sglang 0.4.10__py3-none-any.whl → 0.4.10.post2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (92) hide show
  1. sglang/bench_offline_throughput.py +20 -0
  2. sglang/compile_deep_gemm.py +8 -1
  3. sglang/global_config.py +5 -1
  4. sglang/srt/configs/model_config.py +1 -0
  5. sglang/srt/conversation.py +0 -112
  6. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +1 -0
  7. sglang/srt/disaggregation/launch_lb.py +5 -20
  8. sglang/srt/disaggregation/mooncake/conn.py +33 -15
  9. sglang/srt/disaggregation/prefill.py +1 -0
  10. sglang/srt/distributed/device_communicators/pynccl.py +7 -0
  11. sglang/srt/distributed/device_communicators/pynccl_allocator.py +133 -0
  12. sglang/srt/distributed/device_communicators/pynccl_wrapper.py +42 -3
  13. sglang/srt/distributed/parallel_state.py +11 -0
  14. sglang/srt/entrypoints/engine.py +4 -2
  15. sglang/srt/entrypoints/http_server.py +35 -15
  16. sglang/srt/eplb/expert_distribution.py +4 -2
  17. sglang/srt/hf_transformers_utils.py +25 -10
  18. sglang/srt/layers/attention/cutlass_mla_backend.py +3 -3
  19. sglang/srt/layers/attention/flashattention_backend.py +7 -11
  20. sglang/srt/layers/attention/trtllm_mla_backend.py +372 -0
  21. sglang/srt/layers/attention/utils.py +6 -1
  22. sglang/srt/layers/attention/vision.py +27 -10
  23. sglang/srt/layers/communicator.py +14 -4
  24. sglang/srt/layers/linear.py +7 -1
  25. sglang/srt/layers/logits_processor.py +9 -1
  26. sglang/srt/layers/moe/ep_moe/layer.py +29 -68
  27. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_3_1/E=128,N=352,device_name=NVIDIA_RTX_6000_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  28. sglang/srt/layers/moe/fused_moe_triton/layer.py +82 -25
  29. sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +0 -31
  30. sglang/srt/layers/moe/token_dispatcher/__init__.py +23 -0
  31. sglang/srt/layers/moe/token_dispatcher/base_dispatcher.py +12 -1
  32. sglang/srt/layers/moe/{ep_moe/token_dispatcher.py → token_dispatcher/deepep.py} +8 -15
  33. sglang/srt/layers/moe/utils.py +43 -0
  34. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +3 -2
  35. sglang/srt/layers/quantization/deep_gemm_wrapper/compile_utils.py +1 -1
  36. sglang/srt/layers/quantization/fp8.py +57 -1
  37. sglang/srt/layers/quantization/fp8_kernel.py +0 -4
  38. sglang/srt/layers/quantization/w8a8_int8.py +4 -1
  39. sglang/srt/layers/vocab_parallel_embedding.py +7 -1
  40. sglang/srt/lora/lora_registry.py +7 -0
  41. sglang/srt/managers/cache_controller.py +43 -39
  42. sglang/srt/managers/data_parallel_controller.py +52 -2
  43. sglang/srt/managers/io_struct.py +6 -1
  44. sglang/srt/managers/schedule_batch.py +3 -2
  45. sglang/srt/managers/schedule_policy.py +3 -1
  46. sglang/srt/managers/scheduler.py +145 -6
  47. sglang/srt/managers/template_manager.py +25 -22
  48. sglang/srt/managers/tokenizer_manager.py +114 -62
  49. sglang/srt/managers/utils.py +45 -1
  50. sglang/srt/mem_cache/cpp_radix_tree/radix_tree.py +182 -0
  51. sglang/srt/mem_cache/hicache_storage.py +13 -12
  52. sglang/srt/mem_cache/hiradix_cache.py +21 -4
  53. sglang/srt/mem_cache/memory_pool.py +15 -118
  54. sglang/srt/mem_cache/memory_pool_host.py +350 -33
  55. sglang/srt/mem_cache/radix_cache_cpp.py +229 -0
  56. sglang/srt/mem_cache/storage/hf3fs/client_hf3fs.py +8 -2
  57. sglang/srt/mem_cache/storage/hf3fs/hf3fs_utils.cpp +35 -0
  58. sglang/srt/mem_cache/storage/nixl/hicache_nixl.py +163 -0
  59. sglang/srt/mem_cache/storage/nixl/nixl_utils.py +238 -0
  60. sglang/srt/mem_cache/storage/nixl/test_hicache_nixl_storage.py +216 -0
  61. sglang/srt/model_executor/cuda_graph_runner.py +42 -4
  62. sglang/srt/model_executor/forward_batch_info.py +13 -3
  63. sglang/srt/model_executor/model_runner.py +13 -1
  64. sglang/srt/model_loader/weight_utils.py +2 -0
  65. sglang/srt/models/deepseek_v2.py +28 -23
  66. sglang/srt/models/glm4_moe.py +85 -22
  67. sglang/srt/models/grok.py +3 -3
  68. sglang/srt/models/llama4.py +13 -2
  69. sglang/srt/models/mixtral.py +3 -3
  70. sglang/srt/models/mllama4.py +428 -19
  71. sglang/srt/models/qwen2_moe.py +1 -4
  72. sglang/srt/models/qwen3_moe.py +7 -8
  73. sglang/srt/models/step3_vl.py +1 -4
  74. sglang/srt/multimodal/processors/base_processor.py +4 -3
  75. sglang/srt/multimodal/processors/gemma3n.py +0 -7
  76. sglang/srt/operations_strategy.py +1 -1
  77. sglang/srt/server_args.py +115 -21
  78. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +18 -0
  79. sglang/srt/two_batch_overlap.py +6 -4
  80. sglang/srt/utils.py +4 -24
  81. sglang/srt/weight_sync/utils.py +1 -1
  82. sglang/test/attention/test_trtllm_mla_backend.py +945 -0
  83. sglang/test/runners.py +2 -2
  84. sglang/test/test_utils.py +3 -3
  85. sglang/version.py +1 -1
  86. {sglang-0.4.10.dist-info → sglang-0.4.10.post2.dist-info}/METADATA +3 -2
  87. {sglang-0.4.10.dist-info → sglang-0.4.10.post2.dist-info}/RECORD +92 -81
  88. /sglang/srt/mem_cache/{mooncake_store → storage/mooncake_store}/mooncake_store.py +0 -0
  89. /sglang/srt/mem_cache/{mooncake_store → storage/mooncake_store}/unit_test.py +0 -0
  90. {sglang-0.4.10.dist-info → sglang-0.4.10.post2.dist-info}/WHEEL +0 -0
  91. {sglang-0.4.10.dist-info → sglang-0.4.10.post2.dist-info}/licenses/LICENSE +0 -0
  92. {sglang-0.4.10.dist-info → sglang-0.4.10.post2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,229 @@
1
+ from __future__ import annotations
2
+
3
+ import logging
4
+ from typing import TYPE_CHECKING, List, Set
5
+
6
+ import torch
7
+
8
+ from sglang.srt.mem_cache.allocator import BaseTokenToKVPoolAllocator
9
+ from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache, MatchResult
10
+ from sglang.srt.mem_cache.cpp_radix_tree.radix_tree import (
11
+ IOHandle,
12
+ RadixTreeCpp,
13
+ TreeNodeCpp,
14
+ )
15
+ from sglang.srt.mem_cache.memory_pool import ReqToTokenPool
16
+
17
+ if TYPE_CHECKING:
18
+ from sglang.srt.managers.schedule_batch import Req
19
+
20
+
21
+ logger = logging.getLogger(__name__)
22
+
23
+
24
+ class RadixCacheCpp(BasePrefixCache):
25
+ def _merge_tensor(self, l: List[torch.Tensor]) -> torch.Tensor:
26
+ """
27
+ Merge a list of tensors into a single tensor.
28
+ Args:
29
+ l (List[torch.Tensor]): List of tensors to merge.
30
+ Returns:
31
+ torch.Tensor: Merged tensor.
32
+ """
33
+ if len(l) == 0:
34
+ return torch.empty(0, dtype=torch.int64, device=self.device)
35
+ elif len(l) == 1:
36
+ return l[0]
37
+ else:
38
+ return torch.cat(l)
39
+
40
+ def __init__(
41
+ self,
42
+ disable: bool,
43
+ use_hicache: bool,
44
+ req_to_token_pool: ReqToTokenPool,
45
+ token_to_kv_pool: BaseTokenToKVPoolAllocator,
46
+ tp_cache_group: torch.distributed.ProcessGroup,
47
+ page_size: int,
48
+ hicache_ratio: float,
49
+ hicache_size: int,
50
+ hicache_write_policy: str,
51
+ enable_kv_cache_events: bool = False,
52
+ hicache_oracle: bool = False,
53
+ enable_write_cancel: bool = False,
54
+ ):
55
+ self.disable = disable
56
+ self.enable_write_cancel = enable_write_cancel
57
+
58
+ assert (
59
+ enable_kv_cache_events is False
60
+ ), "HiRadixCache does not support kv cache events yet"
61
+ self.kv_cache = token_to_kv_pool.get_kvcache()
62
+
63
+ # record the nodes with ongoing write through
64
+ self.ongoing_write_through: Set[IOHandle] = set()
65
+ # record the node segments with ongoing load back
66
+ self.ongoing_load_back: Set[IOHandle] = set()
67
+ # todo: dynamically adjust the threshold
68
+ self.write_through_threshold = (
69
+ 1 if hicache_write_policy == "write_through" else 2
70
+ )
71
+ self.device = token_to_kv_pool.device
72
+ self.token_to_kv_pool = token_to_kv_pool
73
+ self.req_to_token_pool = req_to_token_pool
74
+ self.page_size = page_size
75
+
76
+ self.tp_group = tp_cache_group
77
+
78
+ if not use_hicache:
79
+ self.tree = RadixTreeCpp(
80
+ disabled=self.disable,
81
+ page_size=page_size,
82
+ host_size=None, # no host cache, this should be removed in the future
83
+ write_through_threshold=self.write_through_threshold,
84
+ )
85
+ self.cache_controller = None
86
+ return # early return if hicache is not used
87
+
88
+ raise NotImplementedError("Host cache is not supported yet")
89
+
90
+ def reset(self):
91
+ if self.cache_controller is not None:
92
+ # need to clear the acks before resetting the cache controller
93
+ raise NotImplementedError("Host cache is not supported yet")
94
+ self.tree.reset()
95
+
96
+ def match_prefix(self, key: List[int], **kwargs) -> MatchResult:
97
+ device_indices_vec, host_indices_length, node_gpu, node_cpu = (
98
+ self.tree.match_prefix(key)
99
+ )
100
+ return MatchResult(
101
+ device_indices=self._merge_tensor(device_indices_vec),
102
+ last_device_node=node_gpu,
103
+ last_host_node=node_cpu,
104
+ host_hit_length=host_indices_length,
105
+ )
106
+
107
+ def _insert(self, key: List[int], value: torch.Tensor) -> int:
108
+ """
109
+ Insert a key-value pair into the radix tree.
110
+ Args:
111
+ key (List[int]): The key to insert, represented as a list of integers.
112
+ value (torch.Tensor): The value to associate with the key.
113
+ Returns:
114
+ int: Number of device indices that were already present in the tree before the insertion.
115
+ """
116
+ ongoing_write, length = self.tree.writing_through(key, value)
117
+ if self.cache_controller is None:
118
+ assert len(ongoing_write) == 0, "Implementation error"
119
+ return length
120
+
121
+ raise NotImplementedError("Host cache is not supported yet")
122
+
123
+ def dec_lock_ref(self, node: TreeNodeCpp):
124
+ """
125
+ Decrement the reference count of a node to root of the radix tree.
126
+ Args:
127
+ node (TreeNodeCpp): The handle of the node to decrement the reference count for.
128
+ """
129
+ self.tree.lock_ref(node, False) # do not increment
130
+
131
+ def inc_lock_ref(self, node: TreeNodeCpp):
132
+ """
133
+ Increment the reference count of from a node to root of the radix tree.
134
+ Args:
135
+ node (TreeNodeCpp): The handle of the node to increment the reference count for.
136
+ """
137
+ self.tree.lock_ref(node, True)
138
+
139
+ def evict(self, num_tokens: int):
140
+ evicted_device_indices = self.tree.evict(num_tokens)
141
+ for indice in evicted_device_indices:
142
+ self.token_to_kv_pool.free(indice)
143
+
144
+ def evictable_size(self):
145
+ return self.tree.evictable_size()
146
+
147
+ def protected_size(self):
148
+ return self.tree.protected_size()
149
+
150
+ def total_size(self):
151
+ return self.tree.total_size()
152
+
153
+ def cache_finished_req(self, req: Req):
154
+ """Cache request when it finishes."""
155
+ assert req.req_pool_idx is not None
156
+ token_ids = (req.origin_input_ids + req.output_ids)[:-1]
157
+ overall_len = len(token_ids) # prefill + decode
158
+ kv_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx, :overall_len]
159
+
160
+ # NOTE: our C++ implementation don't need `token_ids` and `kv_indices` to be page-aligned
161
+ # it will automatically align them, but length of them should be equal
162
+ old_prefix_len = len(req.prefix_indices) // self.page_size * self.page_size
163
+ new_prefix_len = self._insert(token_ids, kv_indices)
164
+
165
+ # NOTE: kv_indices[:old_prefix_len] == req.prefix_indices
166
+ assert old_prefix_len <= new_prefix_len, "Wrong prefix indices"
167
+
168
+ # KVCache between old & new is newly generated, but already exists in the pool
169
+ # we need to free this newly generated kv indices
170
+ if old_prefix_len < new_prefix_len:
171
+ self.token_to_kv_pool.free(kv_indices[old_prefix_len:new_prefix_len])
172
+
173
+ # need to free the unaligned part, since it cannot be inserted into the radix tree
174
+ if self.page_size != 1 and ( # unaligned tail only exists when page_size > 1
175
+ (unaligned_len := overall_len % self.page_size) > 0
176
+ ):
177
+ # NOTE: sglang PagedAllocator support unaligned free (which will automatically align it)
178
+ self.token_to_kv_pool.free(kv_indices[overall_len - unaligned_len :])
179
+
180
+ # Remove req slot release the cache lock
181
+ self.dec_lock_ref(req.last_node)
182
+ self.req_to_token_pool.free(req.req_pool_idx)
183
+
184
+ def cache_unfinished_req(self, req: Req):
185
+ """Cache request when it is unfinished."""
186
+ assert req.req_pool_idx is not None
187
+ token_ids = req.fill_ids
188
+ prefill_len = len(token_ids) # prefill only (maybe chunked)
189
+ kv_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx, :prefill_len]
190
+
191
+ # NOTE: our C++ implementation don't need `token_ids` and `kv_indices` to be page-aligned
192
+ # it will automatically align them, but length of them should be equal
193
+ old_prefix_len = len(req.prefix_indices) // self.page_size * self.page_size
194
+ new_prefix_len = self._insert(token_ids, kv_indices)
195
+
196
+ # NOTE: kv_indices[:old_prefix_len] == req.prefix_indices
197
+ assert old_prefix_len <= new_prefix_len, "Wrong prefix indices"
198
+
199
+ # TODO(dark): optimize the `insert` and `match` (e.g. merge into 1 function)
200
+ # The prefix indices need to updated to reuse the kv indices in the pool
201
+ new_indices_vec, _, new_last_node, _ = self.tree.match_prefix(token_ids)
202
+ new_indices = self._merge_tensor(new_indices_vec)
203
+ assert new_prefix_len <= len(new_indices)
204
+
205
+ # KVCache between old & new is newly generated, but already exists in the pool
206
+ # we need to free this newly generated kv indices and reuse the indices in the pool
207
+ if old_prefix_len < new_prefix_len:
208
+ self.token_to_kv_pool.free(kv_indices[old_prefix_len:new_prefix_len])
209
+ reused_indices = new_indices[old_prefix_len:new_prefix_len]
210
+ self.req_to_token_pool.req_to_token[
211
+ req.req_pool_idx, old_prefix_len:new_prefix_len
212
+ ] = reused_indices
213
+
214
+ if req.last_node != new_last_node:
215
+ self.dec_lock_ref(req.last_node)
216
+ self.inc_lock_ref(new_last_node)
217
+
218
+ # NOTE: there might be unaligned tail, so we may need to append it
219
+ assert len(new_indices) <= prefill_len < len(new_indices) + self.page_size
220
+ if self.page_size != 1 and len(new_indices) < prefill_len:
221
+ req.prefix_indices = torch.cat(
222
+ [new_indices, kv_indices[len(new_indices) :]]
223
+ )
224
+ else:
225
+ req.prefix_indices = new_indices
226
+ req.last_node = new_last_node
227
+
228
+ def pretty_print(self):
229
+ return self.tree.debug_print()
@@ -14,6 +14,7 @@ hf3fs_utils = load(name="hf3fs_utils", sources=[f"{root}/hf3fs_utils.cpp"])
14
14
 
15
15
  logger = logging.getLogger(__name__)
16
16
 
17
+ HF3FS_AVAILABLE = True
17
18
  try:
18
19
  from hf3fs_fuse.io import (
19
20
  deregister_fd,
@@ -22,8 +23,8 @@ try:
22
23
  make_iovec,
23
24
  register_fd,
24
25
  )
25
- except ImportError as e:
26
- logger.warning(f"hf3fs_fuse.io is not available: {e}")
26
+ except ImportError:
27
+ HF3FS_AVAILABLE = False
27
28
 
28
29
 
29
30
  def rsynchronized():
@@ -52,6 +53,11 @@ def wsynchronized():
52
53
 
53
54
  class Hf3fsClient:
54
55
  def __init__(self, path: str, size: int, bytes_per_page: int, entries: int):
56
+ if not HF3FS_AVAILABLE:
57
+ raise ImportError(
58
+ "hf3fs_fuse.io is not available. Please install the hf3fs_fuse package."
59
+ )
60
+
55
61
  self.path = path
56
62
  self.size = size
57
63
  self.bytes_per_page = bytes_per_page
@@ -0,0 +1,35 @@
1
+ #include <torch/extension.h>
2
+
3
+ #include <cstring>
4
+ #include <vector>
5
+
6
+ void read_shm(const torch::Tensor &shm, std::vector<torch::Tensor> dst) {
7
+ py::gil_scoped_release release;
8
+ char *src_ptr = static_cast<char *>(shm.data_ptr());
9
+ size_t current = 0;
10
+ for (size_t i = 0; i < dst.size(); ++i) {
11
+ auto &t = dst[i];
12
+ size_t t_bytes = t.numel() * t.element_size();
13
+ char *dst_ptr = static_cast<char *>(t.data_ptr());
14
+ std::memcpy(dst_ptr, src_ptr + current, t_bytes);
15
+ current += t_bytes;
16
+ }
17
+ }
18
+
19
+ void write_shm(const std::vector<torch::Tensor> src, torch::Tensor &shm) {
20
+ py::gil_scoped_release release;
21
+ char *dst_ptr = static_cast<char *>(shm.data_ptr());
22
+ size_t current = 0;
23
+ for (size_t i = 0; i < src.size(); ++i) {
24
+ auto &t = src[i];
25
+ size_t t_bytes = t.numel() * t.element_size();
26
+ char *src_ptr = static_cast<char *>(t.data_ptr());
27
+ std::memcpy(dst_ptr + current, src_ptr, t_bytes);
28
+ current += t_bytes;
29
+ }
30
+ }
31
+
32
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
33
+ m.def("read_shm", &read_shm, "Read tensors from shared memory");
34
+ m.def("write_shm", &write_shm, "Write tensors to shared memory");
35
+ }
@@ -0,0 +1,163 @@
1
+ import hashlib
2
+ import logging
3
+ import os
4
+ import time
5
+ import uuid
6
+ from typing import Dict, List, Optional, Tuple, Union
7
+
8
+ import torch
9
+
10
+ from sglang.srt.mem_cache.hicache_storage import HiCacheStorage
11
+
12
+ from .nixl_utils import NixlBackendSelection, NixlFileManager, NixlRegistration
13
+
14
+ try:
15
+ from nixl._api import nixl_agent, nixl_agent_config
16
+ except ImportError as e:
17
+ raise ImportError(
18
+ "Please install NIXL by following the instructions at "
19
+ "https://github.com/ai-dynamo/nixl/blob/main/README.md "
20
+ "to use HiCacheNixl storage backend."
21
+ ) from e
22
+
23
+ logger = logging.getLogger(__name__)
24
+
25
+
26
+ class HiCacheNixl(HiCacheStorage):
27
+ """HiCacheNixl provides high-performance storage using NIXL plugins."""
28
+
29
+ def __init__(self, file_path: str = "/tmp/hicache_storage", plugin: str = "auto"):
30
+ """Initialize NIXL storage connector."""
31
+ self.file_manager = (
32
+ NixlFileManager(file_path)
33
+ if plugin not in NixlBackendSelection.OBJ_PLUGINS
34
+ else None
35
+ )
36
+
37
+ agent_config = nixl_agent_config(backends=[])
38
+ self.agent_name = f"hicache_nixl_{str(uuid.uuid4())}"
39
+ self.agent = nixl_agent(self.agent_name, agent_config)
40
+
41
+ self.backend_selector = NixlBackendSelection(plugin)
42
+ if not self.backend_selector.create_backend(self.agent):
43
+ raise RuntimeError("Failed to create NIXL backend")
44
+
45
+ self.registration = NixlRegistration(self.agent)
46
+
47
+ def _execute_transfer(
48
+ self, tensors: List[torch.Tensor], keys: List[str], direction: str
49
+ ) -> bool:
50
+ if len(tensors) != len(keys):
51
+ logger.error("Mismatch between number of tensors and files/objects")
52
+ return False
53
+
54
+ if not self.registration.register_buffers(tensors):
55
+ logger.error("Failed to register tensors")
56
+ return False
57
+
58
+ # Get transfer tuples based on backend type
59
+ tensor_sizes = [tensor.element_size() * tensor.numel() for tensor in tensors]
60
+ if self.backend_selector.mem_type == "FILE":
61
+ file_tuples = self.file_manager.files_to_nixl_tuples(keys)
62
+ if not file_tuples or not self.registration.register_files(file_tuples):
63
+ logger.error("Failed to prepare files for transfer")
64
+ return False
65
+ transfer_tuples = [
66
+ (x[0], s, x[2]) for x, s in zip(file_tuples, tensor_sizes)
67
+ ]
68
+ else:
69
+ if not self.registration.register_objects(keys, tensors):
70
+ logger.error("Failed to register objects")
71
+ return False
72
+ transfer_tuples = [(0, s, key) for s, key in zip(tensor_sizes, keys)]
73
+
74
+ try:
75
+ # Get transfer descriptors
76
+ if (tensor_descs := self.agent.get_xfer_descs(tensors)) is None or (
77
+ file_descs := self.agent.get_xfer_descs(
78
+ transfer_tuples, self.backend_selector.mem_type
79
+ )
80
+ ) is None:
81
+ logger.error("Failed to get transfer descriptors")
82
+ return False
83
+
84
+ # Initialize and execute transfer
85
+ if (
86
+ xfer_req := self.agent.initialize_xfer(
87
+ direction, tensor_descs, file_descs, self.agent_name
88
+ )
89
+ ) is None:
90
+ logger.error("Failed to create transfer request")
91
+ return False
92
+
93
+ state = self.agent.transfer(xfer_req)
94
+ while state != "DONE":
95
+ state = self.agent.check_xfer_state(xfer_req)
96
+ if state == "ERR":
97
+ logger.error("Transfer failed")
98
+ return False
99
+ time.sleep(0.0001) # Can be changed to os.sched_yield() or parametrized
100
+ return True
101
+
102
+ except Exception as e:
103
+ logger.error(f"Failed to execute transfer: {e}")
104
+ import traceback
105
+
106
+ logger.error(f"Traceback: {traceback.format_exc()}")
107
+ return False
108
+
109
+ def batch_set(self, keys: List[str], values: List[torch.Tensor]) -> bool:
110
+ if not keys:
111
+ return True
112
+
113
+ if self.backend_selector.mem_type == "FILE":
114
+ file_paths = []
115
+ for key in keys:
116
+ tensor_path = self.file_manager.get_file_path(key)
117
+ if not self.file_manager.create_file(tensor_path):
118
+ logger.error(f"Failed to create file {tensor_path}")
119
+ return False
120
+ file_paths.append(tensor_path)
121
+ return self._execute_transfer(values, file_paths, "WRITE")
122
+ else:
123
+ return self._execute_transfer(values, keys, "WRITE")
124
+
125
+ def set(self, key: str, value: torch.Tensor) -> bool:
126
+ return self.batch_set([key], [value])
127
+
128
+ def get(
129
+ self, key: str, dst_tensor: Optional[torch.Tensor] = None
130
+ ) -> torch.Tensor | None:
131
+ if dst_tensor is None: # To be removed, being compatible with the current API
132
+ return None
133
+ result = self.batch_get([key], [dst_tensor])
134
+ return result[0] if result else None
135
+
136
+ def batch_get(
137
+ self, keys: List[str], dst_tensors: List[torch.Tensor]
138
+ ) -> List[Optional[torch.Tensor]]:
139
+ if not keys:
140
+ return []
141
+
142
+ if self.backend_selector.mem_type == "FILE":
143
+ file_paths = [self.file_manager.get_file_path(key) for key in keys]
144
+ success = self._execute_transfer(dst_tensors, file_paths, "READ")
145
+ else:
146
+ success = self._execute_transfer(dst_tensors, keys, "READ")
147
+ return dst_tensors if success else [None] * len(keys)
148
+
149
+ def exists(self, key: str) -> bool:
150
+ tuples = self.registration.create_query_tuples(
151
+ key,
152
+ self.backend_selector.mem_type,
153
+ self.file_manager if self.backend_selector.mem_type == "FILE" else None,
154
+ )
155
+ if not tuples:
156
+ return False
157
+
158
+ query_res = self.agent.query_memory(
159
+ tuples,
160
+ self.backend_selector.backend_name,
161
+ mem_type=self.backend_selector.mem_type,
162
+ )
163
+ return query_res[0] is not None # can be expanded to multiple keys
@@ -0,0 +1,238 @@
1
+ import logging
2
+ import os
3
+ from typing import Any, Dict, List, Optional, Tuple, Union
4
+
5
+ import torch
6
+
7
+ logger = logging.getLogger(__name__)
8
+
9
+
10
+ class NixlBackendSelection:
11
+ """Handles NIXL backend selection and creation."""
12
+
13
+ # Priority order for File-based plugins in case of auto selection
14
+ FILE_PLUGINS = ["3FS", "POSIX", "GDS_MT", "GDS"]
15
+ # Priority order for File-based plugins in case of auto selection (add more as needed)
16
+ OBJ_PLUGINS = ["OBJ"] # Based on Amazon S3 SDK
17
+
18
+ def __init__(self, plugin: str = "auto"):
19
+ """Initialize backend selection.
20
+ Args:
21
+ plugin: Plugin to use (default "auto" selects best available).
22
+ Can be a file plugin (3FS, POSIX, GDS, GDS_MT) or
23
+ an object plugin (OBJ).
24
+ """
25
+ self.plugin = plugin
26
+ self.backend_name = None
27
+ self.mem_type = None
28
+
29
+ def set_bucket(self, bucket_name: str) -> None:
30
+ """Set AWS bucket name in environment variable."""
31
+ os.environ["AWS_DEFAULT_BUCKET"] = bucket_name
32
+ logger.debug(f"Set AWS bucket name to: {bucket_name}")
33
+
34
+ def create_backend(self, agent) -> bool:
35
+ """Create the appropriate NIXL backend based on configuration."""
36
+ try:
37
+ plugin_list = agent.get_plugin_list()
38
+ logger.debug(f"Available NIXL plugins: {plugin_list}")
39
+
40
+ # Handle explicit plugin selection or auto priority
41
+ if self.plugin == "auto":
42
+ # Try all file plugins first
43
+ for plugin in self.FILE_PLUGINS:
44
+ if plugin in plugin_list:
45
+ self.backend_name = plugin
46
+ break
47
+ # If no file plugin found, try object plugins
48
+ if not self.backend_name:
49
+ for plugin in self.OBJ_PLUGINS:
50
+ if plugin in plugin_list:
51
+ self.backend_name = plugin
52
+ break
53
+ else:
54
+ # Use explicitly requested plugin
55
+ self.backend_name = self.plugin
56
+
57
+ if self.backend_name not in plugin_list:
58
+ logger.error(
59
+ f"Backend {self.backend_name} not available in plugins: {plugin_list}"
60
+ )
61
+ return False
62
+
63
+ # Create backend and set memory type
64
+ if self.backend_name in self.OBJ_PLUGINS:
65
+ bucket = os.environ.get("AWS_DEFAULT_BUCKET")
66
+ if not bucket:
67
+ logger.error(
68
+ "AWS_DEFAULT_BUCKET environment variable must be set for object storage"
69
+ )
70
+ return False
71
+ agent.create_backend(self.backend_name, {"bucket": bucket})
72
+ else:
73
+ agent.create_backend(self.backend_name)
74
+
75
+ self.mem_type = "OBJ" if self.backend_name in self.OBJ_PLUGINS else "FILE"
76
+ logger.debug(
77
+ f"Created NIXL backend: {self.backend_name} with memory type: {self.mem_type}"
78
+ )
79
+ return True
80
+
81
+ except Exception as e:
82
+ logger.error(f"Failed to create NIXL backend: {e}")
83
+ return False
84
+
85
+
86
+ class NixlRegistration:
87
+ """Handles NIXL memory registration."""
88
+
89
+ def __init__(self, agent):
90
+ self.agent = agent
91
+
92
+ def create_query_tuples(
93
+ self, key: str, mem_type: str, file_manager=None
94
+ ) -> List[Tuple]:
95
+ """Create NIXL tuples for querying memory.
96
+ Args:
97
+ key: Key to query (file path for FILE or object key for OBJ)
98
+ mem_type: Memory type ("FILE" or "OBJ")
99
+ file_manager: Optional NixlFileManager for FILE memory type
100
+ Returns:
101
+ List of NIXL tuples for querying
102
+ """
103
+ if mem_type == "FILE":
104
+ if file_manager is None:
105
+ logger.error("file_manager required for FILE memory type")
106
+ return []
107
+ return [(0, 0, 0, file_manager.get_file_path(key))]
108
+ else: # OBJ
109
+ return [(0, 0, key)]
110
+
111
+ def _register_memory(
112
+ self, items: Union[List[tuple], List[torch.Tensor]], mem_type: str, desc: str
113
+ ) -> Optional[Any]:
114
+ """Common registration logic for files, objects, and buffers.
115
+ Args:
116
+ items: List of tuples or tensors to register
117
+ mem_type: Memory type ("FILE", "OBJ", "DRAM", "VRAM")
118
+ desc: Description for logging
119
+ """
120
+ try:
121
+ if not items:
122
+ return None
123
+
124
+ reg_descs = self.agent.get_reg_descs(items, mem_type)
125
+ if reg_descs is None:
126
+ logger.error("Failed to create registration descriptors")
127
+ return None
128
+
129
+ registered_memory = self.agent.register_memory(reg_descs)
130
+ if registered_memory:
131
+ return registered_memory
132
+ else:
133
+ logger.error("Failed to register with NIXL")
134
+ return None
135
+
136
+ except Exception as e:
137
+ logger.error(f"Failed to register {desc}: {e}")
138
+ return None
139
+
140
+ def register_buffers(
141
+ self, buffers: Union[torch.Tensor, List[torch.Tensor]]
142
+ ) -> Optional[Any]:
143
+ """Register tensors/buffers with NIXL."""
144
+ if isinstance(buffers, torch.Tensor):
145
+ buffers = [buffers]
146
+
147
+ if not buffers:
148
+ return None
149
+
150
+ # Determine memory type based on tensor device
151
+ mem_type = "VRAM" if buffers[0].device.type == "cuda" else "DRAM"
152
+ return self._register_memory(buffers, mem_type, "buffers")
153
+
154
+ def register_files(self, tuples: List[tuple]) -> Optional[Any]:
155
+ """Register files with NIXL using (0, 0, fd, file_path) tuples."""
156
+ return self._register_memory(tuples, "FILE", "files")
157
+
158
+ def register_objects(
159
+ self, keys: List[str], tensors: Optional[List[torch.Tensor]] = None
160
+ ) -> Optional[Any]:
161
+ """Register objects with NIXL."""
162
+ if not keys:
163
+ return None
164
+
165
+ # Create object tuples with proper sizes
166
+ tuples = [
167
+ (0, tensor.element_size() * tensor.numel() if tensor else 0, key)
168
+ for key, tensor in zip(keys, tensors or [None] * len(keys))
169
+ ]
170
+ return self._register_memory(tuples, "OBJ", "objects")
171
+
172
+
173
+ class NixlFileManager:
174
+ """Handles file system operations for NIXL."""
175
+
176
+ def __init__(self, base_dir: str):
177
+ """
178
+ Initialize file manager.
179
+ Args:
180
+ base_dir: Base directory for storing tensor files
181
+ """
182
+ self.base_dir = base_dir
183
+ if base_dir == "":
184
+ logger.debug(f"Initialized file manager without a base directory")
185
+ else:
186
+ os.makedirs(base_dir, exist_ok=True)
187
+ logger.debug(f"Initialized file manager with base directory: {base_dir}")
188
+
189
+ def get_file_path(self, key: str) -> str:
190
+ """Get full file path for a given key."""
191
+ return os.path.join(self.base_dir, key)
192
+
193
+ def create_file(self, file_path: str) -> bool:
194
+ """Create a file if it doesn't exist."""
195
+ try:
196
+ os.makedirs(os.path.dirname(file_path), exist_ok=True)
197
+ if not os.path.exists(file_path):
198
+ with open(file_path, "wb") as f:
199
+ pass # Create empty file
200
+ return True
201
+ except Exception as e:
202
+ logger.error(f"Failed to create file {file_path}: {e}")
203
+ return False
204
+
205
+ def open_file(self, file_path: str) -> Optional[int]:
206
+ """Open a file and return its file descriptor."""
207
+ try:
208
+ fd = os.open(file_path, os.O_RDWR)
209
+ return fd
210
+ except Exception as e:
211
+ logger.error(f"Failed to open file {file_path}: {e}")
212
+ return None
213
+
214
+ def close_file(self, fd: int) -> bool:
215
+ """Close a file descriptor."""
216
+ try:
217
+ os.close(fd)
218
+ return True
219
+ except Exception as e:
220
+ logger.error(f"Failed to close file descriptor {fd}: {e}")
221
+ return False
222
+
223
+ def files_to_nixl_tuples(
224
+ self, file_paths: List[str], open_file: bool = True
225
+ ) -> List[Tuple[int, int, int, str]]:
226
+ """Create NIXL tuples (offset, length, fd, file_path) for given files."""
227
+ if not open_file:
228
+ return [(0, 0, 0, path) for path in file_paths]
229
+
230
+ tuples = []
231
+ for path in file_paths:
232
+ if (fd := self.open_file(path)) is None:
233
+ # Clean up on failure
234
+ for t in tuples:
235
+ self.close_file(t[2])
236
+ return []
237
+ tuples.append((0, 0, fd, path))
238
+ return tuples