sglang 0.4.10.post2__py3-none-any.whl → 0.5.0rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +113 -17
- sglang/srt/configs/model_config.py +35 -0
- sglang/srt/conversation.py +9 -5
- sglang/srt/disaggregation/base/conn.py +5 -2
- sglang/srt/disaggregation/decode.py +6 -1
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +3 -0
- sglang/srt/disaggregation/mooncake/conn.py +243 -135
- sglang/srt/disaggregation/prefill.py +2 -0
- sglang/srt/distributed/parallel_state.py +11 -9
- sglang/srt/entrypoints/context.py +244 -0
- sglang/srt/entrypoints/engine.py +4 -3
- sglang/srt/entrypoints/harmony_utils.py +370 -0
- sglang/srt/entrypoints/http_server.py +71 -0
- sglang/srt/entrypoints/openai/protocol.py +227 -1
- sglang/srt/entrypoints/openai/serving_chat.py +278 -42
- sglang/srt/entrypoints/openai/serving_responses.py +1273 -0
- sglang/srt/entrypoints/openai/tool_server.py +174 -0
- sglang/srt/entrypoints/tool.py +87 -0
- sglang/srt/eplb/expert_location.py +5 -1
- sglang/srt/function_call/harmony_tool_parser.py +130 -0
- sglang/srt/hf_transformers_utils.py +30 -3
- sglang/srt/jinja_template_utils.py +8 -1
- sglang/srt/layers/attention/aiter_backend.py +5 -8
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1700 -0
- sglang/srt/layers/attention/triton_backend.py +85 -14
- sglang/srt/layers/attention/triton_ops/decode_attention.py +17 -0
- sglang/srt/layers/attention/triton_ops/extend_attention.py +143 -98
- sglang/srt/layers/attention/trtllm_mha_backend.py +332 -0
- sglang/srt/layers/attention/vision.py +13 -5
- sglang/srt/layers/communicator.py +21 -4
- sglang/srt/layers/dp_attention.py +12 -0
- sglang/srt/layers/linear.py +2 -7
- sglang/srt/layers/moe/cutlass_moe.py +20 -6
- sglang/srt/layers/moe/ep_moe/layer.py +77 -73
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +101 -12
- sglang/srt/layers/moe/fused_moe_triton/layer.py +416 -35
- sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +188 -3
- sglang/srt/layers/moe/topk.py +12 -3
- sglang/srt/layers/moe/utils.py +16 -0
- sglang/srt/layers/quantization/__init__.py +22 -0
- sglang/srt/layers/quantization/fp4.py +557 -0
- sglang/srt/layers/quantization/fp8.py +3 -6
- sglang/srt/layers/quantization/fp8_utils.py +29 -0
- sglang/srt/layers/quantization/modelopt_quant.py +259 -64
- sglang/srt/layers/quantization/mxfp4.py +651 -0
- sglang/srt/layers/quantization/mxfp4_tensor.py +133 -0
- sglang/srt/layers/quantization/quark/__init__.py +0 -0
- sglang/srt/layers/quantization/quark/schemes/__init__.py +6 -0
- sglang/srt/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +118 -0
- sglang/srt/layers/quantization/quark/utils.py +107 -0
- sglang/srt/layers/quantization/unquant.py +60 -6
- sglang/srt/layers/quantization/w4afp8.py +1 -1
- sglang/srt/layers/rotary_embedding.py +225 -1
- sglang/srt/layers/utils.py +9 -0
- sglang/srt/layers/vocab_parallel_embedding.py +8 -3
- sglang/srt/lora/lora_manager.py +70 -14
- sglang/srt/lora/lora_registry.py +3 -2
- sglang/srt/lora/mem_pool.py +43 -5
- sglang/srt/managers/cache_controller.py +55 -30
- sglang/srt/managers/detokenizer_manager.py +1 -1
- sglang/srt/managers/io_struct.py +15 -3
- sglang/srt/managers/mm_utils.py +5 -11
- sglang/srt/managers/schedule_batch.py +28 -7
- sglang/srt/managers/scheduler.py +26 -12
- sglang/srt/managers/scheduler_output_processor_mixin.py +1 -2
- sglang/srt/managers/scheduler_recv_skipper.py +37 -0
- sglang/srt/managers/scheduler_update_weights_mixin.py +6 -0
- sglang/srt/managers/template_manager.py +35 -1
- sglang/srt/managers/tokenizer_manager.py +24 -6
- sglang/srt/managers/tp_worker.py +3 -0
- sglang/srt/managers/tp_worker_overlap_thread.py +3 -0
- sglang/srt/mem_cache/hiradix_cache.py +53 -5
- sglang/srt/mem_cache/memory_pool_host.py +1 -1
- sglang/srt/mem_cache/multimodal_cache.py +33 -13
- sglang/srt/mem_cache/storage/hf3fs/client_hf3fs.py +2 -2
- sglang/srt/model_executor/cuda_graph_runner.py +7 -6
- sglang/srt/model_executor/forward_batch_info.py +35 -14
- sglang/srt/model_executor/model_runner.py +19 -2
- sglang/srt/model_loader/weight_utils.py +10 -0
- sglang/srt/models/bailing_moe.py +425 -0
- sglang/srt/models/deepseek_v2.py +72 -33
- sglang/srt/models/ernie4.py +426 -0
- sglang/srt/models/ernie4_eagle.py +203 -0
- sglang/srt/models/gemma3n_mm.py +39 -0
- sglang/srt/models/glm4_moe.py +24 -12
- sglang/srt/models/gpt_oss.py +1134 -0
- sglang/srt/models/qwen2.py +6 -0
- sglang/srt/models/qwen2_moe.py +6 -0
- sglang/srt/models/qwen3_moe.py +32 -6
- sglang/srt/models/step3_vl.py +9 -0
- sglang/srt/models/transformers.py +2 -5
- sglang/srt/multimodal/processors/step3_vl.py +3 -1
- sglang/srt/reasoning_parser.py +18 -39
- sglang/srt/server_args.py +142 -7
- sglang/srt/two_batch_overlap.py +157 -5
- sglang/srt/utils.py +38 -2
- sglang/test/runners.py +2 -2
- sglang/test/test_utils.py +1 -1
- sglang/version.py +1 -1
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc0.dist-info}/METADATA +16 -14
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc0.dist-info}/RECORD +105 -84
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc0.dist-info}/WHEEL +0 -0
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc0.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1700 @@
|
|
1
|
+
# SPDX-License-Identifier: Apache-2.0
|
2
|
+
"""Attention layer with Dual chunk flash attention and sparse attention.
|
3
|
+
"""
|
4
|
+
import functools
|
5
|
+
import logging
|
6
|
+
import math
|
7
|
+
from dataclasses import dataclass
|
8
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
9
|
+
|
10
|
+
import torch
|
11
|
+
import torch.nn.functional as F
|
12
|
+
from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
|
13
|
+
from sgl_kernel.sparse_flash_attn import (
|
14
|
+
convert_vertical_slash_indexes,
|
15
|
+
convert_vertical_slash_indexes_mergehead,
|
16
|
+
sparse_attn_func,
|
17
|
+
)
|
18
|
+
|
19
|
+
from sglang.srt.distributed.parallel_state import get_tensor_model_parallel_rank
|
20
|
+
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
|
21
|
+
from sglang.srt.layers.attention.flashattention_backend import FlashAttentionMetadata
|
22
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
|
23
|
+
|
24
|
+
if TYPE_CHECKING:
|
25
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
26
|
+
from sglang.srt.model_executor.model_runner import ModelRunner
|
27
|
+
|
28
|
+
|
29
|
+
logger = logging.getLogger(__name__)
|
30
|
+
|
31
|
+
|
32
|
+
@dataclass
|
33
|
+
class DualChunkFlashAttentionMetadata:
|
34
|
+
"""Metadata for FlashAttentionBackend.
|
35
|
+
|
36
|
+
NOTE: Any python object stored here is not updated when it is
|
37
|
+
cuda-graph replayed. If you have values that need to be changed
|
38
|
+
dynamically, it should be stored in tensor. The tensor has to be
|
39
|
+
updated from `CUDAGraphRunner.forward` API.
|
40
|
+
"""
|
41
|
+
|
42
|
+
# (batch_size,). The sequence length per sequence. Sequence length means
|
43
|
+
# the computed tokens + new tokens None if it is a decoding.
|
44
|
+
seq_lens: Optional[List[int]] = None
|
45
|
+
# seq_lens stored as a tensor.
|
46
|
+
seq_lens_tensor: Optional[torch.Tensor] = None
|
47
|
+
# Maximum sequence length among prefill batch. 0 if there are decoding
|
48
|
+
# requests only.
|
49
|
+
max_seq_len: int = None
|
50
|
+
|
51
|
+
# (batch_size,). The orig sequence length per sequence.
|
52
|
+
orig_seq_lens: Optional[List[int]] = None
|
53
|
+
|
54
|
+
# orig_seq_lens stored as a tensor.
|
55
|
+
orig_seq_lens_tensor: Optional[torch.Tensor] = None
|
56
|
+
|
57
|
+
# Block addresses per sequence. (Seq id -> list of physical block)
|
58
|
+
# E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
|
59
|
+
# in the kv cache. Each block can contain up to block_size tokens.
|
60
|
+
# 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
|
61
|
+
# captured.
|
62
|
+
block_tables: Optional[torch.Tensor] = None
|
63
|
+
|
64
|
+
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
|
65
|
+
# the batch, used to index into subquery. E.g., if the subquery length
|
66
|
+
# is [4, 6], it is [0, 4, 10].
|
67
|
+
query_start_loc: Optional[torch.Tensor] = None
|
68
|
+
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
|
69
|
+
# the batch, used to index into sequence. E.g., if the sequence length is
|
70
|
+
# [4, 6], it is [0, 4, 10].
|
71
|
+
seq_start_loc: Optional[torch.Tensor] = None
|
72
|
+
|
73
|
+
# Length scaling factor
|
74
|
+
scaling_factor: Optional[torch.Tensor] = None
|
75
|
+
|
76
|
+
# (batch_size,). Sequence lengths for intra attention.
|
77
|
+
seq_lens_intra: Optional[torch.Tensor] = None
|
78
|
+
|
79
|
+
# Max sequence length for intra attention.
|
80
|
+
max_seq_len_intra: Optional[int] = None
|
81
|
+
|
82
|
+
# (batch_size, num_blocks). Block table for intra attention.
|
83
|
+
block_tables_intra: Optional[torch.Tensor] = None
|
84
|
+
|
85
|
+
# (batch_size,). Sequence lengths for succ attention.
|
86
|
+
seq_lens_succ: Optional[torch.Tensor] = None
|
87
|
+
|
88
|
+
# Max sequence length for succ attention.
|
89
|
+
max_seq_len_succ: Optional[int] = None
|
90
|
+
|
91
|
+
# (batch_size, num_blocks). Block table for succ attention.
|
92
|
+
block_tables_succ: Optional[torch.Tensor] = None
|
93
|
+
|
94
|
+
# (batch_size,). Sequence lengths for inter attention.
|
95
|
+
seq_lens_inter: Optional[torch.Tensor] = None
|
96
|
+
|
97
|
+
# Max sequence length for inter attention.
|
98
|
+
max_seq_len_inter: Optional[int] = None
|
99
|
+
|
100
|
+
|
101
|
+
class DualChunkFlashAttentionBackend(AttentionBackend):
|
102
|
+
def __init__(
|
103
|
+
self,
|
104
|
+
model_runner: "ModelRunner",
|
105
|
+
) -> None:
|
106
|
+
self.forward_metadata: FlashAttentionMetadata = None
|
107
|
+
self.device = model_runner.device
|
108
|
+
self.max_context_len = model_runner.model_config.context_len
|
109
|
+
self.num_heads = model_runner.model_config.get_num_attention_heads(
|
110
|
+
model_runner.server_args.tp_size
|
111
|
+
)
|
112
|
+
self.num_kv_heads = model_runner.model_config.get_num_kv_heads(
|
113
|
+
model_runner.server_args.tp_size
|
114
|
+
)
|
115
|
+
self.head_size = model_runner.model_config.head_dim
|
116
|
+
|
117
|
+
self.req_to_token = model_runner.req_to_token_pool.req_to_token
|
118
|
+
self.kv_cache_dtype = model_runner.kv_cache_dtype
|
119
|
+
self.kv_cache_dtype_str = model_runner.server_args.kv_cache_dtype
|
120
|
+
self.page_size = model_runner.page_size
|
121
|
+
|
122
|
+
assert self.num_heads % self.num_kv_heads == 0
|
123
|
+
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
124
|
+
|
125
|
+
dual_chunk_attention_config = getattr(
|
126
|
+
model_runner.model_config.hf_config, "dual_chunk_attention_config", None
|
127
|
+
)
|
128
|
+
assert dual_chunk_attention_config is not None
|
129
|
+
self.chunk_size = dual_chunk_attention_config.get("chunk_size", 8192)
|
130
|
+
self.local_size = dual_chunk_attention_config.get("local_size", 1024)
|
131
|
+
self.original_max_position_embeddings = dual_chunk_attention_config.get(
|
132
|
+
"original_max_position_embeddings", 0
|
133
|
+
)
|
134
|
+
self.sparse_attention_config = dual_chunk_attention_config.get(
|
135
|
+
"sparse_attention_config", None
|
136
|
+
)
|
137
|
+
if not self.sparse_attention_config:
|
138
|
+
logger.warning_once(
|
139
|
+
"Sparse attention will not be enabled as "
|
140
|
+
"sparse attention config is not provided."
|
141
|
+
)
|
142
|
+
self.sparse_attention_enabled = dual_chunk_attention_config.get(
|
143
|
+
"sparse_attention_enabled", self.sparse_attention_config is not None
|
144
|
+
)
|
145
|
+
self.sparse_attention_threshold = dual_chunk_attention_config.get(
|
146
|
+
"sparse_attention_threshold", 32768
|
147
|
+
)
|
148
|
+
self.sparse_attention_last_q = dual_chunk_attention_config.get(
|
149
|
+
"sparse_attention_last_q", 64
|
150
|
+
)
|
151
|
+
self.dual_chunk_attention_config = dual_chunk_attention_config
|
152
|
+
|
153
|
+
if self.sparse_attention_enabled:
|
154
|
+
self.arange = torch.arange(self.sparse_attention_last_q, device="cuda")
|
155
|
+
self.last_q_mask = (
|
156
|
+
self.arange[None, None, :, None] >= self.arange[None, None, None, :]
|
157
|
+
)
|
158
|
+
|
159
|
+
@functools.lru_cache()
|
160
|
+
def get_sparse_attention_config(self, layer_idx) -> List[Dict[str, Any]]:
|
161
|
+
layer_sparse_attention_config = {
|
162
|
+
int(i): j for i, j in self.sparse_attention_config[layer_idx].items()
|
163
|
+
}
|
164
|
+
start_head = self.num_heads * get_tensor_model_parallel_rank()
|
165
|
+
end_head = start_head + self.num_heads
|
166
|
+
return [layer_sparse_attention_config[i] for i in range(start_head, end_head)]
|
167
|
+
|
168
|
+
def init_forward_metadata(self, forward_batch: ForwardBatch):
|
169
|
+
"""Initialize forward metadata hence all layers in the forward pass can reuse it."""
|
170
|
+
|
171
|
+
forward_mode: ForwardMode = forward_batch.forward_mode
|
172
|
+
assert forward_mode.is_prefill() or forward_mode.is_decode()
|
173
|
+
batch_size = forward_batch.batch_size
|
174
|
+
|
175
|
+
metadata = DualChunkFlashAttentionMetadata()
|
176
|
+
metadata.seq_lens_tensor = forward_batch.seq_lens.to(torch.int32)
|
177
|
+
metadata.seq_lens = forward_batch.seq_lens.tolist()
|
178
|
+
metadata.max_seq_len = forward_batch.seq_lens.max().item()
|
179
|
+
|
180
|
+
metadata.orig_seq_lens_tensor = forward_batch.orig_seq_lens
|
181
|
+
metadata.orig_seq_lens = forward_batch.orig_seq_lens.tolist()
|
182
|
+
|
183
|
+
metadata.block_tables = forward_batch.req_to_token_pool.req_to_token[
|
184
|
+
forward_batch.req_pool_indices, : metadata.max_seq_len
|
185
|
+
]
|
186
|
+
# Convert the block table to a strided format.
|
187
|
+
if self.page_size > 1:
|
188
|
+
strided_indices = torch.arange(
|
189
|
+
0, metadata.block_tables.shape[1], self.page_size, device=self.device
|
190
|
+
)
|
191
|
+
metadata.block_tables = (
|
192
|
+
metadata.block_tables[:, strided_indices] // self.page_size
|
193
|
+
)
|
194
|
+
|
195
|
+
metadata.query_start_loc = torch.zeros(
|
196
|
+
batch_size + 1, dtype=torch.int32, device=metadata.seq_lens_tensor.device
|
197
|
+
)
|
198
|
+
if forward_mode.is_prefill():
|
199
|
+
metadata.query_start_loc[1:] = torch.cumsum(
|
200
|
+
forward_batch.extend_seq_lens.to(torch.int32), dim=0, dtype=torch.int32
|
201
|
+
)
|
202
|
+
else:
|
203
|
+
metadata.query_start_loc[1:] = torch.cumsum(
|
204
|
+
torch.arange(
|
205
|
+
batch_size,
|
206
|
+
dtype=metadata.query_start_loc.dtype,
|
207
|
+
device=metadata.query_start_loc.device,
|
208
|
+
),
|
209
|
+
dim=0,
|
210
|
+
dtype=torch.int32,
|
211
|
+
)
|
212
|
+
metadata.seq_start_loc = torch.zeros(
|
213
|
+
batch_size + 1, dtype=torch.int32, device=metadata.seq_lens_tensor.device
|
214
|
+
)
|
215
|
+
metadata.seq_start_loc[1:] = torch.cumsum(
|
216
|
+
metadata.seq_lens_tensor, dim=0, dtype=torch.int32
|
217
|
+
)
|
218
|
+
|
219
|
+
if self.original_max_position_embeddings > 0:
|
220
|
+
if forward_mode.is_prefill():
|
221
|
+
metadata.scaling_factor = (
|
222
|
+
0.1
|
223
|
+
* torch.log(
|
224
|
+
metadata.orig_seq_lens_tensor
|
225
|
+
/ self.original_max_position_embeddings
|
226
|
+
)
|
227
|
+
+ 1.0
|
228
|
+
).clip(min=1)
|
229
|
+
else:
|
230
|
+
metadata.scaling_factor = (
|
231
|
+
0.1
|
232
|
+
* torch.log(
|
233
|
+
metadata.orig_seq_lens_tensor
|
234
|
+
/ self.original_max_position_embeddings
|
235
|
+
)
|
236
|
+
+ 1.0
|
237
|
+
).clip(min=1)
|
238
|
+
|
239
|
+
if forward_mode.is_decode():
|
240
|
+
cache_seq_lens = metadata.orig_seq_lens_tensor
|
241
|
+
|
242
|
+
chunk_len = self.chunk_size - self.local_size
|
243
|
+
chunk_num_curr = (cache_seq_lens - 1) // chunk_len
|
244
|
+
|
245
|
+
seq_lens_intra = cache_seq_lens - chunk_num_curr * chunk_len
|
246
|
+
max_seq_len_intra = seq_lens_intra.max().item()
|
247
|
+
metadata.seq_lens_intra = seq_lens_intra
|
248
|
+
metadata.max_seq_len_intra = max_seq_len_intra
|
249
|
+
|
250
|
+
block_tables_intra = torch.zeros(
|
251
|
+
batch_size,
|
252
|
+
(max_seq_len_intra - 1) // self.page_size + 1,
|
253
|
+
dtype=metadata.block_tables.dtype,
|
254
|
+
device=metadata.block_tables.device,
|
255
|
+
)
|
256
|
+
for i in range(batch_size):
|
257
|
+
st = chunk_num_curr[i] * chunk_len // self.page_size
|
258
|
+
ed = min(
|
259
|
+
st + (max_seq_len_intra - 1) // self.page_size + 1,
|
260
|
+
(cache_seq_lens[i] - 1) // self.page_size + 1,
|
261
|
+
)
|
262
|
+
block_tables_intra[i, : ed - st] = metadata.block_tables[i, st:ed]
|
263
|
+
metadata.block_tables_intra = block_tables_intra
|
264
|
+
|
265
|
+
metadata.seq_lens_succ = (
|
266
|
+
chunk_num_curr - (chunk_num_curr - 1).clip(min=0)
|
267
|
+
) * chunk_len
|
268
|
+
metadata.max_seq_len_succ = metadata.seq_lens_succ.max().item()
|
269
|
+
if metadata.max_seq_len_succ:
|
270
|
+
block_tables_succ = torch.zeros(
|
271
|
+
batch_size,
|
272
|
+
(metadata.max_seq_len_succ - 1) // self.page_size + 1,
|
273
|
+
dtype=metadata.block_tables.dtype,
|
274
|
+
device=metadata.block_tables.device,
|
275
|
+
)
|
276
|
+
for i in range(batch_size):
|
277
|
+
start = (
|
278
|
+
(chunk_num_curr[i] - 1).clip(min=0)
|
279
|
+
* chunk_len
|
280
|
+
// self.page_size
|
281
|
+
)
|
282
|
+
end = min(
|
283
|
+
start + (metadata.max_seq_len_succ - 1) // self.page_size + 1,
|
284
|
+
(cache_seq_lens[i] - 1) // self.page_size + 1,
|
285
|
+
)
|
286
|
+
block_tables_succ[i, : end - start] = metadata.block_tables[
|
287
|
+
i, start:end
|
288
|
+
]
|
289
|
+
metadata.block_tables_succ = block_tables_succ
|
290
|
+
|
291
|
+
metadata.seq_lens_inter = (chunk_num_curr - 1).clip(min=0) * chunk_len
|
292
|
+
metadata.max_seq_len_inter = metadata.seq_lens_inter.max().item()
|
293
|
+
|
294
|
+
self.forward_metadata = metadata
|
295
|
+
|
296
|
+
def forward_extend(
|
297
|
+
self,
|
298
|
+
q: torch.Tensor,
|
299
|
+
k: torch.Tensor,
|
300
|
+
v: torch.Tensor,
|
301
|
+
layer: "RadixAttention",
|
302
|
+
forward_batch: ForwardBatch,
|
303
|
+
save_kv_cache=True,
|
304
|
+
):
|
305
|
+
# Use precomputed metadata across all layers
|
306
|
+
metadata = self.forward_metadata
|
307
|
+
|
308
|
+
(
|
309
|
+
query,
|
310
|
+
query_succ,
|
311
|
+
query_inter,
|
312
|
+
query_succ_critical,
|
313
|
+
query_inter_critical,
|
314
|
+
) = torch.split(q, q.shape[-1] // 5, dim=-1)
|
315
|
+
|
316
|
+
# Reshape the query, key, and value tensors.
|
317
|
+
query = query.view(-1, self.num_heads, self.head_size)
|
318
|
+
query_succ = query_succ.view(-1, self.num_heads, self.head_size)
|
319
|
+
query_inter = query_inter.view(-1, self.num_heads, self.head_size)
|
320
|
+
query_succ_critical = query_succ_critical.view(
|
321
|
+
-1, self.num_heads, self.head_size
|
322
|
+
)
|
323
|
+
query_inter_critical = query_inter_critical.view(
|
324
|
+
-1, self.num_heads, self.head_size
|
325
|
+
)
|
326
|
+
key = k.view(-1, self.num_kv_heads, self.head_size)
|
327
|
+
value = v.view(-1, self.num_kv_heads, self.head_size)
|
328
|
+
|
329
|
+
# apply DCA scaling
|
330
|
+
if self.original_max_position_embeddings > 0:
|
331
|
+
assert metadata.scaling_factor is not None
|
332
|
+
assert metadata.query_start_loc is not None
|
333
|
+
assert metadata.orig_seq_lens is not None
|
334
|
+
current_start = 0
|
335
|
+
query_start_loc_cpu = metadata.query_start_loc.cpu()
|
336
|
+
for i in range(len(metadata.orig_seq_lens)):
|
337
|
+
current_end = (
|
338
|
+
current_start
|
339
|
+
+ (query_start_loc_cpu[i + 1] - query_start_loc_cpu[i]).item()
|
340
|
+
)
|
341
|
+
key[current_start:current_end].mul_(metadata.scaling_factor[i])
|
342
|
+
current_start = current_end
|
343
|
+
assert current_end <= self.max_context_len
|
344
|
+
|
345
|
+
# Do multi-head attention
|
346
|
+
key_cache, value_cache = forward_batch.token_to_kv_pool.get_kv_buffer(
|
347
|
+
layer.layer_id
|
348
|
+
)
|
349
|
+
key_cache = key_cache.view(
|
350
|
+
-1, self.page_size, layer.tp_k_head_num, layer.head_dim
|
351
|
+
)
|
352
|
+
value_cache = value_cache.view(
|
353
|
+
-1, self.page_size, layer.tp_v_head_num, layer.head_dim
|
354
|
+
)
|
355
|
+
|
356
|
+
if key is not None and value is not None:
|
357
|
+
if save_kv_cache:
|
358
|
+
forward_batch.token_to_kv_pool.set_kv_buffer(
|
359
|
+
layer,
|
360
|
+
forward_batch.out_cache_loc,
|
361
|
+
key,
|
362
|
+
value,
|
363
|
+
layer.k_scale,
|
364
|
+
layer.v_scale,
|
365
|
+
)
|
366
|
+
|
367
|
+
if not save_kv_cache:
|
368
|
+
# profile run
|
369
|
+
o = flash_attn_varlen_func(
|
370
|
+
q=query,
|
371
|
+
k=key,
|
372
|
+
v=value,
|
373
|
+
cu_seqlens_q=metadata.seq_start_loc,
|
374
|
+
cu_seqlens_k=metadata.seq_start_loc,
|
375
|
+
max_seqlen_q=metadata.max_seq_len,
|
376
|
+
max_seqlen_k=metadata.max_seq_len,
|
377
|
+
softmax_scale=layer.scaling,
|
378
|
+
causal=True,
|
379
|
+
)
|
380
|
+
else:
|
381
|
+
# prefill/chunked-prefill
|
382
|
+
# get per layer sparse attention config
|
383
|
+
if self.sparse_attention_enabled:
|
384
|
+
self.layer_sparse_attention_config = self.get_sparse_attention_config(
|
385
|
+
layer.layer_id
|
386
|
+
)
|
387
|
+
assert metadata.orig_seq_lens is not None
|
388
|
+
o = self._dual_chunk_flash_attn_prefill(
|
389
|
+
q=query,
|
390
|
+
q_succ=query_succ,
|
391
|
+
q_inter=query_inter,
|
392
|
+
q_succ_critical=query_succ_critical,
|
393
|
+
q_inter_critical=query_inter_critical,
|
394
|
+
k=key_cache,
|
395
|
+
v=value_cache,
|
396
|
+
cu_seqlens_q=metadata.query_start_loc,
|
397
|
+
cu_seqlens_k=metadata.seq_start_loc,
|
398
|
+
orig_seq_lens=metadata.orig_seq_lens,
|
399
|
+
scaling_factor=metadata.scaling_factor,
|
400
|
+
softmax_scale=layer.scaling,
|
401
|
+
causal=True,
|
402
|
+
window_size=(-1, -1),
|
403
|
+
block_table=metadata.block_tables,
|
404
|
+
chunk_size=self.chunk_size,
|
405
|
+
local_size=self.local_size,
|
406
|
+
)
|
407
|
+
return o.view(-1, layer.tp_q_head_num * layer.v_head_dim)
|
408
|
+
|
409
|
+
def forward_decode(
|
410
|
+
self,
|
411
|
+
q: torch.Tensor,
|
412
|
+
k: torch.Tensor,
|
413
|
+
v: torch.Tensor,
|
414
|
+
layer: "RadixAttention",
|
415
|
+
forward_batch: ForwardBatch,
|
416
|
+
save_kv_cache=True,
|
417
|
+
) -> torch.Tensor:
|
418
|
+
# Use precomputed metadata across all layers
|
419
|
+
metadata = self.forward_metadata
|
420
|
+
|
421
|
+
(
|
422
|
+
query,
|
423
|
+
query_succ,
|
424
|
+
query_inter,
|
425
|
+
query_succ_critical,
|
426
|
+
query_inter_critical,
|
427
|
+
) = torch.split(q, q.shape[-1] // 5, dim=-1)
|
428
|
+
|
429
|
+
# Reshape the query, key, and value tensors.
|
430
|
+
query = query.view(-1, self.num_heads, self.head_size)
|
431
|
+
query_succ = query_succ.view(-1, self.num_heads, self.head_size)
|
432
|
+
query_inter = query_inter.view(-1, self.num_heads, self.head_size)
|
433
|
+
query_succ_critical = query_succ_critical.view(
|
434
|
+
-1, self.num_heads, self.head_size
|
435
|
+
)
|
436
|
+
query_inter_critical = query_inter_critical.view(
|
437
|
+
-1, self.num_heads, self.head_size
|
438
|
+
)
|
439
|
+
key = k.view(-1, self.num_kv_heads, self.head_size)
|
440
|
+
value = v.view(-1, self.num_kv_heads, self.head_size)
|
441
|
+
|
442
|
+
key_cache, value_cache = forward_batch.token_to_kv_pool.get_kv_buffer(
|
443
|
+
layer.layer_id
|
444
|
+
)
|
445
|
+
key_cache = key_cache.view(
|
446
|
+
-1, self.page_size, layer.tp_k_head_num, layer.head_dim
|
447
|
+
)
|
448
|
+
value_cache = value_cache.view(
|
449
|
+
-1, self.page_size, layer.tp_v_head_num, layer.head_dim
|
450
|
+
)
|
451
|
+
|
452
|
+
if key is not None and value is not None:
|
453
|
+
if save_kv_cache:
|
454
|
+
forward_batch.token_to_kv_pool.set_kv_buffer(
|
455
|
+
layer,
|
456
|
+
forward_batch.out_cache_loc,
|
457
|
+
key,
|
458
|
+
value,
|
459
|
+
layer.k_scale,
|
460
|
+
layer.v_scale,
|
461
|
+
)
|
462
|
+
|
463
|
+
# apply DCA scaling
|
464
|
+
if self.original_max_position_embeddings > 0:
|
465
|
+
assert metadata.scaling_factor is not None
|
466
|
+
scaling_factor = metadata.scaling_factor
|
467
|
+
key.mul_(scaling_factor.unsqueeze(-1).unsqueeze(-1))
|
468
|
+
|
469
|
+
o = self._dual_chunk_flash_attn_decoding(
|
470
|
+
query.unsqueeze(1),
|
471
|
+
query_succ.unsqueeze(1),
|
472
|
+
query_inter.unsqueeze(1),
|
473
|
+
key_cache,
|
474
|
+
value_cache,
|
475
|
+
block_table=metadata.block_tables,
|
476
|
+
cache_seqlens=metadata.seq_lens_tensor,
|
477
|
+
softmax_scale=layer.scaling,
|
478
|
+
causal=True,
|
479
|
+
chunk_size=self.chunk_size,
|
480
|
+
local_size=self.local_size,
|
481
|
+
original_max_position_embeddings=self.original_max_position_embeddings,
|
482
|
+
decode_meta=metadata,
|
483
|
+
).squeeze(1)
|
484
|
+
return o.view(-1, layer.tp_q_head_num * layer.v_head_dim)
|
485
|
+
|
486
|
+
def init_cuda_graph_state(self, max_bs: int):
|
487
|
+
"""Initialize CUDA graph state for the attention backend.
|
488
|
+
|
489
|
+
Args:
|
490
|
+
max_bs (int): Maximum batch size to support in CUDA graphs
|
491
|
+
|
492
|
+
This creates fixed-size tensors that will be reused during CUDA graph replay
|
493
|
+
to avoid memory allocations.
|
494
|
+
"""
|
495
|
+
self.decode_metadata = {
|
496
|
+
"seq_lens_tensor": torch.zeros(
|
497
|
+
max_bs, dtype=torch.int32, device=self.device
|
498
|
+
),
|
499
|
+
"orig_seq_lens_tensor": torch.zeros(
|
500
|
+
max_bs, dtype=torch.int32, device=self.device
|
501
|
+
),
|
502
|
+
"scaling_factor": torch.zeros(
|
503
|
+
max_bs, dtype=torch.float32, device=self.device
|
504
|
+
),
|
505
|
+
"block_tables": torch.zeros(
|
506
|
+
max_bs,
|
507
|
+
(self.max_context_len - 1) // self.page_size + 1,
|
508
|
+
dtype=torch.int32,
|
509
|
+
device=self.device,
|
510
|
+
),
|
511
|
+
"block_tables_intra": torch.zeros(
|
512
|
+
max_bs,
|
513
|
+
(self.max_context_len - 1) // self.page_size + 1,
|
514
|
+
dtype=torch.int32,
|
515
|
+
device=self.device,
|
516
|
+
),
|
517
|
+
"seq_lens_intra": torch.zeros(
|
518
|
+
max_bs, dtype=torch.int32, device=self.device
|
519
|
+
),
|
520
|
+
"block_tables_succ": torch.zeros(
|
521
|
+
max_bs,
|
522
|
+
(self.max_context_len - 1) // self.page_size + 1,
|
523
|
+
dtype=torch.int32,
|
524
|
+
device=self.device,
|
525
|
+
),
|
526
|
+
"seq_lens_succ": torch.zeros(max_bs, dtype=torch.int32, device=self.device),
|
527
|
+
"seq_lens_inter": torch.zeros(
|
528
|
+
max_bs, dtype=torch.int32, device=self.device
|
529
|
+
),
|
530
|
+
}
|
531
|
+
|
532
|
+
def init_forward_metadata_capture_cuda_graph(
|
533
|
+
self,
|
534
|
+
bs: int,
|
535
|
+
num_tokens: int,
|
536
|
+
req_pool_indices: torch.Tensor,
|
537
|
+
seq_lens: torch.Tensor,
|
538
|
+
encoder_lens: Optional[torch.Tensor],
|
539
|
+
forward_mode: ForwardMode,
|
540
|
+
spec_info: Optional[None],
|
541
|
+
):
|
542
|
+
metadata = DualChunkFlashAttentionMetadata()
|
543
|
+
|
544
|
+
if forward_mode.is_decode_or_idle():
|
545
|
+
if self.original_max_position_embeddings > 0:
|
546
|
+
metadata.scaling_factor = self.decode_metadata["scaling_factor"][:bs]
|
547
|
+
|
548
|
+
metadata.seq_lens_tensor = self.decode_metadata["seq_lens_tensor"][:bs]
|
549
|
+
metadata.orig_seq_lens_tensor = self.decode_metadata[
|
550
|
+
"orig_seq_lens_tensor"
|
551
|
+
][:bs]
|
552
|
+
metadata.max_seq_len = self.max_context_len
|
553
|
+
metadata.block_tables = self.decode_metadata["block_tables"][
|
554
|
+
req_pool_indices, :
|
555
|
+
]
|
556
|
+
|
557
|
+
# intra
|
558
|
+
metadata.max_seq_len_intra = self.max_context_len
|
559
|
+
metadata.seq_lens_intra = self.decode_metadata["seq_lens_intra"][:bs]
|
560
|
+
|
561
|
+
metadata.block_tables_intra = self.decode_metadata["block_tables_intra"][
|
562
|
+
:bs, :
|
563
|
+
]
|
564
|
+
|
565
|
+
# succ
|
566
|
+
metadata.seq_lens_succ = self.decode_metadata["seq_lens_succ"][:bs]
|
567
|
+
metadata.max_seq_len_succ = self.max_context_len
|
568
|
+
|
569
|
+
metadata.block_tables_succ = self.decode_metadata["block_tables_succ"][
|
570
|
+
:bs, :
|
571
|
+
]
|
572
|
+
|
573
|
+
metadata.seq_lens_inter = self.decode_metadata["seq_lens_inter"][:bs]
|
574
|
+
metadata.max_seq_len_inter = self.max_context_len
|
575
|
+
|
576
|
+
self.decode_metadata[bs] = metadata
|
577
|
+
|
578
|
+
self.forward_metadata = metadata
|
579
|
+
|
580
|
+
def init_forward_metadata_replay_cuda_graph(
|
581
|
+
self,
|
582
|
+
bs: int,
|
583
|
+
req_pool_indices: torch.Tensor,
|
584
|
+
seq_lens: torch.Tensor,
|
585
|
+
seq_lens_sum: int,
|
586
|
+
encoder_lens: Optional[torch.Tensor],
|
587
|
+
forward_mode: ForwardMode,
|
588
|
+
spec_info: Optional[None],
|
589
|
+
seq_lens_cpu: Optional[torch.Tensor],
|
590
|
+
out_cache_loc: torch.Tensor = None,
|
591
|
+
):
|
592
|
+
"""Initialize forward metadata for replaying CUDA graph."""
|
593
|
+
assert forward_mode.is_decode()
|
594
|
+
seq_lens = seq_lens[:bs]
|
595
|
+
req_pool_indices = req_pool_indices[:bs]
|
596
|
+
metadata = self.decode_metadata[bs]
|
597
|
+
|
598
|
+
metadata.seq_lens_tensor.copy_(seq_lens.to(torch.int32))
|
599
|
+
metadata.seq_lens = seq_lens.tolist()
|
600
|
+
metadata.max_seq_len = seq_lens.max().item()
|
601
|
+
|
602
|
+
metadata.orig_seq_lens_tensor.copy_(seq_lens)
|
603
|
+
metadata.orig_seq_lens = seq_lens.tolist()
|
604
|
+
|
605
|
+
block_tables = self.req_to_token[req_pool_indices, : metadata.max_seq_len]
|
606
|
+
# Convert the block table to a strided format.
|
607
|
+
if self.page_size > 1:
|
608
|
+
strided_indices = torch.arange(
|
609
|
+
0, block_tables.shape[1], self.page_size, device=self.device
|
610
|
+
)
|
611
|
+
block_tables = block_tables[:, strided_indices] // self.page_size
|
612
|
+
metadata.block_tables.fill_(0)
|
613
|
+
metadata.block_tables[: block_tables.shape[0], : block_tables.shape[1]].copy_(
|
614
|
+
block_tables
|
615
|
+
)
|
616
|
+
|
617
|
+
if self.original_max_position_embeddings > 0:
|
618
|
+
scaling_factor = (
|
619
|
+
0.1
|
620
|
+
* torch.log(
|
621
|
+
metadata.orig_seq_lens_tensor
|
622
|
+
/ self.original_max_position_embeddings
|
623
|
+
)
|
624
|
+
+ 1.0
|
625
|
+
).clip(min=1)
|
626
|
+
metadata.scaling_factor.copy_(scaling_factor)
|
627
|
+
|
628
|
+
cache_seq_lens = metadata.orig_seq_lens_tensor
|
629
|
+
|
630
|
+
chunk_len = self.chunk_size - self.local_size
|
631
|
+
chunk_num_curr = (cache_seq_lens - 1) // chunk_len
|
632
|
+
|
633
|
+
seq_lens_intra = cache_seq_lens - chunk_num_curr * chunk_len
|
634
|
+
max_seq_len_intra = seq_lens_intra.max().item()
|
635
|
+
metadata.seq_lens_intra.copy_(seq_lens_intra)
|
636
|
+
metadata.max_seq_len_intra = max_seq_len_intra
|
637
|
+
|
638
|
+
metadata.block_tables_intra.fill_(0)
|
639
|
+
for i in range(bs):
|
640
|
+
st = chunk_num_curr[i] * chunk_len // self.page_size
|
641
|
+
ed = min(
|
642
|
+
st + (max_seq_len_intra - 1) // self.page_size + 1,
|
643
|
+
(cache_seq_lens[i] - 1) // self.page_size + 1,
|
644
|
+
)
|
645
|
+
metadata.block_tables_intra[i, : ed - st] = metadata.block_tables[i, st:ed]
|
646
|
+
|
647
|
+
seq_lens_succ = (chunk_num_curr - (chunk_num_curr - 1).clip(min=0)) * chunk_len
|
648
|
+
metadata.seq_lens_succ.copy_(seq_lens_succ)
|
649
|
+
metadata.max_seq_len_succ = metadata.seq_lens_succ.max().item()
|
650
|
+
if metadata.max_seq_len_succ:
|
651
|
+
metadata.block_tables_succ.fill_(0)
|
652
|
+
for i in range(bs):
|
653
|
+
start = (
|
654
|
+
(chunk_num_curr[i] - 1).clip(min=0) * chunk_len // self.page_size
|
655
|
+
)
|
656
|
+
end = min(
|
657
|
+
start + (metadata.max_seq_len_succ - 1) // self.page_size + 1,
|
658
|
+
(cache_seq_lens[i] - 1) // self.page_size + 1,
|
659
|
+
)
|
660
|
+
metadata.block_tables_succ[i, : end - start] = metadata.block_tables[
|
661
|
+
i, start:end
|
662
|
+
]
|
663
|
+
|
664
|
+
seq_lens_inter = (chunk_num_curr - 1).clip(min=0) * chunk_len
|
665
|
+
metadata.seq_lens_inter.copy_(seq_lens_inter)
|
666
|
+
metadata.max_seq_len_inter = metadata.seq_lens_inter.max().item()
|
667
|
+
|
668
|
+
self.forward_metadata = metadata
|
669
|
+
|
670
|
+
def get_cuda_graph_seq_len_fill_value(self):
|
671
|
+
"""Get the fill value for sequence length in CUDA graph."""
|
672
|
+
return 1
|
673
|
+
|
674
|
+
def _dual_chunk_flash_attn_prefill(
|
675
|
+
self,
|
676
|
+
q,
|
677
|
+
q_succ,
|
678
|
+
q_inter,
|
679
|
+
q_succ_critical,
|
680
|
+
q_inter_critical,
|
681
|
+
k,
|
682
|
+
v,
|
683
|
+
cu_seqlens_q,
|
684
|
+
cu_seqlens_k,
|
685
|
+
orig_seq_lens: List[int],
|
686
|
+
scaling_factor: torch.Tensor,
|
687
|
+
softmax_scale: float,
|
688
|
+
causal: Optional[bool] = True,
|
689
|
+
window_size: Tuple[int, int] = (-1, -1),
|
690
|
+
block_table: Optional[torch.Tensor] = None,
|
691
|
+
chunk_size: int = 8192,
|
692
|
+
local_size: int = 1024,
|
693
|
+
):
|
694
|
+
if not causal:
|
695
|
+
raise ValueError("Dual Chunk Attention does not support causal=False")
|
696
|
+
if window_size != (-1, -1):
|
697
|
+
raise ValueError("Dual Chunk Attention does not support window_size")
|
698
|
+
|
699
|
+
cu_seqlens_q_cpu = cu_seqlens_q.cpu().tolist()
|
700
|
+
cu_seqlens_k_cpu = cu_seqlens_k.cpu().tolist()
|
701
|
+
all_outputs = []
|
702
|
+
|
703
|
+
for i in range(0, len(cu_seqlens_q_cpu) - 1):
|
704
|
+
qs = cu_seqlens_q_cpu[i]
|
705
|
+
qe = cu_seqlens_q_cpu[i : i + 2][-1]
|
706
|
+
ks = cu_seqlens_k_cpu[i]
|
707
|
+
ke = cu_seqlens_k_cpu[i : i + 2][-1]
|
708
|
+
|
709
|
+
current_q = q[qs:qe]
|
710
|
+
current_q_succ = q_succ[qs:qe]
|
711
|
+
current_q_inter = q_inter[qs:qe]
|
712
|
+
current_q_succ_critical = q_succ_critical[qs:qe]
|
713
|
+
current_q_inter_critical = q_inter_critical[qs:qe]
|
714
|
+
|
715
|
+
if block_table is None:
|
716
|
+
current_k = k[ks:ke]
|
717
|
+
current_v = v[ks:ke]
|
718
|
+
current_block_table = None
|
719
|
+
current_orig_seq_len = orig_seq_lens[i]
|
720
|
+
else:
|
721
|
+
current_block_table = block_table[i]
|
722
|
+
current_orig_seq_len = orig_seq_lens[i]
|
723
|
+
current_k = k
|
724
|
+
current_v = v
|
725
|
+
sparse_attn_enabled = (
|
726
|
+
self.sparse_attention_enabled
|
727
|
+
and current_orig_seq_len > self.sparse_attention_threshold
|
728
|
+
)
|
729
|
+
|
730
|
+
if current_q.shape[0] == 0:
|
731
|
+
continue
|
732
|
+
|
733
|
+
if current_k.shape[0] == 0:
|
734
|
+
all_outputs.append(
|
735
|
+
torch.zeros(
|
736
|
+
(current_q.shape[0], current_q.shape[1], v.shape[2]),
|
737
|
+
device=q.device,
|
738
|
+
dtype=q.dtype,
|
739
|
+
)
|
740
|
+
)
|
741
|
+
continue
|
742
|
+
|
743
|
+
current_output = torch.empty_like(current_q)
|
744
|
+
group_size = int(current_q.size(-2) / current_k.size(-2))
|
745
|
+
|
746
|
+
if sparse_attn_enabled:
|
747
|
+
num_device_q_heads = current_q.size(-2)
|
748
|
+
heads_vertical_size = torch.empty(
|
749
|
+
size=(num_device_q_heads,), dtype=torch.int32
|
750
|
+
)
|
751
|
+
heads_slash_size = torch.empty(
|
752
|
+
size=(num_device_q_heads,), dtype=torch.int32
|
753
|
+
)
|
754
|
+
for head_id in range(current_q.size(-2)):
|
755
|
+
(
|
756
|
+
ty,
|
757
|
+
vertical_size,
|
758
|
+
slash_size,
|
759
|
+
_,
|
760
|
+
) = self.layer_sparse_attention_config[head_id]
|
761
|
+
assert ty == "vertical_and_slash", "only support slash mode"
|
762
|
+
|
763
|
+
if vertical_size == 30:
|
764
|
+
vertical_size += 100
|
765
|
+
heads_vertical_size[head_id] = vertical_size
|
766
|
+
heads_slash_size[head_id] = slash_size
|
767
|
+
|
768
|
+
current_output = self._dual_chunk_flash_attn_prefill_func(
|
769
|
+
current_q, # allheads
|
770
|
+
current_q_succ,
|
771
|
+
current_q_inter,
|
772
|
+
current_q_succ_critical,
|
773
|
+
current_q_inter_critical,
|
774
|
+
current_k,
|
775
|
+
current_v,
|
776
|
+
current_block_table,
|
777
|
+
softmax_scale,
|
778
|
+
chunk_size,
|
779
|
+
local_size,
|
780
|
+
scaling_factor[i].item(),
|
781
|
+
ke - ks,
|
782
|
+
sparse_attn_enabled=sparse_attn_enabled,
|
783
|
+
heads_vertical_size=heads_vertical_size,
|
784
|
+
heads_slash_size=heads_slash_size,
|
785
|
+
group_size=group_size,
|
786
|
+
)
|
787
|
+
else:
|
788
|
+
for head_id in range(current_q.size(-2)):
|
789
|
+
# (seq_len, num_heads, head_size)
|
790
|
+
current_q_head = current_q[:, head_id, :].unsqueeze(1)
|
791
|
+
current_q_succ_head = current_q_succ[:, head_id, :].unsqueeze(1)
|
792
|
+
current_q_inter_head = current_q_inter[:, head_id, :].unsqueeze(1)
|
793
|
+
current_q_succ_head_critical = current_q_succ_critical[
|
794
|
+
:, head_id, :
|
795
|
+
].unsqueeze(1)
|
796
|
+
current_q_inter_head_critical = current_q_inter_critical[
|
797
|
+
:, head_id, :
|
798
|
+
].unsqueeze(1)
|
799
|
+
if block_table is not None:
|
800
|
+
current_k_head = current_k[
|
801
|
+
..., head_id // group_size, :
|
802
|
+
].unsqueeze(2)
|
803
|
+
current_v_head = current_v[
|
804
|
+
..., head_id // group_size, :
|
805
|
+
].unsqueeze(2)
|
806
|
+
|
807
|
+
else:
|
808
|
+
current_k_head = current_k[:, head_id, :].unsqueeze(1)
|
809
|
+
current_v_head = current_v[:, head_id, :].unsqueeze(1)
|
810
|
+
|
811
|
+
current_out = self._dual_chunk_flash_attn_prefill_func(
|
812
|
+
current_q_head,
|
813
|
+
current_q_succ_head,
|
814
|
+
current_q_inter_head,
|
815
|
+
current_q_succ_head_critical,
|
816
|
+
current_q_inter_head_critical,
|
817
|
+
current_k_head,
|
818
|
+
current_v_head,
|
819
|
+
current_block_table,
|
820
|
+
softmax_scale,
|
821
|
+
chunk_size,
|
822
|
+
local_size,
|
823
|
+
scaling_factor[i].item(),
|
824
|
+
ke - ks,
|
825
|
+
sparse_attn_enabled=sparse_attn_enabled,
|
826
|
+
)
|
827
|
+
current_output[:, head_id : head_id + 1, :] = current_out
|
828
|
+
all_outputs.append(current_output)
|
829
|
+
return torch.cat(all_outputs, dim=0)
|
830
|
+
|
831
|
+
def _dual_chunk_flash_attn_prefill_func(
|
832
|
+
self,
|
833
|
+
q,
|
834
|
+
q_succ,
|
835
|
+
q_inter,
|
836
|
+
q_succ_critical,
|
837
|
+
q_inter_critical,
|
838
|
+
k,
|
839
|
+
v,
|
840
|
+
block_table,
|
841
|
+
softmax_scale: float,
|
842
|
+
chunk_size: int,
|
843
|
+
local_size: int,
|
844
|
+
scaling_factor: float,
|
845
|
+
k_length: int,
|
846
|
+
sparse_attn_enabled: Optional[bool] = True,
|
847
|
+
heads_vertical_size=None,
|
848
|
+
heads_slash_size=None,
|
849
|
+
group_size=None,
|
850
|
+
):
|
851
|
+
flash_results = []
|
852
|
+
chunk_len = chunk_size - local_size
|
853
|
+
|
854
|
+
if block_table is not None:
|
855
|
+
block_size = v.shape[1]
|
856
|
+
if chunk_len % block_size != 0:
|
857
|
+
raise ValueError("chunk_len must be divisible by block_size.")
|
858
|
+
else:
|
859
|
+
block_size = 1
|
860
|
+
|
861
|
+
if self.original_max_position_embeddings > 0:
|
862
|
+
softmax_scale = softmax_scale * scaling_factor
|
863
|
+
|
864
|
+
begin = k_length - q.shape[0]
|
865
|
+
while begin < k_length:
|
866
|
+
flash_per_chunk = []
|
867
|
+
|
868
|
+
prev_chunk_end_pos = (begin // chunk_len) * chunk_len
|
869
|
+
next_chunk_end_pos = prev_chunk_end_pos + chunk_len
|
870
|
+
end = min(next_chunk_end_pos, k_length)
|
871
|
+
qbegin = begin - (k_length - q.shape[0])
|
872
|
+
qend = end - (k_length - q.shape[0])
|
873
|
+
|
874
|
+
qk_chunks = []
|
875
|
+
q_states_intra = q[qbegin:qend]
|
876
|
+
# choose critical token
|
877
|
+
if block_table is not None:
|
878
|
+
block_tables_intra = _get_block(
|
879
|
+
block_table, block_size, prev_chunk_end_pos, end
|
880
|
+
)
|
881
|
+
k_states_intra = k[block_tables_intra].view(-1, *k.shape[-2:])[
|
882
|
+
: (end - prev_chunk_end_pos)
|
883
|
+
]
|
884
|
+
v_states_intra = v[block_tables_intra].view(-1, *v.shape[-2:])[
|
885
|
+
: (end - prev_chunk_end_pos)
|
886
|
+
]
|
887
|
+
else:
|
888
|
+
block_tables_intra = None
|
889
|
+
k_states_intra = k[prev_chunk_end_pos:end]
|
890
|
+
v_states_intra = v[prev_chunk_end_pos:end]
|
891
|
+
|
892
|
+
if sparse_attn_enabled:
|
893
|
+
last_q_size = min(qend - qbegin, self.sparse_attention_last_q)
|
894
|
+
_, num_device_k_heads, head_dim = k_states_intra.shape
|
895
|
+
k_states_intra = (
|
896
|
+
k_states_intra.unsqueeze(2)
|
897
|
+
.repeat(1, 1, group_size, 1)
|
898
|
+
.reshape(-1, num_device_k_heads * group_size, head_dim)
|
899
|
+
)
|
900
|
+
v_states_intra = (
|
901
|
+
v_states_intra.unsqueeze(2)
|
902
|
+
.repeat(1, 1, group_size, 1)
|
903
|
+
.reshape(-1, num_device_k_heads * group_size, head_dim)
|
904
|
+
)
|
905
|
+
qk_chunks.append(
|
906
|
+
(q_states_intra.transpose(0, 1)[:, -last_q_size:] * softmax_scale)
|
907
|
+
@ k_states_intra.permute(1, 2, 0)
|
908
|
+
)
|
909
|
+
|
910
|
+
if prev_chunk_end_pos - chunk_len >= 0:
|
911
|
+
q_states_succ = q_succ[qbegin:qend]
|
912
|
+
q_states_succ_critical = q_succ_critical[qbegin:qend]
|
913
|
+
if block_table is not None:
|
914
|
+
block_tables_succ = _get_block(
|
915
|
+
block_table,
|
916
|
+
block_size,
|
917
|
+
prev_chunk_end_pos - chunk_len,
|
918
|
+
prev_chunk_end_pos,
|
919
|
+
)
|
920
|
+
k_states_succ = k[block_tables_succ].view(-1, *k.shape[-2:])[
|
921
|
+
:chunk_len
|
922
|
+
]
|
923
|
+
v_states_succ = v[block_tables_succ].view(-1, *v.shape[-2:])[
|
924
|
+
:chunk_len
|
925
|
+
]
|
926
|
+
else:
|
927
|
+
k_states_succ = k[
|
928
|
+
prev_chunk_end_pos - chunk_len : prev_chunk_end_pos
|
929
|
+
]
|
930
|
+
v_states_succ = v[
|
931
|
+
prev_chunk_end_pos - chunk_len : prev_chunk_end_pos
|
932
|
+
]
|
933
|
+
|
934
|
+
if sparse_attn_enabled:
|
935
|
+
k_states_succ = (
|
936
|
+
k_states_succ.unsqueeze(2)
|
937
|
+
.repeat(1, 1, group_size, 1)
|
938
|
+
.reshape(-1, num_device_k_heads * group_size, head_dim)
|
939
|
+
)
|
940
|
+
v_states_succ = (
|
941
|
+
v_states_succ.unsqueeze(2)
|
942
|
+
.repeat(1, 1, group_size, 1)
|
943
|
+
.reshape(-1, num_device_k_heads * group_size, head_dim)
|
944
|
+
)
|
945
|
+
qk_chunks.append(
|
946
|
+
(
|
947
|
+
q_states_succ_critical.transpose(0, 1)[:, -last_q_size:]
|
948
|
+
* softmax_scale
|
949
|
+
)
|
950
|
+
@ k_states_succ.permute(1, 2, 0)
|
951
|
+
)
|
952
|
+
|
953
|
+
if prev_chunk_end_pos - chunk_len * 2 >= 0:
|
954
|
+
q_states_inter = q_inter[qbegin:qend]
|
955
|
+
q_states_inter_critical = q_inter_critical[qbegin:qend]
|
956
|
+
if block_table is not None:
|
957
|
+
block_tables_inter = _get_block(
|
958
|
+
block_table, block_size, 0, prev_chunk_end_pos - chunk_len
|
959
|
+
)
|
960
|
+
k_states_inter = k[block_tables_inter].view(-1, *k.shape[-2:])[
|
961
|
+
: (prev_chunk_end_pos - chunk_len)
|
962
|
+
]
|
963
|
+
v_states_inter = v[block_tables_inter].view(-1, *v.shape[-2:])[
|
964
|
+
: (prev_chunk_end_pos - chunk_len)
|
965
|
+
]
|
966
|
+
else:
|
967
|
+
k_states_inter = k[: prev_chunk_end_pos - chunk_len]
|
968
|
+
v_states_inter = v[: prev_chunk_end_pos - chunk_len]
|
969
|
+
|
970
|
+
if sparse_attn_enabled:
|
971
|
+
k_states_inter = (
|
972
|
+
k_states_inter.unsqueeze(2)
|
973
|
+
.repeat(1, 1, group_size, 1)
|
974
|
+
.reshape(-1, num_device_k_heads * group_size, head_dim)
|
975
|
+
)
|
976
|
+
v_states_inter = (
|
977
|
+
v_states_inter.unsqueeze(2)
|
978
|
+
.repeat(1, 1, group_size, 1)
|
979
|
+
.reshape(-1, num_device_k_heads * group_size, head_dim)
|
980
|
+
)
|
981
|
+
qk_chunks.append(
|
982
|
+
(
|
983
|
+
q_states_inter_critical.transpose(0, 1)[:, -last_q_size:]
|
984
|
+
* softmax_scale
|
985
|
+
)
|
986
|
+
@ k_states_inter.permute(1, 2, 0)
|
987
|
+
)
|
988
|
+
|
989
|
+
if sparse_attn_enabled:
|
990
|
+
reversed_qk = qk_chunks[::-1]
|
991
|
+
qk = torch.cat(reversed_qk, dim=-1)
|
992
|
+
|
993
|
+
qk[:, :, -last_q_size:] = torch.where(
|
994
|
+
self.last_q_mask[..., -last_q_size:, -last_q_size:].to(qk.device),
|
995
|
+
qk[:, :, -last_q_size:],
|
996
|
+
-torch.inf,
|
997
|
+
)
|
998
|
+
qk = F.softmax(qk, dim=-1, dtype=torch.float32)
|
999
|
+
|
1000
|
+
vertical = qk.sum(-2, keepdim=True)
|
1001
|
+
vertical[..., :30] = torch.inf
|
1002
|
+
|
1003
|
+
# Avoid sorting by using the min/max ints to fill the indexer
|
1004
|
+
# buffers.
|
1005
|
+
int32_max = torch.iinfo(torch.int32).max
|
1006
|
+
int32_min = torch.iinfo(torch.int32).min
|
1007
|
+
n_heads = qk.size()[0]
|
1008
|
+
max_slash_topk = torch.max(heads_slash_size).item()
|
1009
|
+
max_vertical_topk = torch.max(heads_vertical_size).item()
|
1010
|
+
# store each head's slash topk, vertical topk
|
1011
|
+
vertical = vertical.reshape((n_heads, -1))
|
1012
|
+
# prevent out of range when prompt size < max_vertical_topk
|
1013
|
+
max_vertical_topk = min(vertical.shape[-1], max_vertical_topk)
|
1014
|
+
vertical_topk_buffer = torch.topk(
|
1015
|
+
vertical, max_vertical_topk, -1
|
1016
|
+
).indices
|
1017
|
+
slash_topk_buffer = torch.empty(
|
1018
|
+
size=(n_heads, max_slash_topk), dtype=torch.int64, device=qk.device
|
1019
|
+
)
|
1020
|
+
for head_i in range(n_heads):
|
1021
|
+
# (nqheads=1, lastq, k_len)
|
1022
|
+
head_score = qk[head_i : head_i + 1, :, :]
|
1023
|
+
slash_scores = _sum_all_diagonal_matrix(head_score)
|
1024
|
+
if head_score.size(1) != 1:
|
1025
|
+
# drop right up corner
|
1026
|
+
slash_scores = slash_scores[..., : -last_q_size + 1]
|
1027
|
+
slash_scores[..., -100:] = torch.inf
|
1028
|
+
|
1029
|
+
head_slash_size = heads_slash_size[head_i]
|
1030
|
+
head_slash_size = min(head_slash_size, vertical.size(-1))
|
1031
|
+
slash_topk = torch.topk(slash_scores, head_slash_size, -1).indices
|
1032
|
+
# (nheads, max_topk)
|
1033
|
+
slash_topk_buffer[head_i, :head_slash_size] = slash_topk
|
1034
|
+
|
1035
|
+
# reset heads topk
|
1036
|
+
heads_slash_size[head_i] = head_slash_size
|
1037
|
+
heads_vertical_size[head_i] = min(
|
1038
|
+
heads_vertical_size[head_i], max_vertical_topk
|
1039
|
+
)
|
1040
|
+
|
1041
|
+
# store
|
1042
|
+
vertical_buffer = torch.full(
|
1043
|
+
(n_heads, max_vertical_topk),
|
1044
|
+
int32_max,
|
1045
|
+
dtype=torch.int64,
|
1046
|
+
device=q.device,
|
1047
|
+
)
|
1048
|
+
slash_buffer = torch.full(
|
1049
|
+
(n_heads, max_slash_topk),
|
1050
|
+
int32_min,
|
1051
|
+
dtype=torch.int64,
|
1052
|
+
device=q.device,
|
1053
|
+
)
|
1054
|
+
succ_vertical_buffer = torch.full(
|
1055
|
+
(n_heads, max_vertical_topk),
|
1056
|
+
int32_max,
|
1057
|
+
dtype=torch.int64,
|
1058
|
+
device=q.device,
|
1059
|
+
)
|
1060
|
+
succ_slash_buffer = torch.full(
|
1061
|
+
(n_heads, max_slash_topk),
|
1062
|
+
int32_min,
|
1063
|
+
dtype=torch.int64,
|
1064
|
+
device=q.device,
|
1065
|
+
)
|
1066
|
+
inter_vertical_buffer = torch.full(
|
1067
|
+
(n_heads, max_vertical_topk),
|
1068
|
+
int32_max,
|
1069
|
+
dtype=torch.int64,
|
1070
|
+
device=q.device,
|
1071
|
+
)
|
1072
|
+
inter_slash_buffer = torch.full(
|
1073
|
+
(n_heads, max_slash_topk),
|
1074
|
+
int32_min,
|
1075
|
+
dtype=torch.int64,
|
1076
|
+
device=q.device,
|
1077
|
+
)
|
1078
|
+
|
1079
|
+
vertical_size_buffer = torch.empty(
|
1080
|
+
size=(n_heads,), dtype=torch.int32, device=q.device
|
1081
|
+
)
|
1082
|
+
slash_sizes_buffer = torch.empty(
|
1083
|
+
size=(n_heads,), dtype=torch.int32, device=q.device
|
1084
|
+
)
|
1085
|
+
succ_vertical_size_buffer = torch.empty(
|
1086
|
+
size=(n_heads,), dtype=torch.int32, device=q.device
|
1087
|
+
)
|
1088
|
+
succ_slash_sizes_buffer = torch.empty(
|
1089
|
+
size=(n_heads,), dtype=torch.int32, device=q.device
|
1090
|
+
)
|
1091
|
+
inter_vertical_size_buffer = torch.empty(
|
1092
|
+
size=(n_heads,), dtype=torch.int32, device=q.device
|
1093
|
+
)
|
1094
|
+
inter_slash_sizes_buffer = torch.empty(
|
1095
|
+
size=(n_heads,), dtype=torch.int32, device=q.device
|
1096
|
+
)
|
1097
|
+
|
1098
|
+
for head_i in range(n_heads):
|
1099
|
+
vertical_topk = vertical_topk_buffer[
|
1100
|
+
head_i, : heads_vertical_size[head_i]
|
1101
|
+
]
|
1102
|
+
# intra
|
1103
|
+
intra_vertical_indices = (
|
1104
|
+
vertical_topk[vertical_topk >= prev_chunk_end_pos]
|
1105
|
+
- prev_chunk_end_pos
|
1106
|
+
)
|
1107
|
+
if intra_vertical_indices.nelement() == 0:
|
1108
|
+
intra_vertical_indices = torch.cat(
|
1109
|
+
[
|
1110
|
+
intra_vertical_indices,
|
1111
|
+
torch.arange(
|
1112
|
+
0,
|
1113
|
+
k_states_intra.size(0),
|
1114
|
+
max(1, k_states_intra.size(0) / 5),
|
1115
|
+
dtype=torch.int32,
|
1116
|
+
device=intra_vertical_indices.device,
|
1117
|
+
),
|
1118
|
+
]
|
1119
|
+
)
|
1120
|
+
slash_topk = slash_topk_buffer[head_i, : heads_slash_size[head_i]]
|
1121
|
+
intra_slash_indices = (qk.size(-1) - 1) - slash_topk[
|
1122
|
+
slash_topk >= prev_chunk_end_pos
|
1123
|
+
]
|
1124
|
+
# fill buffer
|
1125
|
+
v_count = intra_vertical_indices.nelement()
|
1126
|
+
s_count = intra_slash_indices.nelement()
|
1127
|
+
vertical_size_buffer[head_i] = v_count
|
1128
|
+
slash_sizes_buffer[head_i] = s_count
|
1129
|
+
vertical_buffer[head_i, :v_count].copy_(intra_vertical_indices)
|
1130
|
+
slash_buffer[head_i, :s_count].copy_(intra_slash_indices)
|
1131
|
+
# succ
|
1132
|
+
if prev_chunk_end_pos - chunk_len >= 0:
|
1133
|
+
succ_vertical_indices = vertical_topk[
|
1134
|
+
(vertical_topk < prev_chunk_end_pos)
|
1135
|
+
& (vertical_topk >= prev_chunk_end_pos - chunk_len)
|
1136
|
+
] - (prev_chunk_end_pos - chunk_len)
|
1137
|
+
# TODO: support no vertical
|
1138
|
+
if succ_vertical_indices.nelement() == 0:
|
1139
|
+
succ_vertical_indices = torch.cat(
|
1140
|
+
[
|
1141
|
+
succ_vertical_indices,
|
1142
|
+
torch.arange(
|
1143
|
+
0,
|
1144
|
+
k_states_succ.size(0),
|
1145
|
+
max(1, k_states_succ.size(0) / 5),
|
1146
|
+
dtype=torch.int32,
|
1147
|
+
device=intra_vertical_indices.device,
|
1148
|
+
),
|
1149
|
+
]
|
1150
|
+
)
|
1151
|
+
succ_slash_indices = (
|
1152
|
+
prev_chunk_end_pos + (qend - qbegin) - 1
|
1153
|
+
) - slash_topk[
|
1154
|
+
(
|
1155
|
+
(slash_topk >= (prev_chunk_end_pos - chunk_len))
|
1156
|
+
& (slash_topk < (prev_chunk_end_pos + (qend - qbegin)))
|
1157
|
+
)
|
1158
|
+
]
|
1159
|
+
if succ_slash_indices.nelement() == 0:
|
1160
|
+
succ_slash_indices = torch.cat(
|
1161
|
+
[
|
1162
|
+
succ_slash_indices,
|
1163
|
+
torch.arange(
|
1164
|
+
0,
|
1165
|
+
k_states_succ.size(0),
|
1166
|
+
max(1, k_states_succ.size(0) / 5),
|
1167
|
+
dtype=torch.int32,
|
1168
|
+
device=intra_vertical_indices.device,
|
1169
|
+
),
|
1170
|
+
]
|
1171
|
+
)
|
1172
|
+
# fill buffer
|
1173
|
+
v_count = succ_vertical_indices.nelement()
|
1174
|
+
s_count = succ_slash_indices.nelement()
|
1175
|
+
succ_vertical_size_buffer[head_i] = v_count
|
1176
|
+
succ_slash_sizes_buffer[head_i] = s_count
|
1177
|
+
succ_vertical_buffer[head_i, :v_count].copy_(
|
1178
|
+
succ_vertical_indices
|
1179
|
+
)
|
1180
|
+
succ_slash_buffer[head_i, :s_count].copy_(succ_slash_indices)
|
1181
|
+
|
1182
|
+
if prev_chunk_end_pos - 2 * chunk_len >= 0:
|
1183
|
+
inter_vertical_indices = vertical_topk[
|
1184
|
+
vertical_topk < prev_chunk_end_pos - chunk_len
|
1185
|
+
]
|
1186
|
+
|
1187
|
+
if inter_vertical_indices.nelement() == 0:
|
1188
|
+
inter_vertical_indices = torch.cat(
|
1189
|
+
[
|
1190
|
+
inter_vertical_indices,
|
1191
|
+
torch.arange(
|
1192
|
+
0,
|
1193
|
+
k_states_inter.size(0),
|
1194
|
+
max(1, k_states_inter.size(0) / 5),
|
1195
|
+
dtype=torch.int32,
|
1196
|
+
device=intra_vertical_indices.device,
|
1197
|
+
),
|
1198
|
+
]
|
1199
|
+
)
|
1200
|
+
inter_slash_indices = (
|
1201
|
+
prev_chunk_end_pos - chunk_len + (qend - qbegin) - 1
|
1202
|
+
) - slash_topk[
|
1203
|
+
slash_topk
|
1204
|
+
< (prev_chunk_end_pos - chunk_len + (qend - qbegin))
|
1205
|
+
]
|
1206
|
+
if inter_slash_indices.nelement() == 0:
|
1207
|
+
inter_slash_indices = torch.cat(
|
1208
|
+
[
|
1209
|
+
inter_slash_indices,
|
1210
|
+
torch.arange(
|
1211
|
+
0,
|
1212
|
+
k_states_inter.size(0),
|
1213
|
+
max(1, k_states_inter.size(0) / 5),
|
1214
|
+
dtype=torch.int32,
|
1215
|
+
device=intra_vertical_indices.device,
|
1216
|
+
),
|
1217
|
+
]
|
1218
|
+
)
|
1219
|
+
# fill buffer
|
1220
|
+
v_count = inter_vertical_indices.nelement()
|
1221
|
+
s_count = inter_slash_indices.nelement()
|
1222
|
+
inter_vertical_size_buffer[head_i] = v_count
|
1223
|
+
inter_slash_sizes_buffer[head_i] = s_count
|
1224
|
+
inter_vertical_buffer[head_i, :v_count].copy_(
|
1225
|
+
inter_vertical_indices
|
1226
|
+
)
|
1227
|
+
inter_slash_buffer[head_i, :s_count].copy_(inter_slash_indices)
|
1228
|
+
else:
|
1229
|
+
intra_vertical_indices, intra_slash_indices = None, None
|
1230
|
+
succ_vertical_indices, succ_slash_indices = None, None
|
1231
|
+
inter_vertical_indices, inter_slash_indices = None, None
|
1232
|
+
|
1233
|
+
if sparse_attn_enabled:
|
1234
|
+
flash_result = self._do_flash_attn(
|
1235
|
+
q_states_intra,
|
1236
|
+
k_states_intra,
|
1237
|
+
v_states_intra,
|
1238
|
+
softmax_scale=softmax_scale,
|
1239
|
+
causal=True,
|
1240
|
+
stage="intra",
|
1241
|
+
vertical_indices=vertical_buffer,
|
1242
|
+
slash_indices=slash_buffer,
|
1243
|
+
vertical_indices_count=vertical_size_buffer,
|
1244
|
+
slash_indices_count=slash_sizes_buffer,
|
1245
|
+
mergehead_softmax_scale=softmax_scale,
|
1246
|
+
sparse_attn_enabled=sparse_attn_enabled,
|
1247
|
+
)
|
1248
|
+
else:
|
1249
|
+
flash_result = self._do_flash_attn(
|
1250
|
+
q_states_intra,
|
1251
|
+
k_states_intra,
|
1252
|
+
v_states_intra,
|
1253
|
+
softmax_scale=softmax_scale,
|
1254
|
+
causal=True,
|
1255
|
+
stage="intra",
|
1256
|
+
vertical_indices=intra_vertical_indices,
|
1257
|
+
slash_indices=intra_slash_indices,
|
1258
|
+
sparse_attn_enabled=sparse_attn_enabled,
|
1259
|
+
)
|
1260
|
+
flash_per_chunk.append(flash_result)
|
1261
|
+
|
1262
|
+
if prev_chunk_end_pos - chunk_len >= 0:
|
1263
|
+
if sparse_attn_enabled:
|
1264
|
+
flash_result = self._do_flash_attn(
|
1265
|
+
q_states_succ,
|
1266
|
+
k_states_succ,
|
1267
|
+
v_states_succ,
|
1268
|
+
softmax_scale=softmax_scale,
|
1269
|
+
causal=False,
|
1270
|
+
stage="succ",
|
1271
|
+
vertical_indices=succ_vertical_buffer,
|
1272
|
+
slash_indices=succ_slash_buffer,
|
1273
|
+
vertical_indices_count=succ_vertical_size_buffer,
|
1274
|
+
slash_indices_count=succ_slash_sizes_buffer,
|
1275
|
+
mergehead_softmax_scale=softmax_scale,
|
1276
|
+
sparse_attn_enabled=sparse_attn_enabled,
|
1277
|
+
)
|
1278
|
+
else:
|
1279
|
+
flash_result = self._do_flash_attn(
|
1280
|
+
q_states_succ,
|
1281
|
+
k_states_succ,
|
1282
|
+
v_states_succ,
|
1283
|
+
softmax_scale=softmax_scale,
|
1284
|
+
causal=False,
|
1285
|
+
stage="succ",
|
1286
|
+
vertical_indices=succ_vertical_indices,
|
1287
|
+
slash_indices=succ_slash_indices,
|
1288
|
+
sparse_attn_enabled=sparse_attn_enabled,
|
1289
|
+
)
|
1290
|
+
flash_per_chunk.append(flash_result)
|
1291
|
+
|
1292
|
+
if prev_chunk_end_pos - chunk_len * 2 >= 0:
|
1293
|
+
if sparse_attn_enabled:
|
1294
|
+
flash_result = self._do_flash_attn(
|
1295
|
+
q_states_inter,
|
1296
|
+
k_states_inter,
|
1297
|
+
v_states_inter,
|
1298
|
+
softmax_scale=softmax_scale,
|
1299
|
+
causal=False,
|
1300
|
+
stage="inter",
|
1301
|
+
vertical_indices=inter_vertical_buffer,
|
1302
|
+
slash_indices=inter_slash_buffer,
|
1303
|
+
vertical_indices_count=inter_vertical_size_buffer,
|
1304
|
+
slash_indices_count=inter_slash_sizes_buffer,
|
1305
|
+
mergehead_softmax_scale=softmax_scale,
|
1306
|
+
sparse_attn_enabled=sparse_attn_enabled,
|
1307
|
+
)
|
1308
|
+
else:
|
1309
|
+
flash_result = self._do_flash_attn(
|
1310
|
+
q_states_inter,
|
1311
|
+
k_states_inter,
|
1312
|
+
v_states_inter,
|
1313
|
+
softmax_scale=softmax_scale,
|
1314
|
+
causal=False,
|
1315
|
+
stage="inter",
|
1316
|
+
vertical_indices=inter_vertical_indices,
|
1317
|
+
slash_indices=inter_slash_indices,
|
1318
|
+
sparse_attn_enabled=sparse_attn_enabled,
|
1319
|
+
)
|
1320
|
+
flash_per_chunk.append(flash_result)
|
1321
|
+
|
1322
|
+
flash_results.append(flash_per_chunk)
|
1323
|
+
begin = end
|
1324
|
+
|
1325
|
+
attn_output = self._merge_attn_outputs(flash_results)
|
1326
|
+
del flash_results
|
1327
|
+
return attn_output
|
1328
|
+
|
1329
|
+
def _do_flash_attn(
|
1330
|
+
self,
|
1331
|
+
query_states: torch.Tensor,
|
1332
|
+
key_states: torch.Tensor,
|
1333
|
+
value_states: torch.Tensor,
|
1334
|
+
softmax_scale: float,
|
1335
|
+
causal: bool = True,
|
1336
|
+
max_seqlen_k: Optional[int] = None,
|
1337
|
+
stage: str = "intra",
|
1338
|
+
vertical_indices: Optional[torch.Tensor] = None,
|
1339
|
+
slash_indices: Optional[torch.Tensor] = None,
|
1340
|
+
vertical_indices_count: Optional[torch.Tensor] = None,
|
1341
|
+
slash_indices_count: Optional[torch.Tensor] = None,
|
1342
|
+
mergehead_softmax_scale: Optional[float] = None,
|
1343
|
+
sparse_attn_enabled: Optional[bool] = False,
|
1344
|
+
):
|
1345
|
+
if max_seqlen_k is None:
|
1346
|
+
max_seqlen_k = key_states.shape[0]
|
1347
|
+
|
1348
|
+
q_len = query_states.shape[0]
|
1349
|
+
q_heads = query_states.shape[1]
|
1350
|
+
h_dim = query_states.shape[-1]
|
1351
|
+
|
1352
|
+
if sparse_attn_enabled:
|
1353
|
+
assert slash_indices is not None
|
1354
|
+
if stage == "intra":
|
1355
|
+
assert causal
|
1356
|
+
else:
|
1357
|
+
assert not causal
|
1358
|
+
|
1359
|
+
query_states = query_states.unsqueeze(0).transpose(1, 2)
|
1360
|
+
key_states = key_states.unsqueeze(0).transpose(1, 2)
|
1361
|
+
value_states = value_states.unsqueeze(0).transpose(1, 2)
|
1362
|
+
|
1363
|
+
q = query_states
|
1364
|
+
k = key_states
|
1365
|
+
v = value_states
|
1366
|
+
|
1367
|
+
if vertical_indices_count is not None and slash_indices_count is not None:
|
1368
|
+
assert mergehead_softmax_scale is not None
|
1369
|
+
|
1370
|
+
res, s_lse = _vertical_slash_sparse_attention(
|
1371
|
+
q,
|
1372
|
+
k,
|
1373
|
+
v,
|
1374
|
+
vertical_indices,
|
1375
|
+
slash_indices,
|
1376
|
+
mergehead_softmax_scale,
|
1377
|
+
causal=causal,
|
1378
|
+
stage=stage,
|
1379
|
+
vertical_indices_count=vertical_indices_count,
|
1380
|
+
slash_indices_count=slash_indices_count,
|
1381
|
+
)
|
1382
|
+
res = res.view(q_heads, q_len, h_dim).transpose(
|
1383
|
+
0, 1
|
1384
|
+
) # (qlen,nhead,h_dim)
|
1385
|
+
s_lse = (
|
1386
|
+
s_lse.view(q_heads, q_len, 1).squeeze(-1).unsqueeze(0).float()
|
1387
|
+
) # (1, nhead,qlen)
|
1388
|
+
else:
|
1389
|
+
res, s_lse = _vertical_slash_sparse_attention(
|
1390
|
+
q,
|
1391
|
+
k,
|
1392
|
+
v,
|
1393
|
+
vertical_indices,
|
1394
|
+
slash_indices,
|
1395
|
+
softmax_scale,
|
1396
|
+
causal=causal,
|
1397
|
+
stage=stage,
|
1398
|
+
)
|
1399
|
+
res = res.view(q_len, q_heads, h_dim)
|
1400
|
+
s_lse = s_lse.view(q_len, q_heads, 1).transpose(0, 2).float()
|
1401
|
+
return res, s_lse
|
1402
|
+
|
1403
|
+
output, softmax_lse, *rest = flash_attn_varlen_func(
|
1404
|
+
q=query_states,
|
1405
|
+
k=key_states,
|
1406
|
+
v=value_states,
|
1407
|
+
softmax_scale=softmax_scale,
|
1408
|
+
cu_seqlens_q=torch.tensor(
|
1409
|
+
[0, query_states.shape[0]],
|
1410
|
+
dtype=torch.int32,
|
1411
|
+
device=query_states.device,
|
1412
|
+
),
|
1413
|
+
max_seqlen_q=query_states.shape[0],
|
1414
|
+
cu_seqlens_k=torch.tensor(
|
1415
|
+
[0, max_seqlen_k], dtype=torch.int32, device=query_states.device
|
1416
|
+
),
|
1417
|
+
max_seqlen_k=max_seqlen_k,
|
1418
|
+
causal=causal,
|
1419
|
+
return_softmax_lse=True,
|
1420
|
+
)
|
1421
|
+
softmax_lse = softmax_lse.view(q_len, q_heads, 1).transpose(0, 2).float()
|
1422
|
+
return output, softmax_lse
|
1423
|
+
|
1424
|
+
def _merge_attn_outputs(
|
1425
|
+
self,
|
1426
|
+
flash_results: List[List[Tuple[torch.Tensor, torch.Tensor]]],
|
1427
|
+
return_lse: Optional[bool] = False,
|
1428
|
+
) -> torch.Tensor:
|
1429
|
+
attn_outputs_all = []
|
1430
|
+
logits_all = []
|
1431
|
+
|
1432
|
+
for flash_per_chunk in flash_results:
|
1433
|
+
if len(flash_per_chunk) == 1:
|
1434
|
+
attn_outputs_all.append(flash_per_chunk[0][0])
|
1435
|
+
if return_lse:
|
1436
|
+
logits_all.append(flash_per_chunk[0][1])
|
1437
|
+
continue
|
1438
|
+
|
1439
|
+
attn_outputs = torch.stack(
|
1440
|
+
[flash_attn_output[0] for flash_attn_output in flash_per_chunk]
|
1441
|
+
)
|
1442
|
+
logits = torch.stack(
|
1443
|
+
[flash_attn_output[1] for flash_attn_output in flash_per_chunk]
|
1444
|
+
)
|
1445
|
+
logits = logits.to(torch.float32)
|
1446
|
+
|
1447
|
+
if return_lse:
|
1448
|
+
max_val = torch.max(logits, dim=0).values
|
1449
|
+
diff = torch.abs(logits[0] - logits[1])
|
1450
|
+
log_sum_exp = max_val + torch.log1p(torch.exp(-diff))
|
1451
|
+
logits_all.append(log_sum_exp)
|
1452
|
+
|
1453
|
+
max_logits = torch.max(logits, dim=0).values
|
1454
|
+
stable_logits = logits - max_logits.unsqueeze(0)
|
1455
|
+
lse_s = torch.exp(stable_logits).detach()
|
1456
|
+
lse_sum = torch.sum(lse_s, dim=0)
|
1457
|
+
lse_s /= lse_sum
|
1458
|
+
attn_outputs *= lse_s.unsqueeze(-1).transpose(2, 3).squeeze(1)
|
1459
|
+
attn_outputs_all.append(attn_outputs.sum(dim=0))
|
1460
|
+
|
1461
|
+
if return_lse:
|
1462
|
+
return (torch.cat(attn_outputs_all, dim=0), torch.cat(logits_all, dim=-1))
|
1463
|
+
else:
|
1464
|
+
return torch.cat(attn_outputs_all, dim=0)
|
1465
|
+
|
1466
|
+
def _dual_chunk_flash_attn_decoding(
|
1467
|
+
self,
|
1468
|
+
query: torch.Tensor,
|
1469
|
+
query_succ: torch.Tensor,
|
1470
|
+
query_inter: torch.Tensor,
|
1471
|
+
key_cache: torch.Tensor,
|
1472
|
+
value_cache: torch.Tensor,
|
1473
|
+
block_table: torch.Tensor,
|
1474
|
+
cache_seqlens: torch.Tensor,
|
1475
|
+
softmax_scale: float,
|
1476
|
+
causal: bool,
|
1477
|
+
chunk_size: int,
|
1478
|
+
local_size: int,
|
1479
|
+
original_max_position_embeddings: int,
|
1480
|
+
decode_meta: DualChunkFlashAttentionMetadata,
|
1481
|
+
):
|
1482
|
+
if not causal:
|
1483
|
+
raise ValueError("Dual Chunk Attention does not support causal=False")
|
1484
|
+
|
1485
|
+
block_size = value_cache.shape[1]
|
1486
|
+
chunk_len = chunk_size - local_size
|
1487
|
+
if chunk_len % block_size != 0:
|
1488
|
+
raise ValueError("chunk_len must be divisible by block_size.")
|
1489
|
+
if original_max_position_embeddings > 0:
|
1490
|
+
assert decode_meta.scaling_factor is not None
|
1491
|
+
scaling_factor = decode_meta.scaling_factor
|
1492
|
+
query = (query * scaling_factor.view(-1, 1, 1, 1)).to(
|
1493
|
+
query.dtype
|
1494
|
+
) # possible for numerical issue, need to fused in the kernel
|
1495
|
+
query_succ = (query_succ * scaling_factor.view(-1, 1, 1, 1)).to(query.dtype)
|
1496
|
+
query_inter = (query_inter * scaling_factor.view(-1, 1, 1, 1)).to(
|
1497
|
+
query.dtype
|
1498
|
+
)
|
1499
|
+
outputs_list = []
|
1500
|
+
softmax_lses_list = []
|
1501
|
+
|
1502
|
+
# intra-attention
|
1503
|
+
intra_output, intra_softmax_lse = (
|
1504
|
+
self._dual_chunk_flash_attn_decoding_with_exp_sums(
|
1505
|
+
query,
|
1506
|
+
key_cache,
|
1507
|
+
value_cache,
|
1508
|
+
decode_meta.block_tables_intra,
|
1509
|
+
decode_meta.seq_lens_intra,
|
1510
|
+
softmax_scale,
|
1511
|
+
causal=False,
|
1512
|
+
)
|
1513
|
+
)
|
1514
|
+
outputs_list.append(intra_output)
|
1515
|
+
softmax_lses_list.append(intra_softmax_lse)
|
1516
|
+
|
1517
|
+
# succ-attention
|
1518
|
+
if decode_meta.max_seq_len_succ:
|
1519
|
+
succ_output, succ_softmax_lse = (
|
1520
|
+
self._dual_chunk_flash_attn_decoding_with_exp_sums(
|
1521
|
+
query_succ,
|
1522
|
+
key_cache,
|
1523
|
+
value_cache,
|
1524
|
+
decode_meta.block_tables_succ,
|
1525
|
+
decode_meta.seq_lens_succ,
|
1526
|
+
softmax_scale,
|
1527
|
+
causal=False,
|
1528
|
+
)
|
1529
|
+
)
|
1530
|
+
outputs_list.append(succ_output)
|
1531
|
+
softmax_lses_list.append(succ_softmax_lse)
|
1532
|
+
|
1533
|
+
# inter-attention
|
1534
|
+
if decode_meta.max_seq_len_inter:
|
1535
|
+
inter_output, inter_softmax_lse = (
|
1536
|
+
self._dual_chunk_flash_attn_decoding_with_exp_sums(
|
1537
|
+
query_inter,
|
1538
|
+
key_cache,
|
1539
|
+
value_cache,
|
1540
|
+
block_table[:, : decode_meta.max_seq_len_inter],
|
1541
|
+
decode_meta.seq_lens_inter,
|
1542
|
+
softmax_scale,
|
1543
|
+
causal=False,
|
1544
|
+
)
|
1545
|
+
)
|
1546
|
+
outputs_list.append(inter_output)
|
1547
|
+
softmax_lses_list.append(inter_softmax_lse)
|
1548
|
+
outputs = torch.stack(outputs_list, dim=0)
|
1549
|
+
del outputs_list
|
1550
|
+
softmax_lses = torch.stack(softmax_lses_list, dim=0).to(torch.float32)
|
1551
|
+
del softmax_lses_list
|
1552
|
+
max_logits = torch.max(softmax_lses, dim=0).values
|
1553
|
+
stable_logits = softmax_lses - max_logits.unsqueeze(0)
|
1554
|
+
lse_s = torch.exp(stable_logits).detach()
|
1555
|
+
lse_sum = torch.sum(lse_s, dim=0)
|
1556
|
+
lse_s /= lse_sum
|
1557
|
+
outputs *= lse_s.unsqueeze(-1).transpose(2, 3)
|
1558
|
+
return outputs.sum(0)
|
1559
|
+
|
1560
|
+
def _dual_chunk_flash_attn_decoding_with_exp_sums(
|
1561
|
+
self,
|
1562
|
+
query: torch.Tensor,
|
1563
|
+
key_cache: torch.Tensor,
|
1564
|
+
value_cache: torch.Tensor,
|
1565
|
+
block_table: torch.Tensor,
|
1566
|
+
cache_seqlens: torch.Tensor,
|
1567
|
+
softmax_scale: float,
|
1568
|
+
causal: bool,
|
1569
|
+
):
|
1570
|
+
out, softmax_lse, *rest_expand = flash_attn_with_kvcache(
|
1571
|
+
q=query,
|
1572
|
+
k_cache=key_cache,
|
1573
|
+
v_cache=value_cache,
|
1574
|
+
page_table=block_table,
|
1575
|
+
cache_seqlens=cache_seqlens,
|
1576
|
+
softmax_scale=softmax_scale,
|
1577
|
+
causal=causal,
|
1578
|
+
return_softmax_lse=True,
|
1579
|
+
)
|
1580
|
+
mask = cache_seqlens == 0
|
1581
|
+
out[mask] = 0
|
1582
|
+
softmax_lse[mask] = -float("inf")
|
1583
|
+
return out, softmax_lse
|
1584
|
+
|
1585
|
+
|
1586
|
+
def _vertical_slash_sparse_attention(
|
1587
|
+
query: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
|
1588
|
+
key: torch.Tensor, # [BATCH, N_HEADS, N_KV_CTX, D_HEAD]
|
1589
|
+
value: torch.Tensor, # [BATCH, N_HEADS, N_KV_CTX, D_HEAD]
|
1590
|
+
v_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
|
1591
|
+
s_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
|
1592
|
+
softmax_scale: float,
|
1593
|
+
causal: bool = True,
|
1594
|
+
stage: str = "intra",
|
1595
|
+
block_size_M: int = 64,
|
1596
|
+
block_size_N: int = 64,
|
1597
|
+
vertical_indices_count: torch.Tensor = None, # [N_HEADS,]
|
1598
|
+
slash_indices_count: torch.Tensor = None,
|
1599
|
+
):
|
1600
|
+
if stage == "intra":
|
1601
|
+
assert causal
|
1602
|
+
else:
|
1603
|
+
assert not causal
|
1604
|
+
|
1605
|
+
batch_size, num_heads, context_size, head_dim = query.shape
|
1606
|
+
_, _, kv_seq_len, _ = key.shape
|
1607
|
+
|
1608
|
+
if head_dim not in [16, 32, 64, 128, 256, 512]:
|
1609
|
+
target_dim = 2 ** math.ceil(math.log2(head_dim)) - head_dim
|
1610
|
+
query = F.pad(query, [0, target_dim, 0, 0, 0, 0, 0, 0])
|
1611
|
+
key = F.pad(key, [0, target_dim, 0, 0, 0, 0, 0, 0])
|
1612
|
+
value = F.pad(value, [0, target_dim, 0, 0, 0, 0, 0, 0])
|
1613
|
+
|
1614
|
+
v_idx = (
|
1615
|
+
v_idx.to(torch.int32)
|
1616
|
+
.reshape((batch_size, num_heads, -1))
|
1617
|
+
.sort(dim=-1, descending=False)[0]
|
1618
|
+
)
|
1619
|
+
s_idx = (
|
1620
|
+
s_idx.to(torch.int32)
|
1621
|
+
.reshape((batch_size, num_heads, -1))
|
1622
|
+
.sort(dim=-1, descending=True)[0]
|
1623
|
+
)
|
1624
|
+
q_seqlens = torch.tensor([context_size], dtype=torch.int32, device=query.device)
|
1625
|
+
kv_seqlens = torch.tensor([kv_seq_len], dtype=torch.int32, device=query.device)
|
1626
|
+
|
1627
|
+
if vertical_indices_count is not None and slash_indices_count is not None:
|
1628
|
+
(
|
1629
|
+
block_count,
|
1630
|
+
block_offset,
|
1631
|
+
column_count,
|
1632
|
+
column_index,
|
1633
|
+
) = convert_vertical_slash_indexes_mergehead(
|
1634
|
+
q_seqlens,
|
1635
|
+
kv_seqlens,
|
1636
|
+
v_idx,
|
1637
|
+
s_idx,
|
1638
|
+
vertical_indices_count,
|
1639
|
+
slash_indices_count,
|
1640
|
+
context_size,
|
1641
|
+
block_size_M,
|
1642
|
+
block_size_N,
|
1643
|
+
causal,
|
1644
|
+
)
|
1645
|
+
else:
|
1646
|
+
(
|
1647
|
+
block_count,
|
1648
|
+
block_offset,
|
1649
|
+
column_count,
|
1650
|
+
column_index,
|
1651
|
+
) = convert_vertical_slash_indexes(
|
1652
|
+
q_seqlens,
|
1653
|
+
kv_seqlens,
|
1654
|
+
v_idx,
|
1655
|
+
s_idx,
|
1656
|
+
context_size,
|
1657
|
+
block_size_M,
|
1658
|
+
block_size_N,
|
1659
|
+
causal,
|
1660
|
+
)
|
1661
|
+
|
1662
|
+
q = query.transpose(1, 2).contiguous()
|
1663
|
+
k = key.transpose(1, 2).contiguous()
|
1664
|
+
v = value.transpose(1, 2).contiguous()
|
1665
|
+
out, lse = sparse_attn_func(
|
1666
|
+
q,
|
1667
|
+
k,
|
1668
|
+
v,
|
1669
|
+
block_count,
|
1670
|
+
block_offset,
|
1671
|
+
column_count,
|
1672
|
+
column_index,
|
1673
|
+
causal=causal,
|
1674
|
+
softmax_scale=softmax_scale,
|
1675
|
+
return_softmax_lse=True,
|
1676
|
+
)
|
1677
|
+
out = out.transpose(1, 2).contiguous()
|
1678
|
+
softmax_lse = lse.reshape(*lse.shape, 1)
|
1679
|
+
return (out[..., :context_size, :head_dim], softmax_lse[..., :context_size, :])
|
1680
|
+
|
1681
|
+
|
1682
|
+
def _sum_all_diagonal_matrix(mat: torch.tensor):
|
1683
|
+
h, n, m = mat.shape
|
1684
|
+
# Zero matrix used for padding
|
1685
|
+
zero_mat = torch.zeros((h, n, n), device=mat.device)
|
1686
|
+
# pads the matrix on left and right
|
1687
|
+
mat_padded = torch.cat((zero_mat, mat, zero_mat), -1)
|
1688
|
+
# Change the strides
|
1689
|
+
mat_strided = mat_padded.as_strided(
|
1690
|
+
(1, n, n + m), (n * (2 * n + m), 2 * n + m + 1, 1)
|
1691
|
+
)
|
1692
|
+
# Sums the resulting matrix's columns
|
1693
|
+
sum_diags = torch.sum(mat_strided, 1)
|
1694
|
+
return sum_diags[:, 1:] # drop left bottom corner
|
1695
|
+
|
1696
|
+
|
1697
|
+
def _get_block(block_table: torch.Tensor, block_size: int, begin: int, end: int):
|
1698
|
+
begin_block = begin // block_size
|
1699
|
+
end_block = (end - 1) // block_size + 1
|
1700
|
+
return block_table[begin_block:end_block]
|