         | 
| 145 | 
            +
                            patches_per_image=image_inputs.get("patches_per_image", None),
         | 
| 146 | 
            +
                        )
         | 
| 147 | 
            +
                    ]
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    return image_inputs
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                def get_patch_per_chunk(self):
         | 
| 152 | 
            +
                    """Calculate patches per chunk based on vision config"""
         | 
| 153 | 
            +
                    image_size = self.vision_config.image_size
         | 
| 154 | 
            +
                    patch_size = self.vision_config.patch_size
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    assert (
         | 
| 157 | 
            +
                        image_size % patch_size == 0
         | 
| 158 | 
            +
                    ), f"chunk size {image_size} should be multiple of patch_size {patch_size}"
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    ds_ratio = int(round(1.0 / (self.vision_config.pixel_shuffle_ratio**2)))
         | 
| 161 | 
            +
                    return (image_size // patch_size) ** 2 // ds_ratio
         | 
| @@ -128,6 +128,7 @@ class ModelRunner: | |
| 128 128 | 
             
                        self.model_config.attention_arch == AttentionArch.MLA
         | 
| 129 129 | 
             
                        and not server_args.disable_mla
         | 
| 130 130 | 
             
                    )
         | 
| 131 | 
            +
                    self.attention_chunk_size = model_config.attention_chunk_size
         | 
| 131 132 |  | 
| 132 133 | 
             
                    # Model-specific adjustment
         | 
| 133 134 | 
             
                    self.model_specific_adjustment()
         | 
    
        sglang/srt/models/llama.py
    CHANGED
    
    | @@ -63,6 +63,7 @@ class LlamaMLP(nn.Module): | |
| 63 63 | 
             
                    hidden_act: str,
         | 
| 64 64 | 
             
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 65 65 | 
             
                    prefix: str = "",
         | 
| 66 | 
            +
                    reduce_results: bool = True,
         | 
| 66 67 | 
             
                ) -> None:
         | 
| 67 68 | 
             
                    super().__init__()
         | 
| 68 69 | 
             
                    self.gate_up_proj = MergedColumnParallelLinear(
         | 
| @@ -78,6 +79,7 @@ class LlamaMLP(nn.Module): | |
| 78 79 | 
             
                        bias=False,
         | 
| 79 80 | 
             
                        quant_config=quant_config,
         | 
| 80 81 | 
             
                        prefix=add_prefix("down_proj", prefix),
         | 
| 82 | 
            +
                        reduce_results=reduce_results,
         | 
| 81 83 | 
             
                    )
         | 
| 82 84 | 
             
                    if hidden_act != "silu":
         | 
| 83 85 | 
             
                        raise ValueError(
         | 
| @@ -281,7 +283,7 @@ class LlamaModel(nn.Module): | |
| 281 283 | 
             
                    self.layers = make_layers(
         | 
| 282 284 | 
             
                        config.num_hidden_layers,
         | 
| 283 285 | 
             
                        lambda idx, prefix: LlamaDecoderLayer(
         | 
| 284 | 
            -
                            config=config,  | 
| 286 | 
            +
                            config=config, layer_id=idx, quant_config=quant_config, prefix=prefix
         | 
| 285 287 | 
             
                        ),
         | 
| 286 288 | 
             
                        prefix="model.layers",
         | 
| 287 289 | 
             
                    )
         | 
| @@ -375,9 +377,7 @@ class LlamaForCausalLM(nn.Module): | |
| 375 377 | 
             
                    super().__init__()
         | 
| 376 378 | 
             
                    self.config = config
         | 
| 377 379 | 
             
                    self.quant_config = quant_config
         | 
| 378 | 
            -
                    self.model =  | 
| 379 | 
            -
                        config, quant_config=quant_config, prefix=add_prefix("model", prefix)
         | 
| 380 | 
            -
                    )
         | 
| 380 | 
            +
                    self.model = self._init_model(config, quant_config, add_prefix("model", prefix))
         | 
| 381 381 | 
             
                    # Llama 3.2 1B Instruct set tie_word_embeddings to True
         | 
| 382 382 | 
             
                    # Llama 3.1 8B Instruct set tie_word_embeddings to False
         | 
| 383 383 | 
             
                    if self.config.tie_word_embeddings:
         | 
| @@ -402,6 +402,14 @@ class LlamaForCausalLM(nn.Module): | |
| 402 402 |  | 
| 403 403 | 
             
                    self.capture_aux_hidden_states = False
         | 
| 404 404 |  | 
| 405 | 
            +
                def _init_model(
         | 
| 406 | 
            +
                    self,
         | 
| 407 | 
            +
                    config: LlamaConfig,
         | 
| 408 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 409 | 
            +
                    prefix: str = "",
         | 
| 410 | 
            +
                ):
         | 
| 411 | 
            +
                    return LlamaModel(config, quant_config=quant_config, prefix=prefix)
         | 
| 412 | 
            +
             | 
| 405 413 | 
             
                @torch.no_grad()
         | 
| 406 414 | 
             
                def forward(
         | 
| 407 415 | 
             
                    self,
         | 
| @@ -0,0 +1,420 @@ | |
| 1 | 
            +
            # Copyright 2023-2024 SGLang Team
         | 
| 2 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 3 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 4 | 
            +
            # You may obtain a copy of the License at
         | 
| 5 | 
            +
            #
         | 
| 6 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 9 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 10 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 11 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 12 | 
            +
            # limitations under the License.
         | 
| 13 | 
            +
            # ==============================================================================
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            # Adapted from
         | 
| 16 | 
            +
            # https://github.com/vllm-project/vllm/blob/v0.8.3/vllm/model_executor/models/llama4.py
         | 
| 17 | 
            +
            """Inference-only LLaMA model compatible with HuggingFace weights."""
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import logging
         | 
| 20 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            from torch import nn
         | 
| 24 | 
            +
            from transformers import Llama4TextConfig
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            from sglang.srt.distributed import (
         | 
| 27 | 
            +
                get_tensor_model_parallel_world_size,
         | 
| 28 | 
            +
                tensor_model_parallel_all_reduce,
         | 
| 29 | 
            +
            )
         | 
| 30 | 
            +
            from sglang.srt.layers.layernorm import RMSNorm
         | 
| 31 | 
            +
            from sglang.srt.layers.linear import (
         | 
| 32 | 
            +
                QKVParallelLinear,
         | 
| 33 | 
            +
                ReplicatedLinear,
         | 
| 34 | 
            +
                RowParallelLinear,
         | 
| 35 | 
            +
            )
         | 
| 36 | 
            +
            from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
         | 
| 37 | 
            +
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         | 
| 38 | 
            +
            from sglang.srt.layers.radix_attention import RadixAttention
         | 
| 39 | 
            +
            from sglang.srt.layers.rotary_embedding import get_rope
         | 
| 40 | 
            +
            from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
         | 
| 41 | 
            +
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         | 
| 42 | 
            +
            from sglang.srt.models.llama import LlamaForCausalLM, LlamaMLP
         | 
| 43 | 
            +
            from sglang.srt.utils import add_prefix, get_compiler_backend, make_layers
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            class Llama4MoE(nn.Module):
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                @torch.compile(dynamic=True, backend=get_compiler_backend())
         | 
| 51 | 
            +
                @staticmethod
         | 
| 52 | 
            +
                def custom_routing_function(
         | 
| 53 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 54 | 
            +
                    gating_output: torch.Tensor,
         | 
| 55 | 
            +
                    topk: int,
         | 
| 56 | 
            +
                    renormalize: bool,
         | 
| 57 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 58 | 
            +
                    router_scores_aK, router_indices_aK = torch.topk(gating_output, topk, dim=-1)
         | 
| 59 | 
            +
                    router_scores_aK = torch.sigmoid(router_scores_aK.float()).to(
         | 
| 60 | 
            +
                        hidden_states.dtype
         | 
| 61 | 
            +
                    )
         | 
| 62 | 
            +
                    return (
         | 
| 63 | 
            +
                        router_scores_aK.view(-1).reshape(router_scores_aK.shape),
         | 
| 64 | 
            +
                        router_indices_aK.to(torch.int32),
         | 
| 65 | 
            +
                    )
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                def __init__(
         | 
| 68 | 
            +
                    self,
         | 
| 69 | 
            +
                    config: Llama4TextConfig,
         | 
| 70 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 71 | 
            +
                    prefix: str = "",
         | 
| 72 | 
            +
                ):
         | 
| 73 | 
            +
                    super().__init__()
         | 
| 74 | 
            +
                    self.tp_size = get_tensor_model_parallel_world_size()
         | 
| 75 | 
            +
                    self.top_k = config.num_experts_per_tok
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                    intermediate_size_moe = config.intermediate_size
         | 
| 78 | 
            +
                    self.router = ReplicatedLinear(
         | 
| 79 | 
            +
                        config.hidden_size,
         | 
| 80 | 
            +
                        config.num_local_experts,
         | 
| 81 | 
            +
                        bias=False,
         | 
| 82 | 
            +
                        quant_config=None,
         | 
| 83 | 
            +
                        prefix=add_prefix("router", prefix),
         | 
| 84 | 
            +
                    )
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    self.experts = FusedMoE(
         | 
| 87 | 
            +
                        num_experts=config.num_local_experts,
         | 
| 88 | 
            +
                        top_k=config.num_experts_per_tok,
         | 
| 89 | 
            +
                        hidden_size=config.hidden_size,
         | 
| 90 | 
            +
                        custom_routing_function=Llama4MoE.custom_routing_function,
         | 
| 91 | 
            +
                        intermediate_size=intermediate_size_moe,
         | 
| 92 | 
            +
                        reduce_results=False,
         | 
| 93 | 
            +
                        renormalize=False,
         | 
| 94 | 
            +
                        quant_config=quant_config,
         | 
| 95 | 
            +
                        apply_router_weight_on_input=True,
         | 
| 96 | 
            +
                        prefix=add_prefix("experts", prefix),
         | 
| 97 | 
            +
                    )
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    self.shared_expert = LlamaMLP(
         | 
| 100 | 
            +
                        hidden_size=config.hidden_size,
         | 
| 101 | 
            +
                        intermediate_size=intermediate_size_moe,
         | 
| 102 | 
            +
                        hidden_act="silu",
         | 
| 103 | 
            +
                        quant_config=quant_config,
         | 
| 104 | 
            +
                        prefix=add_prefix("shared_expert", prefix),
         | 
| 105 | 
            +
                        reduce_results=False,  # We need to do scatter before reduce
         | 
| 106 | 
            +
                    )
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                def forward(self, hidden_states):
         | 
| 109 | 
            +
                    # router_scores: [num_tokens, num_experts]
         | 
| 110 | 
            +
                    router_logits, _ = self.router(hidden_states)
         | 
| 111 | 
            +
                    shared_out = self.shared_expert(hidden_states)
         | 
| 112 | 
            +
                    routed_out = self.experts(
         | 
| 113 | 
            +
                        hidden_states=hidden_states,
         | 
| 114 | 
            +
                        router_logits=router_logits,
         | 
| 115 | 
            +
                    )
         | 
| 116 | 
            +
                    out_aD = routed_out + shared_out
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    if self.tp_size > 1:
         | 
| 119 | 
            +
                        out_aD = tensor_model_parallel_all_reduce(out_aD)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    return out_aD
         | 
| 122 | 
            +
             | 
| 123 | 
            +
             | 
| 124 | 
            +
            class Llama4Attention(nn.Module):
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def __init__(
         | 
| 127 | 
            +
                    self,
         | 
| 128 | 
            +
                    config: Llama4TextConfig,
         | 
| 129 | 
            +
                    layer_id: int,
         | 
| 130 | 
            +
                    hidden_size: int,
         | 
| 131 | 
            +
                    num_heads: int,
         | 
| 132 | 
            +
                    num_kv_heads: int,
         | 
| 133 | 
            +
                    rope_theta: float = 10000,
         | 
| 134 | 
            +
                    rope_scaling: Optional[Dict[str, Any]] = None,
         | 
| 135 | 
            +
                    max_position_embeddings: int = 8192,
         | 
| 136 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 137 | 
            +
                    bias: bool = False,
         | 
| 138 | 
            +
                    bias_o_proj: bool = False,
         | 
| 139 | 
            +
                    prefix: str = "",
         | 
| 140 | 
            +
                ) -> None:
         | 
| 141 | 
            +
                    super().__init__()
         | 
| 142 | 
            +
                    self.layer_id = layer_id
         | 
| 143 | 
            +
                    self.hidden_size = hidden_size
         | 
| 144 | 
            +
                    self.use_rope = int((layer_id + 1) % 4 != 0)
         | 
| 145 | 
            +
                    self.use_qk_norm = config.use_qk_norm and self.use_rope
         | 
| 146 | 
            +
                    tp_size = get_tensor_model_parallel_world_size()
         | 
| 147 | 
            +
                    self.total_num_heads = num_heads
         | 
| 148 | 
            +
                    assert self.total_num_heads % tp_size == 0
         | 
| 149 | 
            +
                    self.num_heads = self.total_num_heads // tp_size
         | 
| 150 | 
            +
                    self.total_num_kv_heads = num_kv_heads
         | 
| 151 | 
            +
                    if self.total_num_kv_heads >= tp_size:
         | 
| 152 | 
            +
                        # Number of KV heads is greater than TP size, so we partition
         | 
| 153 | 
            +
                        # the KV heads across multiple tensor parallel GPUs.
         | 
| 154 | 
            +
                        assert self.total_num_kv_heads % tp_size == 0
         | 
| 155 | 
            +
                    else:
         | 
| 156 | 
            +
                        # Number of KV heads is less than TP size, so we replicate
         | 
| 157 | 
            +
                        # the KV heads across multiple tensor parallel GPUs.
         | 
| 158 | 
            +
                        assert tp_size % self.total_num_kv_heads == 0
         | 
| 159 | 
            +
                    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
         | 
| 160 | 
            +
                    self.head_dim = config.head_dim
         | 
| 161 | 
            +
                    self.q_size = self.num_heads * self.head_dim
         | 
| 162 | 
            +
                    self.kv_size = self.num_kv_heads * self.head_dim
         | 
| 163 | 
            +
                    self.scaling = self.head_dim**-0.5
         | 
| 164 | 
            +
                    self.attn_temperature_tuning = config.attn_temperature_tuning
         | 
| 165 | 
            +
                    self.floor_scale = config.floor_scale
         | 
| 166 | 
            +
                    self.attn_scale = config.attn_scale
         | 
| 167 | 
            +
                    self.rope_theta = rope_theta
         | 
| 168 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 169 | 
            +
                    self.n_rep = self.num_heads // self.num_kv_heads
         | 
| 170 | 
            +
                    self.qk_norm = (
         | 
| 171 | 
            +
                        RMSNorm(
         | 
| 172 | 
            +
                            hidden_size=self.head_dim,
         | 
| 173 | 
            +
                            eps=config.rms_norm_eps,
         | 
| 174 | 
            +
                        )
         | 
| 175 | 
            +
                        if self.use_qk_norm
         | 
| 176 | 
            +
                        else None
         | 
| 177 | 
            +
                    )
         | 
| 178 | 
            +
                    self.qkv_proj = QKVParallelLinear(
         | 
| 179 | 
            +
                        hidden_size=hidden_size,
         | 
| 180 | 
            +
                        head_size=self.head_dim,
         | 
| 181 | 
            +
                        total_num_heads=self.total_num_heads,
         | 
| 182 | 
            +
                        total_num_kv_heads=self.total_num_kv_heads,
         | 
| 183 | 
            +
                        bias=bias,
         | 
| 184 | 
            +
                        quant_config=quant_config,
         | 
| 185 | 
            +
                        prefix=add_prefix("qkv_proj", prefix),
         | 
| 186 | 
            +
                    )
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    self.o_proj = RowParallelLinear(
         | 
| 189 | 
            +
                        input_size=self.total_num_heads * self.head_dim,
         | 
| 190 | 
            +
                        output_size=hidden_size,
         | 
| 191 | 
            +
                        bias=bias_o_proj,
         | 
| 192 | 
            +
                        quant_config=quant_config,
         | 
| 193 | 
            +
                        prefix=add_prefix("o_proj", prefix),
         | 
| 194 | 
            +
                    )
         | 
| 195 | 
            +
                    is_neox_style = True
         | 
| 196 | 
            +
                    is_gguf = quant_config and quant_config.get_name() == "gguf"
         | 
| 197 | 
            +
                    if is_gguf and config.model_type in ["llama", "llama4"]:
         | 
| 198 | 
            +
                        is_neox_style = False
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    self.rotary_emb = (
         | 
| 201 | 
            +
                        get_rope(
         | 
| 202 | 
            +
                            self.head_dim,
         | 
| 203 | 
            +
                            rotary_dim=self.head_dim,
         | 
| 204 | 
            +
                            max_position=max_position_embeddings,
         | 
| 205 | 
            +
                            base=int(rope_theta),
         | 
| 206 | 
            +
                            rope_scaling=rope_scaling if rope_scaling != "default" else None,
         | 
| 207 | 
            +
                            is_neox_style=is_neox_style,
         | 
| 208 | 
            +
                        )
         | 
| 209 | 
            +
                        if self.use_rope
         | 
| 210 | 
            +
                        else None
         | 
| 211 | 
            +
                    )
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    self.attn = RadixAttention(
         | 
| 214 | 
            +
                        self.num_heads,
         | 
| 215 | 
            +
                        self.head_dim,
         | 
| 216 | 
            +
                        self.scaling,
         | 
| 217 | 
            +
                        num_kv_heads=self.num_kv_heads,
         | 
| 218 | 
            +
                        layer_id=layer_id,
         | 
| 219 | 
            +
                        prefix=add_prefix("attn", prefix),
         | 
| 220 | 
            +
                        use_irope=self.use_rope,
         | 
| 221 | 
            +
                    )
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                def _get_attn_scale(self, positions: torch.Tensor) -> torch.Tensor:
         | 
| 224 | 
            +
                    floor = torch.floor((positions + 1.0) / self.floor_scale)
         | 
| 225 | 
            +
                    attn_scale = torch.log(floor + 1.0) * self.attn_scale + 1.0
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    return attn_scale.unsqueeze(-1)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                def forward(
         | 
| 230 | 
            +
                    self,
         | 
| 231 | 
            +
                    positions: torch.Tensor,
         | 
| 232 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 233 | 
            +
                    forward_batch: ForwardBatch,
         | 
| 234 | 
            +
                ) -> torch.Tensor:
         | 
| 235 | 
            +
                    qkv, _ = self.qkv_proj(hidden_states)
         | 
| 236 | 
            +
                    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    if self.rotary_emb is not None:
         | 
| 239 | 
            +
                        q, k = self.rotary_emb(positions, q, k)
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    if self.qk_norm is not None:
         | 
| 242 | 
            +
                        # TODO: support float
         | 
| 243 | 
            +
                        q = q.reshape(-1, self.head_dim).contiguous().bfloat16()
         | 
| 244 | 
            +
                        k = k.reshape(-1, self.head_dim).contiguous().bfloat16()
         | 
| 245 | 
            +
                        q = self.qk_norm(q).to(q.dtype)
         | 
| 246 | 
            +
                        k = self.qk_norm(k).to(k.dtype)
         | 
| 247 | 
            +
                        q = q.reshape(-1, self.q_size)
         | 
| 248 | 
            +
                        k = k.reshape(-1, self.kv_size)
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    # We are applying temperature tuning (https://arxiv.org/abs/2501.19399) to NoPE layers, where
         | 
| 251 | 
            +
                    # the inference-time temperature tuning function is customized to not affect short context
         | 
| 252 | 
            +
                    # while working at very long context
         | 
| 253 | 
            +
                    # https://arxiv.org/abs/2501.19399
         | 
| 254 | 
            +
                    if self.attn_temperature_tuning and not self.use_rope:
         | 
| 255 | 
            +
                        attn_scale = self._get_attn_scale(positions)
         | 
| 256 | 
            +
                        q = (q * attn_scale).to(q.dtype)
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                    attn_output = self.attn(q, k, v, forward_batch)
         | 
| 259 | 
            +
                    output, _ = self.o_proj(attn_output)
         | 
| 260 | 
            +
                    return output
         | 
| 261 | 
            +
             | 
| 262 | 
            +
             | 
| 263 | 
            +
            class Llama4DecoderLayer(nn.Module):
         | 
| 264 | 
            +
                def __init__(
         | 
| 265 | 
            +
                    self,
         | 
| 266 | 
            +
                    config: Llama4TextConfig,
         | 
| 267 | 
            +
                    layer_id: int = 0,
         | 
| 268 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 269 | 
            +
                    prefix: str = "",
         | 
| 270 | 
            +
                ):
         | 
| 271 | 
            +
                    super().__init__()
         | 
| 272 | 
            +
                    self.layer_id = layer_id
         | 
| 273 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 274 | 
            +
                    rope_theta = config.rope_theta
         | 
| 275 | 
            +
                    rope_scaling = config.rope_scaling
         | 
| 276 | 
            +
                    max_position_embeddings = config.max_position_embeddings
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    self.self_attn = Llama4Attention(
         | 
| 279 | 
            +
                        config=config,
         | 
| 280 | 
            +
                        layer_id=layer_id,
         | 
| 281 | 
            +
                        hidden_size=self.hidden_size,
         | 
| 282 | 
            +
                        num_heads=config.num_attention_heads,
         | 
| 283 | 
            +
                        num_kv_heads=config.num_key_value_heads,
         | 
| 284 | 
            +
                        rope_theta=rope_theta,
         | 
| 285 | 
            +
                        rope_scaling=rope_scaling,
         | 
| 286 | 
            +
                        max_position_embeddings=max_position_embeddings,
         | 
| 287 | 
            +
                        quant_config=quant_config,
         | 
| 288 | 
            +
                        bias=False,
         | 
| 289 | 
            +
                        bias_o_proj=False,
         | 
| 290 | 
            +
                        prefix=add_prefix("self_attn", prefix),
         | 
| 291 | 
            +
                    )
         | 
| 292 | 
            +
                    is_moe_layer = (layer_id + 1) % config.interleave_moe_layer_step == 0
         | 
| 293 | 
            +
                    if is_moe_layer:
         | 
| 294 | 
            +
                        self.feed_forward = Llama4MoE(
         | 
| 295 | 
            +
                            config=config,
         | 
| 296 | 
            +
                            quant_config=quant_config,
         | 
| 297 | 
            +
                            prefix=add_prefix("feed_forward", prefix),
         | 
| 298 | 
            +
                        )
         | 
| 299 | 
            +
                    else:
         | 
| 300 | 
            +
                        self.feed_forward = LlamaMLP(
         | 
| 301 | 
            +
                            hidden_size=self.hidden_size,
         | 
| 302 | 
            +
                            intermediate_size=config.intermediate_size_mlp,
         | 
| 303 | 
            +
                            hidden_act="silu",
         | 
| 304 | 
            +
                            quant_config=quant_config,
         | 
| 305 | 
            +
                            prefix=add_prefix("feed_forward", prefix),
         | 
| 306 | 
            +
                        )
         | 
| 307 | 
            +
                    self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 308 | 
            +
                    self.post_attention_layernorm = RMSNorm(
         | 
| 309 | 
            +
                        config.hidden_size, eps=config.rms_norm_eps
         | 
| 310 | 
            +
                    )
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                def forward(
         | 
| 313 | 
            +
                    self,
         | 
| 314 | 
            +
                    positions: torch.Tensor,
         | 
| 315 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 316 | 
            +
                    forward_batch: ForwardBatch,
         | 
| 317 | 
            +
                    residual: Optional[torch.Tensor],
         | 
| 318 | 
            +
                ) -> Tuple[torch.Tensor, torch.Tensor]:
         | 
| 319 | 
            +
                    # Self Attention
         | 
| 320 | 
            +
                    if residual is None:
         | 
| 321 | 
            +
                        residual = hidden_states
         | 
| 322 | 
            +
                        hidden_states = self.input_layernorm(hidden_states)
         | 
| 323 | 
            +
                    else:
         | 
| 324 | 
            +
                        hidden_states, residual = self.input_layernorm(hidden_states, residual)
         | 
| 325 | 
            +
                    hidden_states = self.self_attn(
         | 
| 326 | 
            +
                        positions=positions,
         | 
| 327 | 
            +
                        hidden_states=hidden_states,
         | 
| 328 | 
            +
                        forward_batch=forward_batch,
         | 
| 329 | 
            +
                    )
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                    # Fully Connected
         | 
| 332 | 
            +
                    hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
         | 
| 333 | 
            +
                    hidden_states = self.feed_forward(hidden_states)
         | 
| 334 | 
            +
                    return hidden_states, residual
         | 
| 335 | 
            +
             | 
| 336 | 
            +
             | 
| 337 | 
            +
            class Llama4Model(nn.Module):
         | 
| 338 | 
            +
                def __init__(
         | 
| 339 | 
            +
                    self,
         | 
| 340 | 
            +
                    config: Llama4TextConfig,
         | 
| 341 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 342 | 
            +
                    prefix: str = "",
         | 
| 343 | 
            +
                ) -> None:
         | 
| 344 | 
            +
                    super().__init__()
         | 
| 345 | 
            +
                    self.config = config
         | 
| 346 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 347 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 348 | 
            +
                    self.embed_tokens = VocabParallelEmbedding(
         | 
| 349 | 
            +
                        config.vocab_size,
         | 
| 350 | 
            +
                        config.hidden_size,
         | 
| 351 | 
            +
                        quant_config=quant_config,
         | 
| 352 | 
            +
                        prefix=add_prefix("embed_tokens", prefix),
         | 
| 353 | 
            +
                    )
         | 
| 354 | 
            +
                    self.layers = make_layers(
         | 
| 355 | 
            +
                        config.num_hidden_layers,
         | 
| 356 | 
            +
                        lambda idx, prefix: Llama4DecoderLayer(
         | 
| 357 | 
            +
                            config=config, layer_id=idx, quant_config=quant_config, prefix=prefix
         | 
| 358 | 
            +
                        ),
         | 
| 359 | 
            +
                        prefix="model.layers",
         | 
| 360 | 
            +
                    )
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 363 | 
            +
                    self.layers_to_capture = []
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                def forward(
         | 
| 366 | 
            +
                    self,
         | 
| 367 | 
            +
                    input_ids: torch.Tensor,
         | 
| 368 | 
            +
                    positions: torch.Tensor,
         | 
| 369 | 
            +
                    forward_batch: ForwardBatch,
         | 
| 370 | 
            +
                    input_embeds: torch.Tensor = None,
         | 
| 371 | 
            +
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
         | 
| 372 | 
            +
                    if input_embeds is None:
         | 
| 373 | 
            +
                        hidden_states = self.embed_tokens(input_ids)
         | 
| 374 | 
            +
                    else:
         | 
| 375 | 
            +
                        hidden_states = input_embeds
         | 
| 376 | 
            +
                    residual = None
         | 
| 377 | 
            +
                    aux_hidden_states = []
         | 
| 378 | 
            +
                    for i in range(len(self.layers)):
         | 
| 379 | 
            +
                        if i in self.layers_to_capture:
         | 
| 380 | 
            +
                            aux_hidden_states.append(hidden_states + residual)
         | 
| 381 | 
            +
                        layer = self.layers[i]
         | 
| 382 | 
            +
                        hidden_states, residual = layer(
         | 
| 383 | 
            +
                            positions,
         | 
| 384 | 
            +
                            hidden_states,
         | 
| 385 | 
            +
                            forward_batch,
         | 
| 386 | 
            +
                            residual,
         | 
| 387 | 
            +
                        )
         | 
| 388 | 
            +
                    hidden_states, _ = self.norm(hidden_states, residual)
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    if len(aux_hidden_states) == 0:
         | 
| 391 | 
            +
                        return hidden_states
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                    return hidden_states, aux_hidden_states
         | 
| 394 | 
            +
             | 
| 395 | 
            +
             | 
| 396 | 
            +
            class Llama4ForCausalLM(LlamaForCausalLM):
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                packed_modules_mapping = {
         | 
| 399 | 
            +
                    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
         | 
| 400 | 
            +
                    "gate_up_proj": ["gate_proj", "up_proj"],
         | 
| 401 | 
            +
                }
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                def __init__(
         | 
| 404 | 
            +
                    self,
         | 
| 405 | 
            +
                    config: Llama4TextConfig,
         | 
| 406 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 407 | 
            +
                    prefix: str = "",
         | 
| 408 | 
            +
                ):
         | 
| 409 | 
            +
                    super().__init__(config, quant_config, prefix)
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                def _init_model(
         | 
| 412 | 
            +
                    self,
         | 
| 413 | 
            +
                    config: Llama4TextConfig,
         | 
| 414 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 415 | 
            +
                    prefix: str = "",
         | 
| 416 | 
            +
                ):
         | 
| 417 | 
            +
                    return Llama4Model(config, quant_config=quant_config, prefix=prefix)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
             | 
| 420 | 
            +
            EntryClass = [Llama4ForCausalLM]
         |