sglang 0.4.4.post1__py3-none-any.whl → 0.4.4.post2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (172) hide show
  1. sglang/__init__.py +2 -0
  2. sglang/api.py +6 -0
  3. sglang/bench_one_batch.py +1 -1
  4. sglang/bench_one_batch_server.py +1 -1
  5. sglang/bench_serving.py +3 -1
  6. sglang/check_env.py +3 -4
  7. sglang/lang/backend/openai.py +18 -5
  8. sglang/lang/chat_template.py +28 -7
  9. sglang/lang/interpreter.py +7 -3
  10. sglang/lang/ir.py +10 -0
  11. sglang/srt/_custom_ops.py +1 -1
  12. sglang/srt/code_completion_parser.py +174 -0
  13. sglang/srt/configs/__init__.py +2 -6
  14. sglang/srt/configs/deepseekvl2.py +667 -0
  15. sglang/srt/configs/janus_pro.py +3 -4
  16. sglang/srt/configs/load_config.py +1 -0
  17. sglang/srt/configs/model_config.py +63 -11
  18. sglang/srt/configs/utils.py +25 -0
  19. sglang/srt/connector/__init__.py +51 -0
  20. sglang/srt/connector/base_connector.py +112 -0
  21. sglang/srt/connector/redis.py +85 -0
  22. sglang/srt/connector/s3.py +122 -0
  23. sglang/srt/connector/serde/__init__.py +31 -0
  24. sglang/srt/connector/serde/safe_serde.py +29 -0
  25. sglang/srt/connector/serde/serde.py +43 -0
  26. sglang/srt/connector/utils.py +35 -0
  27. sglang/srt/conversation.py +88 -0
  28. sglang/srt/disaggregation/conn.py +81 -0
  29. sglang/srt/disaggregation/decode.py +495 -0
  30. sglang/srt/disaggregation/mini_lb.py +285 -0
  31. sglang/srt/disaggregation/prefill.py +249 -0
  32. sglang/srt/disaggregation/utils.py +44 -0
  33. sglang/srt/distributed/parallel_state.py +10 -3
  34. sglang/srt/entrypoints/engine.py +55 -5
  35. sglang/srt/entrypoints/http_server.py +71 -12
  36. sglang/srt/function_call_parser.py +133 -54
  37. sglang/srt/hf_transformers_utils.py +28 -3
  38. sglang/srt/layers/activation.py +4 -2
  39. sglang/srt/layers/attention/base_attn_backend.py +1 -1
  40. sglang/srt/layers/attention/flashattention_backend.py +295 -0
  41. sglang/srt/layers/attention/flashinfer_backend.py +1 -1
  42. sglang/srt/layers/attention/flashmla_backend.py +284 -0
  43. sglang/srt/layers/attention/triton_backend.py +171 -38
  44. sglang/srt/layers/attention/triton_ops/decode_attention.py +94 -31
  45. sglang/srt/layers/attention/triton_ops/extend_attention.py +14 -5
  46. sglang/srt/layers/attention/utils.py +53 -0
  47. sglang/srt/layers/attention/vision.py +9 -28
  48. sglang/srt/layers/dp_attention.py +32 -21
  49. sglang/srt/layers/layernorm.py +24 -2
  50. sglang/srt/layers/linear.py +17 -5
  51. sglang/srt/layers/logits_processor.py +25 -7
  52. sglang/srt/layers/moe/ep_moe/kernels.py +110 -11
  53. sglang/srt/layers/moe/ep_moe/layer.py +273 -1
  54. sglang/srt/layers/moe/ep_moe/token_dispatcher.py +416 -0
  55. sglang/srt/layers/moe/fused_moe_native.py +2 -1
  56. sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json +146 -0
  57. sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json +146 -0
  58. sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  59. sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  60. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +23 -32
  61. sglang/srt/layers/moe/fused_moe_triton/layer.py +1 -2
  62. sglang/srt/layers/moe/topk.py +31 -18
  63. sglang/srt/layers/parameter.py +1 -1
  64. sglang/srt/layers/quantization/__init__.py +184 -126
  65. sglang/srt/layers/quantization/base_config.py +5 -0
  66. sglang/srt/layers/quantization/blockwise_int8.py +1 -1
  67. sglang/srt/layers/quantization/compressed_tensors/__init__.py +0 -0
  68. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +652 -0
  69. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +658 -0
  70. sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +9 -0
  71. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +56 -0
  72. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +162 -0
  73. sglang/srt/layers/quantization/compressed_tensors/utils.py +218 -0
  74. sglang/srt/layers/quantization/fp8.py +76 -34
  75. sglang/srt/layers/quantization/fp8_kernel.py +24 -8
  76. sglang/srt/layers/quantization/fp8_utils.py +284 -28
  77. sglang/srt/layers/quantization/gptq.py +36 -9
  78. sglang/srt/layers/quantization/kv_cache.py +98 -0
  79. sglang/srt/layers/quantization/modelopt_quant.py +9 -7
  80. sglang/srt/layers/quantization/utils.py +153 -0
  81. sglang/srt/layers/quantization/w8a8_fp8.py +70 -19
  82. sglang/srt/layers/rotary_embedding.py +66 -87
  83. sglang/srt/layers/sampler.py +1 -1
  84. sglang/srt/lora/layers.py +68 -0
  85. sglang/srt/lora/lora.py +2 -22
  86. sglang/srt/lora/lora_manager.py +47 -23
  87. sglang/srt/lora/mem_pool.py +110 -51
  88. sglang/srt/lora/utils.py +12 -1
  89. sglang/srt/managers/cache_controller.py +2 -5
  90. sglang/srt/managers/data_parallel_controller.py +30 -8
  91. sglang/srt/managers/expert_distribution.py +81 -0
  92. sglang/srt/managers/io_struct.py +39 -3
  93. sglang/srt/managers/mm_utils.py +373 -0
  94. sglang/srt/managers/multimodal_processor.py +68 -0
  95. sglang/srt/managers/multimodal_processors/base_processor.py +275 -0
  96. sglang/srt/managers/multimodal_processors/deepseek_vl_v2.py +119 -0
  97. sglang/srt/managers/multimodal_processors/gemma3.py +83 -0
  98. sglang/srt/managers/{image_processors → multimodal_processors}/janus_pro.py +20 -15
  99. sglang/srt/managers/{image_processors → multimodal_processors}/llava.py +10 -15
  100. sglang/srt/managers/multimodal_processors/minicpm.py +167 -0
  101. sglang/srt/managers/{image_processors → multimodal_processors}/mlama.py +7 -8
  102. sglang/srt/managers/{image_processors → multimodal_processors}/qwen_vl.py +28 -22
  103. sglang/srt/managers/schedule_batch.py +133 -30
  104. sglang/srt/managers/scheduler.py +273 -20
  105. sglang/srt/managers/session_controller.py +1 -1
  106. sglang/srt/managers/tokenizer_manager.py +59 -23
  107. sglang/srt/managers/tp_worker.py +1 -1
  108. sglang/srt/managers/tp_worker_overlap_thread.py +3 -3
  109. sglang/srt/managers/utils.py +6 -1
  110. sglang/srt/mem_cache/hiradix_cache.py +18 -7
  111. sglang/srt/mem_cache/memory_pool.py +255 -98
  112. sglang/srt/mem_cache/paged_allocator.py +2 -2
  113. sglang/srt/mem_cache/radix_cache.py +4 -4
  114. sglang/srt/model_executor/cuda_graph_runner.py +27 -13
  115. sglang/srt/model_executor/forward_batch_info.py +68 -11
  116. sglang/srt/model_executor/model_runner.py +70 -6
  117. sglang/srt/model_loader/loader.py +160 -2
  118. sglang/srt/model_loader/weight_utils.py +45 -0
  119. sglang/srt/models/deepseek_janus_pro.py +29 -86
  120. sglang/srt/models/deepseek_nextn.py +22 -10
  121. sglang/srt/models/deepseek_v2.py +208 -77
  122. sglang/srt/models/deepseek_vl2.py +358 -0
  123. sglang/srt/models/gemma3_causal.py +684 -0
  124. sglang/srt/models/gemma3_mm.py +462 -0
  125. sglang/srt/models/llama.py +47 -7
  126. sglang/srt/models/llama_eagle.py +1 -0
  127. sglang/srt/models/llama_eagle3.py +196 -0
  128. sglang/srt/models/llava.py +3 -3
  129. sglang/srt/models/llavavid.py +3 -3
  130. sglang/srt/models/minicpmo.py +1995 -0
  131. sglang/srt/models/minicpmv.py +62 -137
  132. sglang/srt/models/mllama.py +4 -4
  133. sglang/srt/models/phi3_small.py +1 -1
  134. sglang/srt/models/qwen2.py +3 -0
  135. sglang/srt/models/qwen2_5_vl.py +68 -146
  136. sglang/srt/models/qwen2_classification.py +75 -0
  137. sglang/srt/models/qwen2_moe.py +9 -1
  138. sglang/srt/models/qwen2_vl.py +25 -63
  139. sglang/srt/openai_api/adapter.py +124 -28
  140. sglang/srt/openai_api/protocol.py +23 -2
  141. sglang/srt/sampling/sampling_batch_info.py +1 -1
  142. sglang/srt/sampling/sampling_params.py +6 -6
  143. sglang/srt/server_args.py +99 -9
  144. sglang/srt/speculative/build_eagle_tree.py +7 -347
  145. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +41 -5
  146. sglang/srt/speculative/eagle_utils.py +208 -252
  147. sglang/srt/speculative/eagle_worker.py +139 -53
  148. sglang/srt/speculative/spec_info.py +6 -1
  149. sglang/srt/torch_memory_saver_adapter.py +22 -0
  150. sglang/srt/utils.py +182 -21
  151. sglang/test/__init__.py +0 -0
  152. sglang/test/attention/__init__.py +0 -0
  153. sglang/test/attention/test_flashattn_backend.py +312 -0
  154. sglang/test/runners.py +2 -0
  155. sglang/test/test_activation.py +2 -1
  156. sglang/test/test_block_fp8.py +5 -4
  157. sglang/test/test_block_fp8_ep.py +2 -1
  158. sglang/test/test_dynamic_grad_mode.py +58 -0
  159. sglang/test/test_layernorm.py +3 -2
  160. sglang/test/test_utils.py +55 -4
  161. sglang/utils.py +31 -0
  162. sglang/version.py +1 -1
  163. {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post2.dist-info}/METADATA +12 -8
  164. {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post2.dist-info}/RECORD +167 -123
  165. {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post2.dist-info}/WHEEL +1 -1
  166. sglang/srt/configs/qwen2_5_vl_config.py +0 -1006
  167. sglang/srt/managers/image_processor.py +0 -55
  168. sglang/srt/managers/image_processors/base_image_processor.py +0 -219
  169. sglang/srt/managers/image_processors/minicpmv.py +0 -86
  170. sglang/srt/managers/multi_modality_padding.py +0 -134
  171. {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post2.dist-info/licenses}/LICENSE +0 -0
  172. {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post2.dist-info}/top_level.txt +0 -0
@@ -27,12 +27,16 @@ import signal
27
27
  import threading
28
28
  from typing import AsyncIterator, Dict, Iterator, List, Optional, Tuple, Union
29
29
 
30
+ import zmq
31
+ import zmq.asyncio
32
+
30
33
  # Fix a bug of Python threading
31
34
  setattr(threading, "_register_atexit", lambda *args, **kwargs: None)
32
35
 
33
36
  import torch
34
37
  import uvloop
35
38
 
39
+ from sglang.srt.code_completion_parser import load_completion_template_for_openai_api
36
40
  from sglang.srt.managers.data_parallel_controller import (
37
41
  run_data_parallel_controller_process,
38
42
  )
@@ -44,6 +48,8 @@ from sglang.srt.managers.io_struct import (
44
48
  InitWeightsUpdateGroupReqInput,
45
49
  ReleaseMemoryOccupationReqInput,
46
50
  ResumeMemoryOccupationReqInput,
51
+ RpcReqInput,
52
+ RpcReqOutput,
47
53
  UpdateWeightFromDiskReqInput,
48
54
  UpdateWeightsFromDistributedReqInput,
49
55
  UpdateWeightsFromTensorReqInput,
@@ -57,6 +63,7 @@ from sglang.srt.utils import (
57
63
  MultiprocessingSerializer,
58
64
  assert_pkg_version,
59
65
  configure_logger,
66
+ get_zmq_socket,
60
67
  kill_process_tree,
61
68
  launch_dummy_health_check_server,
62
69
  maybe_set_triton_cache_manager,
@@ -102,15 +109,25 @@ class Engine:
102
109
  # Shutdown the subprocesses automatically when the program exits
103
110
  atexit.register(self.shutdown)
104
111
 
112
+ # Allocate ports for inter-process communications
113
+ port_args = PortArgs.init_new(server_args)
114
+ logger.info(f"{server_args=}")
115
+
105
116
  # Launch subprocesses
106
117
  tokenizer_manager, scheduler_info = _launch_subprocesses(
107
- server_args=server_args
118
+ server_args=server_args,
119
+ port_args=port_args,
108
120
  )
109
121
 
110
122
  self.server_args = server_args
111
123
  self.tokenizer_manager = tokenizer_manager
112
124
  self.scheduler_info = scheduler_info
113
125
 
126
+ context = zmq.Context(2)
127
+ self.send_to_rpc = get_zmq_socket(
128
+ context, zmq.DEALER, port_args.rpc_ipc_name, True
129
+ )
130
+
114
131
  def generate(
115
132
  self,
116
133
  # The input prompt. It can be a single prompt or a batch of prompts.
@@ -232,6 +249,13 @@ class Engine:
232
249
  """Shutdown the engine"""
233
250
  kill_process_tree(os.getpid(), include_parent=False)
234
251
 
252
+ def __enter__(self):
253
+ return self
254
+
255
+ def __exit__(self, exc_type, exc_value, traceback):
256
+ self.shutdown()
257
+ return False
258
+
235
259
  def start_profile(self):
236
260
  loop = asyncio.get_event_loop()
237
261
  loop.run_until_complete(self.tokenizer_manager.start_profile())
@@ -296,7 +320,10 @@ class Engine:
296
320
  """Update weights from distributed source. If there are going to be more updates, set `flush_cache` to be true
297
321
  to avoid duplicated operations such as clearing cache."""
298
322
  obj = UpdateWeightsFromTensorReqInput(
299
- serialized_named_tensors=MultiprocessingSerializer.serialize(named_tensors),
323
+ serialized_named_tensors=[
324
+ MultiprocessingSerializer.serialize(named_tensors)
325
+ for _ in range(self.server_args.tp_size)
326
+ ],
300
327
  load_format=load_format,
301
328
  flush_cache=flush_cache,
302
329
  )
@@ -350,6 +377,23 @@ class Engine:
350
377
  self.tokenizer_manager.resume_memory_occupation(obj, None)
351
378
  )
352
379
 
380
+ """
381
+ Execute an RPC call on all scheduler processes.
382
+ """
383
+
384
+ def collective_rpc(self, method: str, **kwargs):
385
+ obj = RpcReqInput(method=method, parameters=kwargs)
386
+ self.send_to_rpc.send_pyobj(obj)
387
+ recv_req = self.send_to_rpc.recv_pyobj(zmq.BLOCKY)
388
+ assert isinstance(recv_req, RpcReqOutput)
389
+ assert recv_req.success, recv_req.message
390
+
391
+ def save_remote_model(self, **kwargs):
392
+ self.collective_rpc("save_remote_model", **kwargs)
393
+
394
+ def save_sharded_model(self, **kwargs):
395
+ self.collective_rpc("save_sharded_model", **kwargs)
396
+
353
397
 
354
398
  def _set_envs_and_config(server_args: ServerArgs):
355
399
  # Set global environments
@@ -408,7 +452,9 @@ def _set_envs_and_config(server_args: ServerArgs):
408
452
  mp.set_start_method("spawn", force=True)
409
453
 
410
454
 
411
- def _launch_subprocesses(server_args: ServerArgs) -> Tuple[TokenizerManager, Dict]:
455
+ def _launch_subprocesses(
456
+ server_args: ServerArgs, port_args: Optional[PortArgs] = None
457
+ ) -> Tuple[TokenizerManager, Dict]:
412
458
  """
413
459
  Launch the TokenizerManager in the main process, the Scheduler in a subprocess, and the DetokenizerManager in another subprocess.
414
460
  """
@@ -418,8 +464,9 @@ def _launch_subprocesses(server_args: ServerArgs) -> Tuple[TokenizerManager, Dic
418
464
  _set_envs_and_config(server_args)
419
465
 
420
466
  # Allocate ports for inter-process communications
421
- port_args = PortArgs.init_new(server_args)
422
- logger.info(f"{server_args=}")
467
+ if port_args is None:
468
+ port_args = PortArgs.init_new(server_args)
469
+ logger.info(f"{server_args=}")
423
470
 
424
471
  # If using model from www.modelscope.cn, first download the model.
425
472
  server_args.model_path, server_args.tokenizer_path = prepare_model_and_tokenizer(
@@ -502,6 +549,9 @@ def _launch_subprocesses(server_args: ServerArgs) -> Tuple[TokenizerManager, Dic
502
549
  tokenizer_manager, server_args.chat_template, server_args.model_path
503
550
  )
504
551
 
552
+ if server_args.completion_template:
553
+ load_completion_template_for_openai_api(server_args.completion_template)
554
+
505
555
  # Wait for the model to finish loading
506
556
  scheduler_infos = []
507
557
  for i in range(len(scheduler_pipe_readers)):
@@ -14,11 +14,12 @@
14
14
  """
15
15
  The entry point of inference server. (SRT = SGLang Runtime)
16
16
 
17
- This file implements HTTP APIs for the inferenc engine via fastapi.
17
+ This file implements HTTP APIs for the inference engine via fastapi.
18
18
  """
19
19
 
20
20
  import asyncio
21
21
  import dataclasses
22
+ import json
22
23
  import logging
23
24
  import multiprocessing as multiprocessing
24
25
  import os
@@ -259,6 +260,29 @@ async def generate_request(obj: GenerateReqInput, request: Request):
259
260
  return _create_error_response(e)
260
261
 
261
262
 
263
+ @app.api_route("/generate_from_file", methods=["POST"])
264
+ async def generate_from_file_request(file: UploadFile, request: Request):
265
+ """Handle a generate request, this is purely to work with input_embeds."""
266
+ content = await file.read()
267
+ input_embeds = json.loads(content.decode("utf-8"))
268
+
269
+ obj = GenerateReqInput(
270
+ input_embeds=input_embeds,
271
+ sampling_params={
272
+ "repetition_penalty": 1.2,
273
+ "temperature": 0.2,
274
+ "max_new_tokens": 512,
275
+ },
276
+ )
277
+
278
+ try:
279
+ ret = await _global_state.generate_request(obj, request).__anext__()
280
+ return ret
281
+ except ValueError as e:
282
+ logger.error(f"Error: {e}")
283
+ return _create_error_response(e)
284
+
285
+
262
286
  @app.api_route("/encode", methods=["POST", "PUT"])
263
287
  async def encode_request(obj: EmbeddingReqInput, request: Request):
264
288
  """Handle an embedding request."""
@@ -283,7 +307,7 @@ async def classify_request(obj: EmbeddingReqInput, request: Request):
283
307
  return _create_error_response(e)
284
308
 
285
309
 
286
- @app.post("/flush_cache")
310
+ @app.api_route("/flush_cache", methods=["GET", "POST"])
287
311
  async def flush_cache():
288
312
  """Flush the radix cache."""
289
313
  _global_state.tokenizer_manager.flush_cache()
@@ -319,6 +343,36 @@ async def stop_profile_async():
319
343
  )
320
344
 
321
345
 
346
+ @app.api_route("/start_expert_distribution_record", methods=["GET", "POST"])
347
+ async def start_expert_distribution_record_async():
348
+ """Start recording the expert distribution. Clear the previous record if any."""
349
+ await _global_state.tokenizer_manager.start_expert_distribution_record()
350
+ return Response(
351
+ content="Start recording the expert distribution.\n",
352
+ status_code=200,
353
+ )
354
+
355
+
356
+ @app.api_route("/stop_expert_distribution_record", methods=["GET", "POST"])
357
+ async def stop_expert_distribution_record_async():
358
+ """Stop recording the expert distribution."""
359
+ await _global_state.tokenizer_manager.stop_expert_distribution_record()
360
+ return Response(
361
+ content="Stop recording the expert distribution.\n",
362
+ status_code=200,
363
+ )
364
+
365
+
366
+ @app.api_route("/dump_expert_distribution_record", methods=["GET", "POST"])
367
+ async def dump_expert_distribution_record_async():
368
+ """Dump expert distribution record."""
369
+ await _global_state.tokenizer_manager.dump_expert_distribution_record()
370
+ return Response(
371
+ content="Dump expert distribution record.\n",
372
+ status_code=200,
373
+ )
374
+
375
+
322
376
  @app.post("/update_weights_from_disk")
323
377
  async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request):
324
378
  """Update the weights from disk inplace without re-launching the server."""
@@ -706,9 +760,15 @@ def _wait_and_warmup(
706
760
  },
707
761
  }
708
762
  if server_args.skip_tokenizer_init:
709
- json_data["input_ids"] = [10, 11, 12]
763
+ json_data["input_ids"] = [[10, 11, 12] for _ in range(server_args.dp_size)]
764
+ # TODO Workaround the bug that embedding errors for list of size 1
765
+ if server_args.dp_size == 1:
766
+ json_data["input_ids"] = json_data["input_ids"][0]
710
767
  else:
711
- json_data["text"] = "The capital city of France is"
768
+ json_data["text"] = ["The capital city of France is"] * server_args.dp_size
769
+ # TODO Workaround the bug that embedding errors for list of size 1
770
+ if server_args.dp_size == 1:
771
+ json_data["text"] = json_data["text"][0]
712
772
 
713
773
  # Debug dumping
714
774
  if server_args.debug_tensor_dump_input_file:
@@ -719,14 +779,13 @@ def _wait_and_warmup(
719
779
  json_data["sampling_params"]["max_new_tokens"] = 0
720
780
 
721
781
  try:
722
- for i in range(server_args.dp_size):
723
- res = requests.post(
724
- url + request_name,
725
- json=json_data,
726
- headers=headers,
727
- timeout=600,
728
- )
729
- assert res.status_code == 200, f"{res}"
782
+ res = requests.post(
783
+ url + request_name,
784
+ json=json_data,
785
+ headers=headers,
786
+ timeout=600,
787
+ )
788
+ assert res.status_code == 200, f"{res}"
730
789
  except Exception:
731
790
  last_traceback = get_exception_traceback()
732
791
  if pipe_finish_writer is not None:
@@ -1,12 +1,21 @@
1
1
  import json
2
2
  import logging
3
3
  import re
4
+ from abc import ABC, abstractmethod
5
+ from dataclasses import dataclass
4
6
  from json import JSONDecodeError, JSONDecoder
5
- from typing import Any, Dict, List, Optional, Tuple
7
+ from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type
6
8
 
7
9
  import partial_json_parser
10
+ from partial_json_parser.core.exceptions import MalformedJSON
8
11
  from partial_json_parser.core.options import Allow
9
- from pydantic import BaseModel, Field
12
+ from pydantic import BaseModel
13
+
14
+ from sglang.srt.openai_api.protocol import (
15
+ StructuralTagResponseFormat,
16
+ StructuresResponseFormat,
17
+ Tool,
18
+ )
10
19
 
11
20
  logger = logging.getLogger(__name__)
12
21
 
@@ -19,14 +28,6 @@ TOOLS_TAG_LIST = [
19
28
  ]
20
29
 
21
30
 
22
- class Function(BaseModel):
23
- """Function Tool Template."""
24
-
25
- description: Optional[str] = Field(default=None, examples=[None])
26
- name: Optional[str] = None
27
- parameters: Optional[object] = None
28
-
29
-
30
31
  class ToolCallItem(BaseModel):
31
32
  """Simple encapsulation of the parsed ToolCall result for easier usage in streaming contexts."""
32
33
 
@@ -74,7 +75,22 @@ class StreamingParseResult:
74
75
  self.calls = calls or []
75
76
 
76
77
 
77
- class BaseFormatDetector:
78
+ @dataclass
79
+ class StructureInfo:
80
+ begin: str
81
+ end: str
82
+ trigger: str
83
+
84
+
85
+ _GetInfoFunc = Callable[[str], StructureInfo]
86
+ """
87
+ helper alias of function
88
+ ususally it is a function that takes a name string and returns a StructureInfo object,
89
+ which can be used to construct a structural_tag object
90
+ """
91
+
92
+
93
+ class BaseFormatDetector(ABC):
78
94
  """Base class providing two sets of interfaces: one-time and streaming incremental."""
79
95
 
80
96
  def __init__(self):
@@ -90,26 +106,12 @@ class BaseFormatDetector:
90
106
  self.bot_token = ""
91
107
  self.eot_token = ""
92
108
 
93
- def parse_base_json(self, action: Any, tools: List[Function]) -> List[ToolCallItem]:
109
+ def parse_base_json(self, action: Any, tools: List[Tool]) -> List[ToolCallItem]:
94
110
  tool_indices = {
95
111
  tool.function.name: i for i, tool in enumerate(tools) if tool.function.name
96
112
  }
97
113
  if not isinstance(action, list):
98
- name = action.get("name")
99
- if not name or name not in tool_indices:
100
- logger.warning(f"Model attempted to call undefined function: {name}")
101
- return []
102
-
103
- return [
104
- ToolCallItem(
105
- tool_index=tool_indices[name],
106
- name=name,
107
- parameters=json.dumps(
108
- action.get("parameters") or action.get("arguments", {}),
109
- ensure_ascii=False,
110
- ),
111
- )
112
- ]
114
+ action = [action]
113
115
 
114
116
  results = []
115
117
  for act in action:
@@ -125,19 +127,22 @@ class BaseFormatDetector:
125
127
  ),
126
128
  )
127
129
  )
130
+ else:
131
+ logger.warning(f"Model attempted to call undefined function: {name}")
128
132
 
129
133
  return results
130
134
 
131
- def detect_and_parse(self, text: str, tools: List[Function]) -> List[ToolCallItem]:
135
+ @abstractmethod
136
+ def detect_and_parse(self, text: str, tools: List[Tool]) -> StreamingParseResult:
132
137
  """
133
138
  Parses the text in one go. Returns success=True if the format matches, otherwise False.
134
139
  Note that leftover_text here represents "content that this parser will not consume further".
135
140
  """
136
141
  action = json.loads(text)
137
- return self.parse_base_json(action, tools)
142
+ return StreamingParseResult(calls=self.parse_base_json(action, tools))
138
143
 
139
144
  def parse_streaming_increment(
140
- self, new_text: str, tools: List[Function]
145
+ self, new_text: str, tools: List[Tool]
141
146
  ) -> StreamingParseResult:
142
147
  """
143
148
  Streaming incremental parsing with tool validation.
@@ -196,7 +201,7 @@ class BaseFormatDetector:
196
201
  obj["arguments"] = obj["parameters"]
197
202
  tool_call_arr.append(obj)
198
203
 
199
- except partial_json_parser.core.exceptions.MalformedJSON:
204
+ except MalformedJSON:
200
205
  return StreamingParseResult()
201
206
 
202
207
  if len(tool_call_arr) == 0:
@@ -302,6 +307,14 @@ class BaseFormatDetector:
302
307
  logger.error(f"Error in parse_streaming_increment: {e}")
303
308
  return StreamingParseResult()
304
309
 
310
+ @abstractmethod
311
+ def has_tool_call(self, text: str) -> bool:
312
+ raise NotImplementedError()
313
+
314
+ @abstractmethod
315
+ def structure_info(self) -> _GetInfoFunc:
316
+ raise NotImplementedError()
317
+
305
318
 
306
319
  class Qwen25Detector(BaseFormatDetector):
307
320
  """
@@ -322,7 +335,7 @@ class Qwen25Detector(BaseFormatDetector):
322
335
  """Check if the text contains a Qwen 2.5 format tool call."""
323
336
  return self.bot_token in text
324
337
 
325
- def detect_and_parse(self, text: str, tools: List[Function]) -> List[ToolCallItem]:
338
+ def detect_and_parse(self, text: str, tools: List[Tool]) -> StreamingParseResult:
326
339
  """
327
340
  One-time parsing: Detects and parses tool calls in the provided text.
328
341
 
@@ -330,15 +343,24 @@ class Qwen25Detector(BaseFormatDetector):
330
343
  :param tools: List of available tools.
331
344
  :return: ParseResult indicating success or failure, consumed text, leftover text, and parsed calls.
332
345
  """
333
- if "<tool_call>" not in text:
334
- return []
335
- pattern = r"<tool_call>(.*?)</tool_call>"
346
+ idx = text.find(self.bot_token)
347
+ normal_text = text[:idx].strip() if idx != -1 else text
348
+ if self.bot_token not in text:
349
+ return StreamingParseResult(normal_text=normal_text, calls=[])
350
+ pattern = rf"{self.bot_token}(.*?){self.eot_token}"
336
351
  match_result_list = re.findall(pattern, text, re.DOTALL)
337
352
  calls = []
338
353
  for match_result in match_result_list:
339
354
  match_result = json.loads(match_result)
340
355
  calls.extend(self.parse_base_json(match_result, tools))
341
- return calls
356
+ return StreamingParseResult(normal_text=normal_text, calls=calls)
357
+
358
+ def structure_info(self) -> _GetInfoFunc:
359
+ return lambda name: StructureInfo(
360
+ begin='<tool_call>{"name":"' + name + '", "arguments":',
361
+ end="}</tool_call>",
362
+ trigger="<tool_call>",
363
+ )
342
364
 
343
365
 
344
366
  class MistralDetector(BaseFormatDetector):
@@ -374,7 +396,7 @@ class MistralDetector(BaseFormatDetector):
374
396
  else:
375
397
  return ""
376
398
 
377
- def detect_and_parse(self, text: str, tools: List[Function]) -> List[ToolCallItem]:
399
+ def detect_and_parse(self, text: str, tools: List[Tool]) -> StreamingParseResult:
378
400
  """
379
401
  One-time parsing: Detects and parses tool calls in the provided text.
380
402
 
@@ -382,6 +404,8 @@ class MistralDetector(BaseFormatDetector):
382
404
  :param tools: List of available tools.
383
405
  :return: ParseResult indicating success or failure, consumed text, leftover text, and parsed calls.
384
406
  """
407
+ idx = text.find(self.bot_token)
408
+ normal_text = text[:idx].strip() if idx != -1 else text
385
409
  text = self._clean_text(text)
386
410
  tool_content = text.replace("[TOOL_CALLS]", "").strip()
387
411
  raw_tool_calls = self.tool_call_regex.findall(tool_content)
@@ -391,7 +415,14 @@ class MistralDetector(BaseFormatDetector):
391
415
  function_call_arr = json.loads(raw_tool_call)
392
416
  for match_result in function_call_arr:
393
417
  calls.extend(self.parse_base_json(match_result, tools))
394
- return calls
418
+ return StreamingParseResult(normal_text=normal_text, calls=calls)
419
+
420
+ def structure_info(self) -> _GetInfoFunc:
421
+ return lambda name: StructureInfo(
422
+ begin='[TOOL_CALLS] [{"name":"' + name + '", "arguments":',
423
+ end="}]",
424
+ trigger="[TOOL_CALLS]",
425
+ )
395
426
 
396
427
 
397
428
  class Llama32Detector(BaseFormatDetector):
@@ -411,19 +442,18 @@ class Llama32Detector(BaseFormatDetector):
411
442
  # prefix the output with the <|python_tag|> token
412
443
  return "<|python_tag|>" in text or text.startswith("{")
413
444
 
414
- def detect_and_parse(self, text: str, tools: List[Function]) -> List[ToolCallItem]:
445
+ def detect_and_parse(self, text: str, tools: List[Tool]) -> StreamingParseResult:
415
446
  """Parse function calls from text, handling multiple JSON objects."""
416
447
  if "<|python_tag|>" not in text and not text.startswith("{"):
417
- return []
448
+ return StreamingParseResult(normal_text=text, calls=[])
418
449
 
419
450
  if "<|python_tag|>" in text:
420
- _, action_text = text.split("<|python_tag|>")
451
+ normal_text, action_text = text.split("<|python_tag|>")
421
452
  else:
422
- action_text = text
453
+ normal_text, action_text = "", text
423
454
 
424
455
  # Split by semicolon and process each part
425
456
  json_parts = [part.strip() for part in action_text.split(";") if part.strip()]
426
-
427
457
  all_actions = []
428
458
  for part in json_parts:
429
459
  try:
@@ -434,12 +464,18 @@ class Llama32Detector(BaseFormatDetector):
434
464
  logger.warning(f"Failed to parse JSON part: {part}")
435
465
  logger.warning(f"JSON parse error: {str(e)}")
436
466
  continue
437
-
467
+ calls = []
438
468
  # Only process if we found valid JSON objects
439
469
  if all_actions:
440
- return self.parse_base_json(all_actions, tools)
441
-
442
- return []
470
+ calls = self.parse_base_json(all_actions, tools)
471
+ return StreamingParseResult(normal_text=normal_text, calls=calls)
472
+
473
+ def structure_info(self) -> _GetInfoFunc:
474
+ return lambda name: StructureInfo(
475
+ begin='<|python_tag|>{"name":"' + name + '", "arguments":',
476
+ end="}",
477
+ trigger="<|python_tag|>",
478
+ )
443
479
 
444
480
 
445
481
  class MultiFormatParser:
@@ -449,7 +485,9 @@ class MultiFormatParser:
449
485
  """
450
486
  self.detectors = detectors
451
487
 
452
- def parse_once(self, text: str, tools: List[Function]):
488
+ def parse_once(
489
+ self, text: str, tools: List[Tool]
490
+ ) -> Tuple[str, list[ToolCallItem]]:
453
491
  """
454
492
  One-time parsing: Loop through detectors until there are no new matches or text is exhausted
455
493
  Return: (final_text, all_calls)
@@ -459,15 +497,19 @@ class MultiFormatParser:
459
497
  final_calls = []
460
498
  final_normal_text = text
461
499
  for detector in self.detectors:
462
- tool_call_list = detector.detect_and_parse(text, tools)
500
+ parsed_result = detector.detect_and_parse(text, tools)
501
+ tool_call_list = parsed_result.calls
463
502
  if len(tool_call_list) > 0: # parsed successfully
464
503
  final_calls = tool_call_list
504
+ final_normal_text = parsed_result.normal_text
465
505
  break
466
506
 
467
507
  # leftover_text is the normal text not consumed by any Detector
468
508
  return final_normal_text, final_calls
469
509
 
470
- def parse_streaming_increment(self, new_text: str, tools: List[Function]):
510
+ def parse_streaming_increment(
511
+ self, new_text: str, tools: List[Tool]
512
+ ) -> Tuple[str, list[ToolCallItem]]:
471
513
  """
472
514
  Streaming incremental parsing: Feed new_text to each detector's parse_streaming_increment
473
515
  and merge their produced normal_text/calls to return.
@@ -498,13 +540,13 @@ class FunctionCallParser:
498
540
  and returns the resulting normal_text and calls to the upper layer (or SSE).
499
541
  """
500
542
 
501
- ToolCallParserEnum: Dict[str, BaseFormatDetector] = {
543
+ ToolCallParserEnum: Dict[str, Type[BaseFormatDetector]] = {
502
544
  "llama3": Llama32Detector,
503
545
  "qwen25": Qwen25Detector,
504
546
  "mistral": MistralDetector,
505
547
  }
506
548
 
507
- def __init__(self, tools: List[Function], tool_call_parser: str = None):
549
+ def __init__(self, tools: List[Tool], tool_call_parser: str):
508
550
  detectors = []
509
551
  if tool_call_parser:
510
552
  detector_class = self.ToolCallParserEnum.get(tool_call_parser)
@@ -532,7 +574,7 @@ class FunctionCallParser:
532
574
  return True
533
575
  return False
534
576
 
535
- def parse_non_stream(self, full_text: str):
577
+ def parse_non_stream(self, full_text: str) -> Tuple[str, list[ToolCallItem]]:
536
578
  """
537
579
  Non-streaming call: one-time parsing
538
580
  """
@@ -541,7 +583,7 @@ class FunctionCallParser:
541
583
  )
542
584
  return full_normal_text, calls
543
585
 
544
- def parse_stream_chunk(self, chunk_text: str):
586
+ def parse_stream_chunk(self, chunk_text: str) -> Tuple[str, list[ToolCallItem]]:
545
587
  """
546
588
  Streaming call: incremental parsing
547
589
  """
@@ -549,3 +591,40 @@ class FunctionCallParser:
549
591
  chunk_text, self.tools
550
592
  )
551
593
  return normal_text, calls
594
+
595
+ def structure_infos(self) -> List[_GetInfoFunc]:
596
+ """
597
+ Returns a list of structure_info functions for each detector
598
+ """
599
+ return [
600
+ detector.structure_info() for detector in self.multi_format_parser.detectors
601
+ ]
602
+
603
+ def get_structure_tag(self) -> StructuralTagResponseFormat:
604
+ tool_structures: List[StructuresResponseFormat] = list()
605
+ tool_trigger_set: Set[str] = set()
606
+
607
+ for wrapper in self.structure_infos():
608
+ for tool in self.tools:
609
+ function = tool.function
610
+ name = function.name
611
+ assert name is not None
612
+ info = wrapper(name)
613
+
614
+ # accept all if not strict, otherwise only accept the schema
615
+ schema = function.parameters if function.strict else {}
616
+
617
+ tool_structures.append(
618
+ StructuresResponseFormat(
619
+ begin=info.begin,
620
+ schema=schema, # type: ignore
621
+ end=info.end,
622
+ )
623
+ )
624
+ tool_trigger_set.add(info.trigger)
625
+
626
+ return StructuralTagResponseFormat(
627
+ type="structural_tag",
628
+ structures=tool_structures,
629
+ triggers=list(tool_trigger_set),
630
+ )