sglang 0.4.2.post2__py3-none-any.whl → 0.4.2.post4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. sglang/check_env.py +1 -0
  2. sglang/srt/constrained/outlines_backend.py +4 -1
  3. sglang/srt/function_call_parser.py +96 -69
  4. sglang/srt/layers/attention/double_sparsity_backend.py +1 -3
  5. sglang/srt/layers/attention/flashinfer_backend.py +34 -41
  6. sglang/srt/layers/attention/triton_backend.py +64 -16
  7. sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +337 -3
  8. sglang/srt/layers/attention/triton_ops/extend_attention.py +70 -42
  9. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +20 -5
  10. sglang/srt/layers/quantization/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  11. sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  12. sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  13. sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  14. sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  15. sglang/srt/layers/quantization/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  16. sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  17. sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  18. sglang/srt/layers/quantization/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  19. sglang/srt/layers/quantization/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  20. sglang/srt/layers/quantization/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  21. sglang/srt/layers/quantization/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  22. sglang/srt/layers/quantization/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
  23. sglang/srt/layers/quantization/fp8_kernel.py +43 -10
  24. sglang/srt/lora/backend/__init__.py +25 -5
  25. sglang/srt/lora/backend/base_backend.py +31 -9
  26. sglang/srt/lora/backend/flashinfer_backend.py +41 -4
  27. sglang/srt/lora/backend/triton_backend.py +34 -4
  28. sglang/srt/lora/layers.py +293 -0
  29. sglang/srt/lora/lora.py +101 -326
  30. sglang/srt/lora/lora_manager.py +101 -269
  31. sglang/srt/lora/mem_pool.py +174 -0
  32. sglang/srt/lora/triton_ops/__init__.py +7 -1
  33. sglang/srt/lora/triton_ops/gate_up_lora_b.py +170 -0
  34. sglang/srt/lora/triton_ops/qkv_lora_b.py +5 -5
  35. sglang/srt/lora/triton_ops/sgemm_lora_a.py +2 -2
  36. sglang/srt/lora/triton_ops/sgemm_lora_b.py +2 -2
  37. sglang/srt/lora/utils.py +141 -0
  38. sglang/srt/model_executor/cuda_graph_runner.py +4 -0
  39. sglang/srt/models/llama.py +8 -3
  40. sglang/srt/speculative/build_eagle_tree.py +482 -102
  41. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +1 -0
  42. sglang/srt/speculative/eagle_utils.py +134 -61
  43. sglang/srt/speculative/eagle_worker.py +1 -0
  44. sglang/version.py +1 -1
  45. {sglang-0.4.2.post2.dist-info → sglang-0.4.2.post4.dist-info}/METADATA +4 -4
  46. {sglang-0.4.2.post2.dist-info → sglang-0.4.2.post4.dist-info}/RECORD +49 -32
  47. {sglang-0.4.2.post2.dist-info → sglang-0.4.2.post4.dist-info}/LICENSE +0 -0
  48. {sglang-0.4.2.post2.dist-info → sglang-0.4.2.post4.dist-info}/WHEEL +0 -0
  49. {sglang-0.4.2.post2.dist-info → sglang-0.4.2.post4.dist-info}/top_level.txt +0 -0
@@ -4,6 +4,7 @@ import dataclasses
4
4
  from typing import TYPE_CHECKING, List
5
5
 
6
6
  import torch
7
+ import torch.nn.functional as F
7
8
  import triton
8
9
  import triton.language as tl
9
10
 
@@ -11,7 +12,14 @@ from sglang.srt.layers.attention.flashinfer_backend import (
11
12
  create_flashinfer_kv_indices_triton,
12
13
  )
13
14
  from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode
14
- from sglang.srt.speculative.build_eagle_tree import build_tree_kernel
15
+ from sglang.srt.speculative.build_eagle_tree import (
16
+ build_tree_kernel,
17
+ build_tree_kernel_efficient,
18
+ )
19
+ from sglang.srt.utils import is_cuda_available
20
+
21
+ if is_cuda_available():
22
+ from sgl_kernel import tree_speculative_sampling_target_only
15
23
 
16
24
  if TYPE_CHECKING:
17
25
  from sglang.srt.managers.schedule_batch import ScheduleBatch
@@ -160,8 +168,11 @@ class EagleVerifyInput:
160
168
  custom_mask: torch.Tensor
161
169
  positions: torch.Tensor
162
170
  retrive_index: torch.Tensor
171
+ retrive_next_token: torch.Tensor
172
+ retrive_next_sibling: torch.Tensor
163
173
  retrive_cum_len: torch.Tensor
164
174
  draft_token_num: int
175
+ spec_steps: int
165
176
  capture_hidden_mode: CaptureHiddenMode
166
177
 
167
178
  @classmethod
@@ -175,38 +186,68 @@ class EagleVerifyInput:
175
186
  seq_lens_sum: int,
176
187
  topk: int,
177
188
  spec_steps: int,
178
- num_verify_token: int,
189
+ num_verify_tokens: int,
190
+ is_all_greedy: bool,
179
191
  ):
180
- score_list = torch.cat(score_list, dim=1).flatten(
181
- 1
182
- ) # b, n, topk; n= 1 + (num_steps-1) * self.topk
183
- ss_token_list = torch.cat(
184
- token_list, dim=1
185
- ) # b, (self.topk + (num_steps-1) * self.topk)
186
- top_scores = torch.topk(score_list, num_verify_token - 1, dim=-1)
187
- top_scores_index = top_scores.indices
188
- top_scores_index = torch.sort(top_scores_index).values
189
- draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1)
190
- draft_tokens = torch.cat((verified_id.unsqueeze(1), draft_tokens), dim=1)
191
- parent_list = torch.cat(parents_list[:-1], dim=1)
192
- tree_mask, position, retrive_index, retrive_cum_len = build_tree_kernel(
193
- parent_list,
194
- top_scores_index,
195
- seq_lens,
196
- seq_lens_sum,
197
- topk,
198
- spec_steps,
199
- num_verify_token,
200
- )
201
- return cls(
202
- draft_tokens.flatten(),
203
- tree_mask,
204
- position,
205
- retrive_index,
206
- retrive_cum_len,
207
- num_verify_token,
208
- CaptureHiddenMode.FULL,
209
- )
192
+ if is_all_greedy:
193
+ tree_mask, position, retrive_index, retrive_cum_len, draft_tokens = (
194
+ build_tree_kernel(
195
+ verified_id,
196
+ score_list, # b, n, topk; n= 1 + (num_steps-1) * self.topk
197
+ token_list,
198
+ parents_list,
199
+ seq_lens,
200
+ seq_lens_sum,
201
+ topk,
202
+ spec_steps,
203
+ num_verify_tokens,
204
+ )
205
+ )
206
+
207
+ return cls(
208
+ draft_tokens,
209
+ tree_mask,
210
+ position,
211
+ retrive_index,
212
+ None,
213
+ None,
214
+ retrive_cum_len,
215
+ num_verify_tokens,
216
+ spec_steps,
217
+ CaptureHiddenMode.FULL,
218
+ )
219
+ else:
220
+ (
221
+ tree_mask,
222
+ position,
223
+ retrive_index,
224
+ retrive_next_token,
225
+ retrive_next_sibling,
226
+ draft_tokens,
227
+ ) = build_tree_kernel_efficient(
228
+ verified_id,
229
+ score_list,
230
+ token_list,
231
+ parents_list,
232
+ seq_lens,
233
+ seq_lens_sum,
234
+ topk,
235
+ spec_steps,
236
+ num_verify_tokens,
237
+ )
238
+
239
+ return cls(
240
+ draft_tokens,
241
+ tree_mask,
242
+ position,
243
+ retrive_index,
244
+ retrive_next_token,
245
+ retrive_next_sibling,
246
+ None,
247
+ num_verify_tokens,
248
+ spec_steps,
249
+ CaptureHiddenMode.FULL,
250
+ )
210
251
 
211
252
  def prepare_for_verify(self, batch: ScheduleBatch):
212
253
  batch.input_ids = self.draft_token
@@ -258,39 +299,71 @@ class EagleVerifyInput:
258
299
  return kv_indices, cum_kv_seq_len, qo_indptr, self.custom_mask
259
300
 
260
301
  def verify(self, batch: ScheduleBatch, logits_output: torch.Tensor) -> torch.Tensor:
261
- predict = torch.argmax(logits_output.next_token_logits, dim=-1)
262
- predict = torch.cat(
263
- [predict, torch.full([1], -1, dtype=torch.long, device="cuda")], dim=-1
264
- )
265
302
  draft_token = torch.cat(
266
- [self.draft_token, torch.full([1], -1, dtype=torch.long, device="cuda")],
303
+ [self.draft_token, torch.full([1], -1, dtype=torch.int32, device="cuda")],
267
304
  dim=-1,
268
305
  )
269
- target_predict = predict[self.retrive_index]
270
306
  candidates = draft_token[self.retrive_index]
271
- # logits = logits_output.next_token_logits[self.retrive_index]
272
- # target_predict = torch.argmax(logits[:, :-1], dim=-1)
273
- accept_mask = candidates[:, 1:] == target_predict[:, :-1]
274
- accept_mask = (torch.cumprod(accept_mask, dim=1)).sum(dim=1)
275
- bs = self.retrive_cum_len.numel() - 1
276
-
277
- max_draft_len = self.retrive_index.shape[-1]
278
- accept_index = torch.full(
279
- (bs, max_draft_len), -1, dtype=torch.long, device="cuda"
280
- )
281
- accept_length = torch.empty((bs,), dtype=torch.int, device="cuda")
282
- extract_index = torch.full((bs * 2,), 0, dtype=torch.int, device="cuda")
283
- eagle_verify_retrive[(bs,)](
284
- self.retrive_index.contiguous(),
285
- accept_mask.contiguous(),
286
- self.retrive_cum_len,
287
- accept_index,
288
- accept_length,
289
- extract_index,
290
- max_draft_len,
291
- self.draft_token_num,
292
- triton.next_power_of_2(max_draft_len),
293
- )
307
+ if batch.sampling_info.is_all_greedy:
308
+ # temp == 0
309
+ bs = self.retrive_cum_len.numel() - 1
310
+ predict = torch.argmax(logits_output.next_token_logits, dim=-1)
311
+ predict = torch.cat(
312
+ [predict, torch.full([1], -1, dtype=torch.int32, device="cuda")], dim=-1
313
+ )
314
+ target_predict = predict[self.retrive_index]
315
+ # logits = logits_output.next_token_logits[self.retrive_index]
316
+ # target_predict = torch.argmax(logits[:, :-1], dim=-1)
317
+ accept_mask = candidates[:, 1:] == target_predict[:, :-1]
318
+
319
+ accept_mask = (torch.cumprod(accept_mask, dim=1)).sum(dim=1)
320
+ max_draft_len = self.retrive_index.shape[-1]
321
+ accept_index = torch.full(
322
+ (bs, max_draft_len), -1, dtype=torch.int32, device="cuda"
323
+ )
324
+ accept_length = torch.empty((bs,), dtype=torch.int, device="cuda")
325
+ extract_index = torch.full((bs * 2,), 0, dtype=torch.int, device="cuda")
326
+ eagle_verify_retrive[(bs,)](
327
+ self.retrive_index.contiguous(),
328
+ accept_mask.contiguous(),
329
+ self.retrive_cum_len,
330
+ accept_index,
331
+ accept_length,
332
+ extract_index,
333
+ max_draft_len,
334
+ self.draft_token_num,
335
+ triton.next_power_of_2(max_draft_len),
336
+ )
337
+ else:
338
+ # temp > 0
339
+ bs = self.retrive_index.shape[0]
340
+ predict_shape = list(logits_output.next_token_logits.shape)[:-1]
341
+ predict_shape[-1] += 1
342
+ target_logits = logits_output.next_token_logits[self.retrive_index]
343
+ predict = torch.full(predict_shape, -1, dtype=torch.int32, device="cuda")
344
+ accept_index = torch.full(
345
+ (bs, self.spec_steps + 1), -1, dtype=torch.int32, device="cuda"
346
+ )
347
+ accept_length = torch.empty((bs,), dtype=torch.int32, device="cuda")
348
+ expanded_temperature = batch.sampling_info.temperatures.unsqueeze(1)
349
+ target_probs = F.softmax(target_logits / expanded_temperature, dim=-1)
350
+ draft_probs = torch.full_like(
351
+ target_probs, 0, dtype=torch.float32, device="cuda"
352
+ )
353
+ coins = torch.rand_like(candidates, dtype=torch.float32, device="cuda")
354
+ tree_speculative_sampling_target_only(
355
+ predicts=predict, # mutable
356
+ accept_index=accept_index, # mutable
357
+ accept_token_num=accept_length, # mutable
358
+ candidates=candidates.to(torch.int32),
359
+ retrive_index=self.retrive_index.to(torch.int32),
360
+ retrive_next_token=self.retrive_next_token.to(torch.int32),
361
+ retrive_next_sibling=self.retrive_next_sibling.to(torch.int32),
362
+ uniform_samples=coins,
363
+ target_probs=target_probs,
364
+ draft_probs=draft_probs,
365
+ deterministic=True,
366
+ )
294
367
 
295
368
  new_accept_index = []
296
369
  unfinished_index = []
@@ -185,6 +185,7 @@ class EAGLEWorker(TpModelWorker):
185
185
  self.topk,
186
186
  self.speculative_num_steps,
187
187
  self.server_args.speculative_num_draft_tokens,
188
+ batch.sampling_info.is_all_greedy,
188
189
  )
189
190
 
190
191
  # Free cache locations
sglang/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.4.2.post2"
1
+ __version__ = "0.4.2.post4"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: sglang
3
- Version: 0.4.2.post2
3
+ Version: 0.4.2.post4
4
4
  Summary: SGLang is yet another fast serving framework for large language models and vision language models.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -239,11 +239,11 @@ Requires-Dist: xgrammar>=0.1.10; extra == "runtime-common"
239
239
  Provides-Extra: srt
240
240
  Requires-Dist: sglang[runtime_common]; extra == "srt"
241
241
  Requires-Dist: cuda-python; extra == "srt"
242
- Requires-Dist: sgl-kernel>=0.0.3.post1; extra == "srt"
242
+ Requires-Dist: sgl-kernel>=0.0.3.post3; extra == "srt"
243
243
  Requires-Dist: torch; extra == "srt"
244
- Requires-Dist: vllm==0.6.4.post1; extra == "srt"
244
+ Requires-Dist: vllm<=0.7.2,>=0.6.4.post1; extra == "srt"
245
245
  Requires-Dist: flashinfer_python>=0.2.0.post2; extra == "srt"
246
- Requires-Dist: outlines<0.1.0,>=0.0.44; extra == "srt"
246
+ Requires-Dist: outlines<=0.1.11,>=0.0.44; extra == "srt"
247
247
  Provides-Extra: srt-hip
248
248
  Requires-Dist: sglang[runtime_common]; extra == "srt-hip"
249
249
  Requires-Dist: torch; extra == "srt-hip"
@@ -5,12 +5,12 @@ sglang/bench_offline_throughput.py,sha256=vIoF87HIpezB1x-xWzUl6SdXi88Fza8g4hDU7G
5
5
  sglang/bench_one_batch.py,sha256=d-LuRHEyDZjh180OCN5fqTjr8Zusk3zc0vhoJ33x0B0,17905
6
6
  sglang/bench_one_batch_server.py,sha256=iu73SsvYwnuRktYZDz1P6psMiRx8MbEbF5sbsYJdzYg,5962
7
7
  sglang/bench_serving.py,sha256=jYU3rYIDkzpYhjSpJw_IkEs_UNQfouNW4phs3z5TObc,54303
8
- sglang/check_env.py,sha256=4OqpZaEJOfBM6-vtPILto5kqDmgiZM1Koc7lK78A7CI,8427
8
+ sglang/check_env.py,sha256=lDVA3ybt1wOE33HIMpkkU7zGRgLWez1_ifRRJ8qxbtw,8445
9
9
  sglang/global_config.py,sha256=fnT0U9vlHdGaQFKN9tYTnUF4-eVW4HYQURd5zvPtrg0,1286
10
10
  sglang/launch_server.py,sha256=mDXfwha8LHpWQJekcCosR98QhCQsbmilsBlI5jAIgg0,420
11
11
  sglang/llama3_eval.py,sha256=gWSboDchIGybIce88bJlrCG0yiLZ513mw4gcutJlzGM,10017
12
12
  sglang/utils.py,sha256=7HpOrPBhMivWH719m7Dy1rjrAXOAsnqelpwNBBbvjqs,13319
13
- sglang/version.py,sha256=64ujEkLGOA9yAnhsrnI5zBOk5lJIP4Z-b7gpnc9vbUo,28
13
+ sglang/version.py,sha256=4aRfll4rDDWBVERpTNftyHYiEf_Z50L3jvLng1lO-j4,28
14
14
  sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  sglang/lang/chat_template.py,sha256=v4SyYViPHX3i3XT46F7vlARn4UaSiP3PBpTGtzO6uRY,17006
16
16
  sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
@@ -29,7 +29,7 @@ sglang/srt/_custom_ops.py,sha256=7jL5BTcoS8PmR56y2Qsa3q8emI-tmrJuV4hLTwLVFBE,504
29
29
  sglang/srt/aio_rwlock.py,sha256=6LYtOdeTUY3hkfa1dmYkgsaF2ttrwIF3hUWz2AZ2fqw,2970
30
30
  sglang/srt/conversation.py,sha256=USUoYiJf5DdHz7Ouclu30k3QSxMiem4WgZrA148MpSA,21695
31
31
  sglang/srt/custom_op.py,sha256=M5oqlgh32vAVeStFCruydTUfi_blGFJihVTnQBEOvwo,1134
32
- sglang/srt/function_call_parser.py,sha256=HMqCCd-YQeyADV_gTCduF9gmw2k3bRAkoJYcFsK3w3c,19230
32
+ sglang/srt/function_call_parser.py,sha256=YmagXt1BIuTbeiWmSleZwJFCFR5r5EFqVQqKnJDYXiE,19568
33
33
  sglang/srt/hf_transformers_utils.py,sha256=_24uqCkZ4dvS9Uc5p2cCzX0Q8ShUzrh_Hp6mvg7hxHY,7729
34
34
  sglang/srt/mm_utils.py,sha256=1ScBunw_x4W8ebM_AcJ62-1T2mfT8NlMJqdAhkF1lb0,12367
35
35
  sglang/srt/model_parallel.py,sha256=eLXZhvJ4wG6dh0FontNCIdVZvHYdWgaeY-5cu7TD9tE,6078
@@ -46,7 +46,7 @@ sglang/srt/configs/load_config.py,sha256=la2ezNRcUZs7qiTYta2KEXqZ0U4TcmWW3U0sjoH
46
46
  sglang/srt/configs/model_config.py,sha256=sQIOfslBRzhOjucZdd8zE8nO9PEOc7zc6cZMbguQgoY,16876
47
47
  sglang/srt/configs/qwen2vl.py,sha256=ZjLy9v2eZY4wptUfY3CWgYKg2B5DDrkfCSyTy_Zf_bg,4351
48
48
  sglang/srt/constrained/base_grammar_backend.py,sha256=JFQFiAZLSqV6vck-ewIEzEEyncWLbRz_gkvkqpC282k,3185
49
- sglang/srt/constrained/outlines_backend.py,sha256=kNeJzr2NRqBy8AMiUlZUly0FmpR0raMB59QRhlfY_Tc,6970
49
+ sglang/srt/constrained/outlines_backend.py,sha256=yPYgz44n-rSCStGGkS1lGazFiQzN7gqwSvpJ2YG0co4,7081
50
50
  sglang/srt/constrained/outlines_jump_forward.py,sha256=iZWXeR3gNYoMubLGyFmLPO4V2YsN5DiGjD71Xk9iFaE,6418
51
51
  sglang/srt/constrained/xgrammar_backend.py,sha256=l-37tdrPsp7xnxZpY8_0W1DnZSiBAH9e-BcwiAO8b0g,5048
52
52
  sglang/srt/distributed/__init__.py,sha256=jFOcyt-wFAPMBUAf9zkZalNQlt-4rqmT6pCKBz1E4qo,149
@@ -76,14 +76,14 @@ sglang/srt/layers/sampler.py,sha256=FIkh6sh91Fh5R8QJ6x66bJ8Y-xl5EfT4XVPXGXJ1l7I,
76
76
  sglang/srt/layers/torchao_utils.py,sha256=Ws24FdRBSkTpyeyA6bQrdDm-W5wfDxKvSIPUSahyMfA,4063
77
77
  sglang/srt/layers/vocab_parallel_embedding.py,sha256=txcjkuSDa6gZwESKj8X-HSLhAnMmDXL0FmFWY9SKqik,22155
78
78
  sglang/srt/layers/attention/__init__.py,sha256=KlQ0fl-o9v_NxBDhNZ4dPW2uQ2HeJjLm-0MTMWgaa28,2980
79
- sglang/srt/layers/attention/double_sparsity_backend.py,sha256=QEDF8tQKMkh-nbt4jHKHZhhgHuV0Fla_BPzzoo9JfT4,9231
80
- sglang/srt/layers/attention/flashinfer_backend.py,sha256=9BJEAQ5IcSMGvPfa6_D3cP9Gbo2XQ5GHBnF7cw2Rsng,42933
79
+ sglang/srt/layers/attention/double_sparsity_backend.py,sha256=4mVyFPfZxPTwkQHGNCfI_4hQ8CbsWXJfxz-IQW77gAc,9143
80
+ sglang/srt/layers/attention/flashinfer_backend.py,sha256=BlirMAu8dDicGdpZiW51hx9FpiU3EY-MNhZ1vdCJxGo,42398
81
81
  sglang/srt/layers/attention/torch_native_backend.py,sha256=KrcAqTLVZLtwgOmB0xhwUUsX32M-5LYZpNxaRNT4VuA,9252
82
- sglang/srt/layers/attention/triton_backend.py,sha256=PZU496wPzyRopA600riR5sxz-gIz8u9TYz0MzmMuX5Y,8858
82
+ sglang/srt/layers/attention/triton_backend.py,sha256=mtLs768rhtCF_BVAV_rmYac0U4R1_HHc-9ic4JratsY,10100
83
83
  sglang/srt/layers/attention/vision.py,sha256=zLjKmzUlkgq1RFcP3b4EPArOAKovoaDLgYfM5SyB2wM,13181
84
84
  sglang/srt/layers/attention/triton_ops/decode_attention.py,sha256=tcUAdacBWTpZmro7vZeRPasfwRWFlCR4bxfGpFOYgZ8,17831
85
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py,sha256=1pSXfY3EEaM7iRN_uElHnAfsrJMhTFbu9fj8Z0O2PbE,21480
86
- sglang/srt/layers/attention/triton_ops/extend_attention.py,sha256=DWOZXSTVN5ZbcFjDjcqs-nPdUkxSwum0SVXhVKqwh2g,11688
85
+ sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py,sha256=ztLWKeW-260EiIw3kCAbtUTUHHxAICz2mVxZJFes4oI,31167
86
+ sglang/srt/layers/attention/triton_ops/extend_attention.py,sha256=R6QgrcBf6XuLzQ1jamrILNypaPi3ynkMPTfjae0d3JA,12695
87
87
  sglang/srt/layers/attention/triton_ops/prefill_attention.py,sha256=Y66gZ37u0GKMPtI8n5MbO6uOxRuGEmKIG0IPbJTOqAM,6213
88
88
  sglang/srt/layers/moe/fused_moe_native.py,sha256=OEWpM93X5tJG4-rwz5qmdpTzEUR73zun29YRV3bZglY,4269
89
89
  sglang/srt/layers/moe/topk.py,sha256=6A4W1ztlV2dQvkXcPJvFvAg0QEhE58Q7eE7iw8N36J4,7230
@@ -91,7 +91,7 @@ sglang/srt/layers/moe/ep_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
91
91
  sglang/srt/layers/moe/ep_moe/kernels.py,sha256=wb_S2qLxoWWgQu9coXy0XLNGvHzdZSdwXr0PGy4QySg,10940
92
92
  sglang/srt/layers/moe/ep_moe/layer.py,sha256=aS8t1XUvlTnO9IQaxGjW5bOXP4FrJDXzymEIvlIDMro,22603
93
93
  sglang/srt/layers/moe/fused_moe_triton/__init__.py,sha256=h9yMFAL_bagUf-qBED8gSWdCOb7d8IdA-pE-L_nIg8E,842
94
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py,sha256=_uUn0EKf_trPyKP4jfCytKKgnC3ziUM_X9L_PbaXhbE,37241
94
+ sglang/srt/layers/moe/fused_moe_triton/fused_moe.py,sha256=NckXo7tQ0rp3trdAq5TB5mP4MmCdjm6RIN157d9Efvk,37720
95
95
  sglang/srt/layers/moe/fused_moe_triton/layer.py,sha256=-49WRpq9OtRZocQjW-YNcB_ruK09nIJqGHKNa8CJsws,22691
96
96
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json",sha256=iNGsE2ZeVnQEnN4A8UJ9Jv0d3hbRF2MJ9oBgjup5Szk,2737
97
97
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json",sha256=JJN0hryyLr5Zv3dSS7C8cPFhAwTT6XxUVnBGMZvV6JA,2752
@@ -196,24 +196,30 @@ sglang/srt/layers/moe/fused_moe_triton/layer.py,sha256=-49WRpq9OtRZocQjW-YNcB_ru
196
196
  sglang/srt/layers/quantization/__init__.py,sha256=_Sba1KQnmZNKGDKM1MfBs2T3uDqOHfeW6IHO2mTUvfs,4471
197
197
  sglang/srt/layers/quantization/base_config.py,sha256=daK9p0aijMszLUm1W4Pc33FK87MdqYK1NoWFKif-j80,4599
198
198
  sglang/srt/layers/quantization/fp8.py,sha256=ibttPVCUsCQ0LXy7FUb8wnzqGcGZQXQLqwCB4a2fai4,35160
199
- sglang/srt/layers/quantization/fp8_kernel.py,sha256=gm_mDHeBswggsaNMEo0niayx9DS2mGJkLkrnnOYQnlU,15709
199
+ sglang/srt/layers/quantization/fp8_kernel.py,sha256=qlXXT9WO3TKxZv9r0rAdcDjO_jZYobtKnvTxmHDrfoo,16304
200
200
  sglang/srt/layers/quantization/fp8_utils.py,sha256=7v-RNwuYXa-gPO3msRDB0Z3uajOQMYd2Cj0NMoq1hg4,4148
201
201
  sglang/srt/layers/quantization/int8_kernel.py,sha256=t_BLVf8XjOyn7S3Lu3B4hXvw8DvTg4Anco7TNadL58U,1436
202
202
  sglang/srt/layers/quantization/modelopt_quant.py,sha256=_VdVz77dTP-IczPeFrdH6Ttro2D26BZvMlZkCKWj_5o,6200
203
203
  sglang/srt/layers/quantization/w8a8_int8.py,sha256=PBapNo27rkUdX95E0ihUZeHTXP2Id3CwlNlMU8GIuZc,3344
204
204
  "sglang/srt/layers/quantization/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=tkLjwLC_aVXhzuvo-2QHkojXZauPJsf3jNHFn1S7uRA,3244
205
+ "sglang/srt/layers/quantization/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=CPo1WRF0HgsQMPBkvpoImElQMrfwpJLhEvL86e6fkPU,3247
205
206
  "sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=xqJNygFgPCe4jDpkfVOWCXpuNMUjmssdD8oGhp2iXv8,3726
206
207
  "sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=xqJNygFgPCe4jDpkfVOWCXpuNMUjmssdD8oGhp2iXv8,3726
207
208
  "sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=Qoj9rLLRDbKM4IKBCXvN8RcxzSmNPd0TQUiM7CXDqHI,3241
209
+ "sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=UZljnxxCSjwnZlX3OgKWZJGXCf5BWF_agEpNX8I4Zxc,3248
208
210
  "sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=4D3Ku4y7BCVEJzueKvQC_KvOR026w3ONWsxfsA_YrEc,3249
209
211
  "sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=7v4tp0RaT4vxF4urSBrkK5FR_5ikeFQ1htF3DwDl1lk,3249
212
+ "sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=3matoCzEe4aexwoe7YTmkjyE4NA8khWXjL5EySuNwzA,3254
210
213
  "sglang/srt/layers/quantization/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=0J2MFgaLkv-mfVE5x363lgVKYU6miLG_xRO3tJUga_M,3249
211
214
  "sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=4ubbhwSFX_XbefRLEkLoWxJkcetFWPzsszPu0X3_Wrw,3242
215
+ "sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=9f8Ib4gLEFSfdNpO8IL8uiONImvqnlPbJrZ0HM3OB-o,3247
212
216
  "sglang/srt/layers/quantization/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=FhyniGTx5QeCuVrBSVTQys6q05Pr5lPEcPykpAX7Iyo,3247
213
217
  "sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=0v17v78pETXv6S2ZoibekxOVhiTmCm807DYG4DONUck,3259
214
218
  "sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=I44PvJj758-sw_fCOVROLTpG0NQ5_5PCYyQcpZC1YSY,3259
219
+ "sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=tG5_iVeRBHTgHX-liOf79nWRjj_lUZ-NQWTbBrBgORQ,3246
215
220
  "sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=-CVHqClROli9FWe_FnlnuAG2LiFivDFK_nghH6t-BWc,3261
216
221
  "sglang/srt/layers/quantization/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=GsLoYkaZ2p4Qu0Coj-X90s7JWyfZBOloIHPlyNKSIes,3246
222
+ "sglang/srt/layers/quantization/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=BpKweY4HfBx5xvqSvwNahy9x7R5FH-YK8j6rLFQdKwo,3248
217
223
  "sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=I6a5wQ0R3cBp8ix_PDamWZN2aJmV_1p0tg430L3Updg,3727
218
224
  "sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=I6a5wQ0R3cBp8ix_PDamWZN2aJmV_1p0tg430L3Updg,3727
219
225
  "sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=8zuJhFdd6aXREpiqPFhIKEFWA5lgLVGrG0-a9UXcBqk,3262
@@ -223,6 +229,7 @@ sglang/srt/layers/quantization/w8a8_int8.py,sha256=PBapNo27rkUdX95E0ihUZeHTXP2Id
223
229
  "sglang/srt/layers/quantization/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=M3nwpZd2-0w263ywZt9gaw53z7MN673T5tl4tc43Ntk,3249
224
230
  "sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=vLoV3JMtvHOKpR5D1BeCQPMuYlWUAlrXu54gByNkwKY,3266
225
231
  "sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=Mtw7a9BSspj2TzC-aPxE82o1LEvwzgbUuIofwRxUNA0,3263
232
+ "sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=B0lo3SuoQXhBEnojH2TwpVeurvlKD8yI8kQrJ5ORhWU,3249
226
233
  "sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=NHdx3tZnfLF7NplswMzcTRbQEQFLtChg4rd7GU9lMbM,3262
227
234
  "sglang/srt/layers/quantization/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=laYeH4w0iZOj2Yg3vDgtKoroNQnwBEX4GUGLrO9095I,3260
228
235
  "sglang/srt/layers/quantization/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=TWcPDZ2miQMD6OWDC1FteRs80ND9RC-oJL3PLVmJbtI,3257
@@ -244,17 +251,23 @@ sglang/srt/layers/quantization/w8a8_int8.py,sha256=PBapNo27rkUdX95E0ihUZeHTXP2Id
244
251
  "sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=xsFMrq4aybClfJyhm78c1Hf1jcyFSGnfygdHYp7OhSQ,3727
245
252
  "sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=qG6v3n3qF6LE2DdGT-mDIXecZ1a7vg7p3QqXYCMX85k,3254
246
253
  "sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=EgFTGyW_YuDwyEDUCoGglyI1ETdj9J7AR0UfJ86jMoI,3249
254
+ "sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=BpKweY4HfBx5xvqSvwNahy9x7R5FH-YK8j6rLFQdKwo,3248
247
255
  "sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=NiorJgOotxkQcP49ID3z5al1UA4QQDrT8MvbCwAWL5Y,3248
248
256
  "sglang/srt/layers/quantization/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=bPQWtvaJrzOOIgI-R-MIxs_f4yC_FobkDydu3OkOFtg,3252
257
+ "sglang/srt/layers/quantization/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=h32lCTFilLlyKbMeuJvNWG1v0yJJzNj93kwSvlrHfaY,3249
249
258
  "sglang/srt/layers/quantization/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=ZRgiuHZ2SFC6u-WV5DGwau4k1RiPLI67eENO0e-5Ylg,3253
250
259
  "sglang/srt/layers/quantization/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=-hP_P8NM0K04mGzTmpGBNibQ5xxh5gPz5WtoMXhoz1E,3253
260
+ "sglang/srt/layers/quantization/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=0jX-z2lTgVw7ABLmWsIsQdqW4EjmbXKRDHye_XPLCAE,3245
251
261
  "sglang/srt/layers/quantization/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=FB5Le4obvPoCgFSnC_3-Uh59n-Mt4Rol8saXVcK3RPw,3252
252
262
  "sglang/srt/layers/quantization/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=kLviGvVngpgOuelfKtvv9Is7MWQ89rGxlomMRP6t0Ic,3250
263
+ "sglang/srt/layers/quantization/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=_exM3wJ3FMmGHweBcH-8IxwZBzaOmPaF3ScMM6KDpiY,3253
253
264
  "sglang/srt/layers/quantization/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=vlys0Zi_CaaU41OHGbWSBtbVglFi98bgqEySBMc9Sdg,3258
254
265
  "sglang/srt/layers/quantization/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=YWyByOlKSqp5lbcUa8eu6N2dHRKJqJDbCDSjdDQJngg,3249
266
+ "sglang/srt/layers/quantization/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=ENRWYdUwI0ooHb6IwcHliupRWOPnw-7-WtxZB-qQGJI,3245
255
267
  "sglang/srt/layers/quantization/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=j5PTW0IC4Z2yQIygcdICaOsvb639u6Mv-ZpJYkrBQ2k,3254
256
268
  "sglang/srt/layers/quantization/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=Ggy4hejkcWjiw5Bi-wGzSP5JLVuvOjip_rbjXFBJZbs,3257
257
269
  "sglang/srt/layers/quantization/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=Xy4mgZx5iiEvuv2ydO4dFNIT8s0jgBhNHE1vu93fGJM,3250
270
+ "sglang/srt/layers/quantization/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=TdWuE2RIsIyr4Im24MuWK3XyiNtbhO_hAiAXDz5gNUk,3246
258
271
  "sglang/srt/layers/quantization/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=x476nFeltB_2iO9_6y-z2P_unAbh7ghLPFi5z2LOTOo,3253
259
272
  "sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=sVbH4YRLTxBqvTh_6xbtXkj3orOrKytlwM-_4gtD6IY,3725
260
273
  "sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=sVbH4YRLTxBqvTh_6xbtXkj3orOrKytlwM-_4gtD6IY,3725
@@ -270,17 +283,21 @@ sglang/srt/layers/quantization/w8a8_int8.py,sha256=PBapNo27rkUdX95E0ihUZeHTXP2Id
270
283
  "sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=aoq4792zPo87QO7VrEf9fb_vj0zPiHIu7Ho9aMXwcLw,3731
271
284
  "sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=PD4AJYCkHfy2ivv9baMouFXzBTy0eKMumbAfxfm91HI,3256
272
285
  "sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=FFBjSWlpKXMxfAUUYUqXbOK_Hd7qBeBsfbcaa9uB4qY,3249
273
- sglang/srt/lora/lora.py,sha256=71sVFPB23THA4O06v2_G91vaY3MhAchsti-LErycJ6g,14869
286
+ sglang/srt/lora/layers.py,sha256=r34oprzwyE3SWPvaNkBvXWPtfa-0IY987_bjj36ySfw,9996
287
+ sglang/srt/lora/lora.py,sha256=_WrZxS6-sarwUPvumcReyKGrH6fSCd8-UsoX56aQJ4s,7293
274
288
  sglang/srt/lora/lora_config.py,sha256=a2fTQESlCbG1xLiBYy4ptZ6c0Burcqyg1_6V1XSok-Y,1506
275
- sglang/srt/lora/lora_manager.py,sha256=fa-Sy4b3k_YzJJY5XQgxCX5AycnraF-f600jDBaXKzo,13991
276
- sglang/srt/lora/backend/__init__.py,sha256=ul5yTkHrwDTv8RZXu_Miw5_XpBlxqKeGmLfUT6Ph7EE,211
277
- sglang/srt/lora/backend/base_backend.py,sha256=MZfUhIwujwDyN2hFoVMB3N_gJokel6aU4Scc8fv5_L0,3575
278
- sglang/srt/lora/backend/flashinfer_backend.py,sha256=qXqtt4w_-Gqkk-j27CHHI1Jeu0gb8jr0ngI54eCNdqI,2845
279
- sglang/srt/lora/backend/triton_backend.py,sha256=MzVZYtPXwqS8DfeFMIpI0xNI90oVHcasaT3ppea9Vns,1722
280
- sglang/srt/lora/triton_ops/__init__.py,sha256=F4NrXZ4bSD39hkPVkby6OR-0Ap7dOOUsB0BjqjGMjy4,195
281
- sglang/srt/lora/triton_ops/qkv_lora_b.py,sha256=gFO53wGm93GpDmFaJgqyD1tgmrDllZ2bCBhGczZg0_4,5664
282
- sglang/srt/lora/triton_ops/sgemm_lora_a.py,sha256=GvPFXGXC2qLh4djlIIyAvobo9VLJcSEtyjcaveQh0Cw,3981
283
- sglang/srt/lora/triton_ops/sgemm_lora_b.py,sha256=pZxVJOMaf0OwMUJAw37KA4ZcoQb8gLpFGbYPirX8Oqk,4298
289
+ sglang/srt/lora/lora_manager.py,sha256=-7ZWAL-E2mW3acXd9M0Z_slnTV1GfzGBD4RRv3cjafs,7851
290
+ sglang/srt/lora/mem_pool.py,sha256=eV_GXETxNODPVIAnTEeUUUVn0IVgguBR_mYFzIK-VHA,6835
291
+ sglang/srt/lora/utils.py,sha256=6i7Q1Y-1LLbRkeCMv_lKIzkTN0veUTLbc8wlHn7R-bA,4571
292
+ sglang/srt/lora/backend/__init__.py,sha256=98L_KRRnE3gcGcx7Lb6yjAEUUE_Yay3QszcQXdzYsDw,708
293
+ sglang/srt/lora/backend/base_backend.py,sha256=dldwA7vTWrB1ln1MwLYKNtMkBoAgD7OLSlWe9tL2lzk,4602
294
+ sglang/srt/lora/backend/flashinfer_backend.py,sha256=fXfkl7Cpw8ap2bCrgWdn_gEUzMXX1pNjNuiPw3kA76U,3984
295
+ sglang/srt/lora/backend/triton_backend.py,sha256=ZT5M30vj8x77Kltukpga4wk1sd8fT4n_FdsOMQBTMI0,2610
296
+ sglang/srt/lora/triton_ops/__init__.py,sha256=JGOYPIn1XbGcyJTbt8A0qoc02PYONSGNNjGkC8yJpAM,283
297
+ sglang/srt/lora/triton_ops/gate_up_lora_b.py,sha256=qve4oNZHYUFk9ckmT2BVuDNMEvrN7Quu6RsS8Iz3uRQ,5066
298
+ sglang/srt/lora/triton_ops/qkv_lora_b.py,sha256=BmIcTZMnlSnie9rnMl4KvLpc4Njsk7_IppbUqitf9Xw,5738
299
+ sglang/srt/lora/triton_ops/sgemm_lora_a.py,sha256=kv-AvJ_Bi3yWjGvFnSwXvP66iJvY9n9pEnJzJ9-DWzo,3982
300
+ sglang/srt/lora/triton_ops/sgemm_lora_b.py,sha256=Ai5vPriT4OgACwK7xrpGgf5L1oaN9x0jwNKMChu3uI0,4299
284
301
  sglang/srt/managers/cache_controller.py,sha256=DXnIunJgtTws1WF2vZOYVQe56vacV7Mn4wL9zoG8Xz8,10909
285
302
  sglang/srt/managers/configure_logging.py,sha256=aY9xExurz7t_IdItd-9GuVuM7kEGB8_bRryhZxKdu9o,1542
286
303
  sglang/srt/managers/data_parallel_controller.py,sha256=b64aC6iLr5RolJyNQnT-yTQ_TSI9DDLtuABf_TPTUrM,9421
@@ -302,7 +319,7 @@ sglang/srt/mem_cache/memory_pool.py,sha256=9ud97u1cXnN6O0qlR8tv8woN_20gqisTV6aBg
302
319
  sglang/srt/mem_cache/radix_cache.py,sha256=hVILXvc5PauHuLTeyZbm3NCf3AOimaAuXjll53MSLeU,11754
303
320
  sglang/srt/metrics/collector.py,sha256=_yl0_paSARxS1ypZgd-pLJ29tMizolHuwROX21dOXTk,7326
304
321
  sglang/srt/metrics/func_timer.py,sha256=VFyNRrbnKVCwnQsrlLin1lITJfjQpf9m8sGPqL5LIsQ,3438
305
- sglang/srt/model_executor/cuda_graph_runner.py,sha256=Tv9ktSMaHNcAUUU2ERmxouFc6c94qbNMGt7_usQCD3w,18202
322
+ sglang/srt/model_executor/cuda_graph_runner.py,sha256=7MLskhry5KFP-lhqUfAwZ8P4HckFCEQonYqIDjfAWSw,18455
306
323
  sglang/srt/model_executor/forward_batch_info.py,sha256=t1RlBgoeS-_Ikl28Xjvt-aouh1nNUc3eLM4iGY4_QqY,14988
307
324
  sglang/srt/model_executor/model_runner.py,sha256=5ET8CXwSrzIKb_rDW-6S0p7tv-iCPoEwZk3dESwPdF8,33090
308
325
  sglang/srt/model_loader/__init__.py,sha256=zGZkOBz1zx-pkaIy47BasL3fjDlAcxAXUTjInOhXHAE,919
@@ -325,7 +342,7 @@ sglang/srt/models/granite.py,sha256=3HqQXJlfoKd11w1NCpTYmiPO9HlkA1jJqoAmuTzHuU0,
325
342
  sglang/srt/models/grok.py,sha256=NXC0I5_wXmlQ0-gMWgiT-X9ebzOsrTJGcltAXkY6064,18030
326
343
  sglang/srt/models/internlm2.py,sha256=INGGwSCYKoZRAokXJC78RKKde2fgHn9P4JG-N37Pfn0,12124
327
344
  sglang/srt/models/internlm2_reward.py,sha256=8K26A9oIFFGx_9U2mF87j7FX8K87HGKMnVL3ht1Uc7I,2398
328
- sglang/srt/models/llama.py,sha256=YKtLpxgk_OmPRpBJSr1BCTWC6IILFzZtakKnWYYHKw0,22040
345
+ sglang/srt/models/llama.py,sha256=hGBUo-70o0vLT6BI-v32qEv_g8Vr7ItEpqxAt1Mf9-0,22248
329
346
  sglang/srt/models/llama_classification.py,sha256=DwboM1xHXdf3Fddf7xGnrfdOLJwXdiJs994cIpAPa2g,2984
330
347
  sglang/srt/models/llama_eagle.py,sha256=88DzR54DKBIKJ1h-bkIa8mc1qJnlkdZ1eGYY3c5mpBY,4442
331
348
  sglang/srt/models/llama_embedding.py,sha256=rh-AiczPY_pTpzcACHvSMVjh1hsV_MZBBwP0LQxPsGM,3130
@@ -365,10 +382,10 @@ sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py,sha256=1Zp2aL6dD6
365
382
  sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py,sha256=_Nxv0XgUPirZjw2SEJYp_Cd9ZcLwmt7h6JE6J4hhFq4,3629
366
383
  sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py,sha256=5tOgCg7OvE9kSN9VMCpH1hwqo1YMxt9iS5PVpct9HpU,2468
367
384
  sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=l1DyU8kC8n_F4Z6Jd8mZKfF23buuLZ5dWuVfyqDWkUI,2968
368
- sglang/srt/speculative/build_eagle_tree.py,sha256=GlHDIbaZInhf1LYuWVmkVCvPcd6sKDxeXafLTai7Zpw,9892
369
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py,sha256=5ZCy6ndPA2p95xDgo2kXWD3zCtVaq4q5X0HBpAbB3Xs,7929
370
- sglang/srt/speculative/eagle_utils.py,sha256=DUANfRddoQ4MqNuQW3Uz21qWRaetYf4prVcljZR0tyI,22945
371
- sglang/srt/speculative/eagle_worker.py,sha256=4oROLwUBJIwEHNHNEfvsy74DqLQLVc4KfjdR-MrB1OM,12038
385
+ sglang/srt/speculative/build_eagle_tree.py,sha256=zWthboIgzPzSOXcGxDpDv0rBOQP55HYGrBKGqm2gWF0,20732
386
+ sglang/srt/speculative/eagle_draft_cuda_graph_runner.py,sha256=FY4hcwd0Blx7AXbeX6quaXPNgWA8WGIqVcQiEgHyERk,8002
387
+ sglang/srt/speculative/eagle_utils.py,sha256=ypjVmVTVzCGclOVHRMJxdLUSPkf1-7bNXQS0oP6dn5U,25644
388
+ sglang/srt/speculative/eagle_worker.py,sha256=yDCU4liKU_jgtwQ-8L9_GuUtFRo3l1Df7mCeKX8yHCo,12085
372
389
  sglang/srt/speculative/spec_info.py,sha256=D7A27UU1iOwIBEjXTgAxZ7jdftbTiVlMCvK8GmYr2zg,488
373
390
  sglang/test/few_shot_gsm8k.py,sha256=7yDbEQe49gZeJhz2wFFX-gf_59ThDKsCS1xwfogNc7k,4034
374
391
  sglang/test/few_shot_gsm8k_engine.py,sha256=QQbrwOX6-cJDD3RZC_e7zPnt6aSo8JdF8X_lRHSjdDM,3886
@@ -386,8 +403,8 @@ sglang/test/test_layernorm.py,sha256=IacByD5d-stXjzBz8Ypamc7povlcedpKPbb_4JLgo3c
386
403
  sglang/test/test_programs.py,sha256=aUV9Ex_B714ph7ytv6W3J7sdGDKC6lGIhUy95Yg6AHQ,18878
387
404
  sglang/test/test_utils.py,sha256=BU6lAX3bu3TNQZqVC9UPnyq3I7iV5kigHQKJx7UNlOQ,26192
388
405
  sglang/test/srt/sampling/penaltylib/utils.py,sha256=CjxHgywh0hx_87iynzQt_ztHu6zBVuE-YrZ-XPmW6U4,12906
389
- sglang-0.4.2.post2.dist-info/LICENSE,sha256=FJXh51fvTQklojUFY89XVLsjxRcBqOxPs8XNy-2uZ0c,11346
390
- sglang-0.4.2.post2.dist-info/METADATA,sha256=-Cl1_HFESAZxOXkBnaqDshP2M93b_4FWYGVh-1Yyw3s,23763
391
- sglang-0.4.2.post2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
392
- sglang-0.4.2.post2.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
393
- sglang-0.4.2.post2.dist-info/RECORD,,
406
+ sglang-0.4.2.post4.dist-info/LICENSE,sha256=FJXh51fvTQklojUFY89XVLsjxRcBqOxPs8XNy-2uZ0c,11346
407
+ sglang-0.4.2.post4.dist-info/METADATA,sha256=VylN7wgaeE_8T-ddwxTmujJo04JCRpaP_uyhGfo-InQ,23773
408
+ sglang-0.4.2.post4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
409
+ sglang-0.4.2.post4.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
410
+ sglang-0.4.2.post4.dist-info/RECORD,,