sglang 0.4.1.post6__py3-none-any.whl → 0.4.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +21 -23
- sglang/api.py +2 -7
- sglang/bench_offline_throughput.py +41 -27
- sglang/bench_one_batch.py +60 -4
- sglang/bench_one_batch_server.py +1 -1
- sglang/bench_serving.py +83 -71
- sglang/lang/backend/runtime_endpoint.py +183 -4
- sglang/lang/chat_template.py +46 -4
- sglang/launch_server.py +1 -1
- sglang/srt/_custom_ops.py +80 -42
- sglang/srt/configs/device_config.py +1 -1
- sglang/srt/configs/load_config.py +1 -0
- sglang/srt/configs/model_config.py +1 -0
- sglang/srt/constrained/base_grammar_backend.py +21 -0
- sglang/srt/constrained/xgrammar_backend.py +8 -4
- sglang/srt/conversation.py +14 -1
- sglang/srt/distributed/__init__.py +3 -3
- sglang/srt/distributed/communication_op.py +2 -1
- sglang/srt/distributed/device_communicators/cuda_wrapper.py +2 -1
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +112 -42
- sglang/srt/distributed/device_communicators/custom_all_reduce_utils.py +2 -2
- sglang/srt/distributed/device_communicators/hpu_communicator.py +2 -1
- sglang/srt/distributed/device_communicators/pynccl.py +80 -1
- sglang/srt/distributed/device_communicators/pynccl_wrapper.py +112 -2
- sglang/srt/distributed/device_communicators/shm_broadcast.py +5 -72
- sglang/srt/distributed/device_communicators/xpu_communicator.py +2 -1
- sglang/srt/distributed/parallel_state.py +1 -1
- sglang/srt/distributed/utils.py +2 -1
- sglang/srt/entrypoints/engine.py +452 -0
- sglang/srt/entrypoints/http_server.py +603 -0
- sglang/srt/function_call_parser.py +494 -0
- sglang/srt/layers/activation.py +8 -8
- sglang/srt/layers/attention/flashinfer_backend.py +10 -9
- sglang/srt/layers/attention/triton_backend.py +4 -6
- sglang/srt/layers/attention/vision.py +204 -0
- sglang/srt/layers/dp_attention.py +71 -0
- sglang/srt/layers/layernorm.py +5 -5
- sglang/srt/layers/linear.py +65 -14
- sglang/srt/layers/logits_processor.py +49 -64
- sglang/srt/layers/moe/ep_moe/layer.py +24 -16
- sglang/srt/layers/moe/fused_moe_native.py +84 -1
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +27 -7
- sglang/srt/layers/moe/fused_moe_triton/layer.py +38 -5
- sglang/srt/layers/parameter.py +18 -8
- sglang/srt/layers/quantization/__init__.py +20 -23
- sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/fp8.py +10 -4
- sglang/srt/layers/quantization/modelopt_quant.py +1 -2
- sglang/srt/layers/quantization/w8a8_int8.py +1 -1
- sglang/srt/layers/radix_attention.py +2 -2
- sglang/srt/layers/rotary_embedding.py +1184 -31
- sglang/srt/layers/sampler.py +64 -6
- sglang/srt/layers/torchao_utils.py +12 -6
- sglang/srt/layers/vocab_parallel_embedding.py +2 -2
- sglang/srt/lora/lora.py +1 -9
- sglang/srt/managers/configure_logging.py +3 -0
- sglang/srt/managers/data_parallel_controller.py +79 -72
- sglang/srt/managers/detokenizer_manager.py +24 -6
- sglang/srt/managers/image_processor.py +158 -2
- sglang/srt/managers/io_struct.py +57 -3
- sglang/srt/managers/schedule_batch.py +78 -45
- sglang/srt/managers/schedule_policy.py +26 -12
- sglang/srt/managers/scheduler.py +326 -201
- sglang/srt/managers/session_controller.py +1 -0
- sglang/srt/managers/tokenizer_manager.py +210 -121
- sglang/srt/managers/tp_worker.py +6 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +5 -8
- sglang/srt/managers/utils.py +44 -0
- sglang/srt/mem_cache/memory_pool.py +10 -32
- sglang/srt/metrics/collector.py +15 -6
- sglang/srt/model_executor/cuda_graph_runner.py +26 -30
- sglang/srt/model_executor/forward_batch_info.py +5 -7
- sglang/srt/model_executor/model_runner.py +44 -19
- sglang/srt/model_loader/loader.py +83 -6
- sglang/srt/model_loader/weight_utils.py +145 -6
- sglang/srt/models/baichuan.py +6 -6
- sglang/srt/models/chatglm.py +2 -2
- sglang/srt/models/commandr.py +17 -5
- sglang/srt/models/dbrx.py +13 -5
- sglang/srt/models/deepseek.py +3 -3
- sglang/srt/models/deepseek_v2.py +11 -11
- sglang/srt/models/exaone.py +2 -2
- sglang/srt/models/gemma.py +2 -2
- sglang/srt/models/gemma2.py +15 -25
- sglang/srt/models/gpt2.py +3 -5
- sglang/srt/models/gpt_bigcode.py +1 -1
- sglang/srt/models/granite.py +2 -2
- sglang/srt/models/grok.py +4 -3
- sglang/srt/models/internlm2.py +2 -2
- sglang/srt/models/llama.py +7 -5
- sglang/srt/models/minicpm.py +2 -2
- sglang/srt/models/minicpm3.py +9 -9
- sglang/srt/models/minicpmv.py +1238 -0
- sglang/srt/models/mixtral.py +3 -3
- sglang/srt/models/mixtral_quant.py +3 -3
- sglang/srt/models/mllama.py +2 -2
- sglang/srt/models/olmo.py +3 -3
- sglang/srt/models/olmo2.py +4 -4
- sglang/srt/models/olmoe.py +7 -13
- sglang/srt/models/phi3_small.py +2 -2
- sglang/srt/models/qwen.py +2 -2
- sglang/srt/models/qwen2.py +41 -4
- sglang/srt/models/qwen2_moe.py +3 -3
- sglang/srt/models/qwen2_vl.py +22 -122
- sglang/srt/models/stablelm.py +2 -2
- sglang/srt/models/torch_native_llama.py +20 -7
- sglang/srt/models/xverse.py +6 -6
- sglang/srt/models/xverse_moe.py +6 -6
- sglang/srt/openai_api/adapter.py +139 -37
- sglang/srt/openai_api/protocol.py +7 -4
- sglang/srt/sampling/custom_logit_processor.py +38 -0
- sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py +11 -14
- sglang/srt/sampling/sampling_batch_info.py +143 -18
- sglang/srt/sampling/sampling_params.py +3 -1
- sglang/srt/server.py +4 -1090
- sglang/srt/server_args.py +77 -15
- sglang/srt/speculative/eagle_utils.py +37 -15
- sglang/srt/speculative/eagle_worker.py +11 -13
- sglang/srt/utils.py +164 -129
- sglang/test/runners.py +8 -13
- sglang/test/test_programs.py +2 -1
- sglang/test/test_utils.py +83 -22
- sglang/utils.py +12 -2
- sglang/version.py +1 -1
- {sglang-0.4.1.post6.dist-info → sglang-0.4.2.dist-info}/METADATA +21 -10
- {sglang-0.4.1.post6.dist-info → sglang-0.4.2.dist-info}/RECORD +138 -123
- sglang/launch_server_llavavid.py +0 -25
- sglang/srt/constrained/__init__.py +0 -16
- sglang/srt/distributed/device_communicators/__init__.py +0 -0
- {sglang-0.4.1.post6.dist-info → sglang-0.4.2.dist-info}/LICENSE +0 -0
- {sglang-0.4.1.post6.dist-info → sglang-0.4.2.dist-info}/WHEEL +0 -0
- {sglang-0.4.1.post6.dist-info → sglang-0.4.2.dist-info}/top_level.txt +0 -0
sglang/srt/server.py
CHANGED
@@ -11,1094 +11,8 @@
|
|
11
11
|
# See the License for the specific language governing permissions and
|
12
12
|
# limitations under the License.
|
13
13
|
# ==============================================================================
|
14
|
-
"""
|
15
|
-
The entry point of inference server.
|
16
|
-
SRT = SGLang Runtime.
|
17
|
-
"""
|
18
14
|
|
19
|
-
|
20
|
-
|
21
|
-
import
|
22
|
-
import
|
23
|
-
import logging
|
24
|
-
import multiprocessing as mp
|
25
|
-
import os
|
26
|
-
import signal
|
27
|
-
import threading
|
28
|
-
import time
|
29
|
-
from http import HTTPStatus
|
30
|
-
from typing import AsyncIterator, Dict, List, Optional, Tuple, Union
|
31
|
-
|
32
|
-
import torch
|
33
|
-
|
34
|
-
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
|
35
|
-
|
36
|
-
# Fix a bug of Python threading
|
37
|
-
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)
|
38
|
-
|
39
|
-
import aiohttp
|
40
|
-
import orjson
|
41
|
-
import requests
|
42
|
-
import uvicorn
|
43
|
-
import uvloop
|
44
|
-
from fastapi import FastAPI, File, Form, Request, UploadFile
|
45
|
-
from fastapi.middleware.cors import CORSMiddleware
|
46
|
-
from fastapi.responses import ORJSONResponse, Response, StreamingResponse
|
47
|
-
from uvicorn.config import LOGGING_CONFIG
|
48
|
-
|
49
|
-
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
|
50
|
-
from sglang.srt.hf_transformers_utils import get_tokenizer
|
51
|
-
from sglang.srt.managers.data_parallel_controller import (
|
52
|
-
run_data_parallel_controller_process,
|
53
|
-
)
|
54
|
-
from sglang.srt.managers.detokenizer_manager import run_detokenizer_process
|
55
|
-
from sglang.srt.managers.io_struct import (
|
56
|
-
CloseSessionReqInput,
|
57
|
-
ConfigureLoggingReq,
|
58
|
-
EmbeddingReqInput,
|
59
|
-
GenerateReqInput,
|
60
|
-
GetWeightsByNameReqInput,
|
61
|
-
InitWeightsUpdateGroupReqInput,
|
62
|
-
OpenSessionReqInput,
|
63
|
-
ReleaseMemoryOccupationReqInput,
|
64
|
-
ResumeMemoryOccupationReqInput,
|
65
|
-
UpdateWeightFromDiskReqInput,
|
66
|
-
UpdateWeightsFromDistributedReqInput,
|
67
|
-
UpdateWeightsFromTensorReqInput,
|
68
|
-
)
|
69
|
-
from sglang.srt.managers.scheduler import run_scheduler_process
|
70
|
-
from sglang.srt.managers.tokenizer_manager import TokenizerManager
|
71
|
-
from sglang.srt.metrics.func_timer import enable_func_timer, time_func_latency
|
72
|
-
from sglang.srt.openai_api.adapter import (
|
73
|
-
load_chat_template_for_openai_api,
|
74
|
-
v1_batches,
|
75
|
-
v1_cancel_batch,
|
76
|
-
v1_chat_completions,
|
77
|
-
v1_completions,
|
78
|
-
v1_delete_file,
|
79
|
-
v1_embeddings,
|
80
|
-
v1_files_create,
|
81
|
-
v1_retrieve_batch,
|
82
|
-
v1_retrieve_file,
|
83
|
-
v1_retrieve_file_content,
|
84
|
-
)
|
85
|
-
from sglang.srt.openai_api.protocol import ModelCard, ModelList
|
86
|
-
from sglang.srt.server_args import PortArgs, ServerArgs
|
87
|
-
from sglang.srt.utils import (
|
88
|
-
MultiprocessingSerializer,
|
89
|
-
add_api_key_middleware,
|
90
|
-
add_prometheus_middleware,
|
91
|
-
assert_pkg_version,
|
92
|
-
configure_logger,
|
93
|
-
delete_directory,
|
94
|
-
is_port_available,
|
95
|
-
kill_process_tree,
|
96
|
-
maybe_set_triton_cache_manager,
|
97
|
-
prepare_model_and_tokenizer,
|
98
|
-
set_prometheus_multiproc_dir,
|
99
|
-
set_ulimit,
|
100
|
-
)
|
101
|
-
from sglang.utils import get_exception_traceback
|
102
|
-
from sglang.version import __version__
|
103
|
-
|
104
|
-
logger = logging.getLogger(__name__)
|
105
|
-
|
106
|
-
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
|
107
|
-
|
108
|
-
# Fast API
|
109
|
-
app = FastAPI()
|
110
|
-
app.add_middleware(
|
111
|
-
CORSMiddleware,
|
112
|
-
allow_origins=["*"],
|
113
|
-
allow_credentials=True,
|
114
|
-
allow_methods=["*"],
|
115
|
-
allow_headers=["*"],
|
116
|
-
)
|
117
|
-
|
118
|
-
tokenizer_manager: TokenizerManager = None
|
119
|
-
scheduler_info: Dict = None
|
120
|
-
|
121
|
-
|
122
|
-
##### Native API endpoints #####
|
123
|
-
|
124
|
-
|
125
|
-
@app.get("/health")
|
126
|
-
async def health() -> Response:
|
127
|
-
"""Check the health of the http server."""
|
128
|
-
return Response(status_code=200)
|
129
|
-
|
130
|
-
|
131
|
-
@app.get("/health_generate")
|
132
|
-
async def health_generate(request: Request) -> Response:
|
133
|
-
"""Check the health of the inference server by generating one token."""
|
134
|
-
|
135
|
-
sampling_params = {"max_new_tokens": 1, "temperature": 0.7}
|
136
|
-
|
137
|
-
if tokenizer_manager.is_generation:
|
138
|
-
gri = GenerateReqInput(input_ids=[0], sampling_params=sampling_params)
|
139
|
-
else:
|
140
|
-
gri = EmbeddingReqInput(input_ids=[0], sampling_params=sampling_params)
|
141
|
-
|
142
|
-
try:
|
143
|
-
async for _ in tokenizer_manager.generate_request(gri, request):
|
144
|
-
break
|
145
|
-
return Response(status_code=200)
|
146
|
-
except Exception as e:
|
147
|
-
logger.exception(e)
|
148
|
-
return Response(status_code=503)
|
149
|
-
|
150
|
-
|
151
|
-
@app.get("/get_model_info")
|
152
|
-
async def get_model_info():
|
153
|
-
"""Get the model information."""
|
154
|
-
result = {
|
155
|
-
"model_path": tokenizer_manager.model_path,
|
156
|
-
"tokenizer_path": tokenizer_manager.server_args.tokenizer_path,
|
157
|
-
"is_generation": tokenizer_manager.is_generation,
|
158
|
-
}
|
159
|
-
return result
|
160
|
-
|
161
|
-
|
162
|
-
@app.get("/get_server_info")
|
163
|
-
async def get_server_info():
|
164
|
-
return {
|
165
|
-
**dataclasses.asdict(tokenizer_manager.server_args),
|
166
|
-
**scheduler_info,
|
167
|
-
"version": __version__,
|
168
|
-
}
|
169
|
-
|
170
|
-
|
171
|
-
# fastapi implicitly converts json in the request to obj (dataclass)
|
172
|
-
@app.api_route("/generate", methods=["POST", "PUT"])
|
173
|
-
@time_func_latency
|
174
|
-
async def generate_request(obj: GenerateReqInput, request: Request):
|
175
|
-
"""Handle a generate request."""
|
176
|
-
if obj.stream:
|
177
|
-
|
178
|
-
async def stream_results() -> AsyncIterator[bytes]:
|
179
|
-
try:
|
180
|
-
async for out in tokenizer_manager.generate_request(obj, request):
|
181
|
-
yield b"data: " + orjson.dumps(
|
182
|
-
out, option=orjson.OPT_NON_STR_KEYS
|
183
|
-
) + b"\n\n"
|
184
|
-
except ValueError as e:
|
185
|
-
out = {"error": {"message": str(e)}}
|
186
|
-
yield b"data: " + orjson.dumps(
|
187
|
-
out, option=orjson.OPT_NON_STR_KEYS
|
188
|
-
) + b"\n\n"
|
189
|
-
yield b"data: [DONE]\n\n"
|
190
|
-
|
191
|
-
return StreamingResponse(
|
192
|
-
stream_results(),
|
193
|
-
media_type="text/event-stream",
|
194
|
-
background=tokenizer_manager.create_abort_task(obj),
|
195
|
-
)
|
196
|
-
else:
|
197
|
-
try:
|
198
|
-
ret = await tokenizer_manager.generate_request(obj, request).__anext__()
|
199
|
-
return ret
|
200
|
-
except ValueError as e:
|
201
|
-
logger.error(f"Error: {e}")
|
202
|
-
return _create_error_response(e)
|
203
|
-
|
204
|
-
|
205
|
-
@app.api_route("/encode", methods=["POST", "PUT"])
|
206
|
-
@time_func_latency
|
207
|
-
async def encode_request(obj: EmbeddingReqInput, request: Request):
|
208
|
-
"""Handle an embedding request."""
|
209
|
-
try:
|
210
|
-
ret = await tokenizer_manager.generate_request(obj, request).__anext__()
|
211
|
-
return ret
|
212
|
-
except ValueError as e:
|
213
|
-
return _create_error_response(e)
|
214
|
-
|
215
|
-
|
216
|
-
@app.api_route("/classify", methods=["POST", "PUT"])
|
217
|
-
@time_func_latency
|
218
|
-
async def classify_request(obj: EmbeddingReqInput, request: Request):
|
219
|
-
"""Handle a reward model request. Now the arguments and return values are the same as embedding models."""
|
220
|
-
try:
|
221
|
-
ret = await tokenizer_manager.generate_request(obj, request).__anext__()
|
222
|
-
return ret
|
223
|
-
except ValueError as e:
|
224
|
-
return _create_error_response(e)
|
225
|
-
|
226
|
-
|
227
|
-
@app.post("/flush_cache")
|
228
|
-
async def flush_cache():
|
229
|
-
"""Flush the radix cache."""
|
230
|
-
tokenizer_manager.flush_cache()
|
231
|
-
return Response(
|
232
|
-
content="Cache flushed.\nPlease check backend logs for more details. "
|
233
|
-
"(When there are running or waiting requests, the operation will not be performed.)\n",
|
234
|
-
status_code=200,
|
235
|
-
)
|
236
|
-
|
237
|
-
|
238
|
-
@app.api_route("/start_profile", methods=["GET", "POST"])
|
239
|
-
async def start_profile_async():
|
240
|
-
"""Start profiling."""
|
241
|
-
tokenizer_manager.start_profile()
|
242
|
-
return Response(
|
243
|
-
content="Start profiling.\n",
|
244
|
-
status_code=200,
|
245
|
-
)
|
246
|
-
|
247
|
-
|
248
|
-
@app.api_route("/stop_profile", methods=["GET", "POST"])
|
249
|
-
async def stop_profile_async():
|
250
|
-
"""Stop profiling."""
|
251
|
-
tokenizer_manager.stop_profile()
|
252
|
-
return Response(
|
253
|
-
content="Stop profiling. This will take some time.\n",
|
254
|
-
status_code=200,
|
255
|
-
)
|
256
|
-
|
257
|
-
|
258
|
-
@app.post("/update_weights_from_disk")
|
259
|
-
@time_func_latency
|
260
|
-
async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request):
|
261
|
-
"""Update the weights from disk in-place without re-launching the server."""
|
262
|
-
success, message = await tokenizer_manager.update_weights_from_disk(obj, request)
|
263
|
-
content = {"success": success, "message": message}
|
264
|
-
if success:
|
265
|
-
return ORJSONResponse(
|
266
|
-
content,
|
267
|
-
status_code=HTTPStatus.OK,
|
268
|
-
)
|
269
|
-
else:
|
270
|
-
return ORJSONResponse(
|
271
|
-
content,
|
272
|
-
status_code=HTTPStatus.BAD_REQUEST,
|
273
|
-
)
|
274
|
-
|
275
|
-
|
276
|
-
@app.post("/init_weights_update_group")
|
277
|
-
async def init_weights_update_group(
|
278
|
-
obj: InitWeightsUpdateGroupReqInput, request: Request
|
279
|
-
):
|
280
|
-
"""Initialize the parameter update group."""
|
281
|
-
success, message = await tokenizer_manager.init_weights_update_group(obj, request)
|
282
|
-
content = {"success": success, "message": message}
|
283
|
-
if success:
|
284
|
-
return ORJSONResponse(content, status_code=200)
|
285
|
-
else:
|
286
|
-
return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)
|
287
|
-
|
288
|
-
|
289
|
-
@app.post("/update_weights_from_distributed")
|
290
|
-
async def update_weights_from_distributed(
|
291
|
-
obj: UpdateWeightsFromDistributedReqInput, request: Request
|
292
|
-
):
|
293
|
-
"""Update model parameter from distributed online."""
|
294
|
-
success, message = await tokenizer_manager.update_weights_from_distributed(
|
295
|
-
obj, request
|
296
|
-
)
|
297
|
-
content = {"success": success, "message": message}
|
298
|
-
if success:
|
299
|
-
return ORJSONResponse(content, status_code=200)
|
300
|
-
else:
|
301
|
-
return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)
|
302
|
-
|
303
|
-
|
304
|
-
@app.api_route("/get_weights_by_name", methods=["GET", "POST"])
|
305
|
-
async def get_weights_by_name(obj: GetWeightsByNameReqInput, request: Request):
|
306
|
-
"""Get model parameter by name."""
|
307
|
-
try:
|
308
|
-
ret = await tokenizer_manager.get_weights_by_name(obj, request)
|
309
|
-
if ret is None:
|
310
|
-
return _create_error_response("Get parameter by name failed")
|
311
|
-
else:
|
312
|
-
return ORJSONResponse(ret, status_code=200)
|
313
|
-
except Exception as e:
|
314
|
-
return _create_error_response(e)
|
315
|
-
|
316
|
-
|
317
|
-
@app.api_route("/release_memory_occupation", methods=["GET", "POST"])
|
318
|
-
async def release_memory_occupation(
|
319
|
-
obj: ReleaseMemoryOccupationReqInput, request: Request
|
320
|
-
):
|
321
|
-
"""Release GPU occupation temporarily"""
|
322
|
-
try:
|
323
|
-
await tokenizer_manager.release_memory_occupation(obj, request)
|
324
|
-
except Exception as e:
|
325
|
-
return _create_error_response(e)
|
326
|
-
|
327
|
-
|
328
|
-
@app.api_route("/resume_memory_occupation", methods=["GET", "POST"])
|
329
|
-
async def resume_memory_occupation(
|
330
|
-
obj: ResumeMemoryOccupationReqInput, request: Request
|
331
|
-
):
|
332
|
-
"""Resume GPU occupation"""
|
333
|
-
try:
|
334
|
-
await tokenizer_manager.resume_memory_occupation(obj, request)
|
335
|
-
except Exception as e:
|
336
|
-
return _create_error_response(e)
|
337
|
-
|
338
|
-
|
339
|
-
@app.api_route("/open_session", methods=["GET", "POST"])
|
340
|
-
async def open_session(obj: OpenSessionReqInput, request: Request):
|
341
|
-
"""Open a session, and return its unique session id."""
|
342
|
-
try:
|
343
|
-
session_id = await tokenizer_manager.open_session(obj, request)
|
344
|
-
if session_id is None:
|
345
|
-
raise Exception(
|
346
|
-
"Failed to open the session. Check if a session with the same id is still open."
|
347
|
-
)
|
348
|
-
return session_id
|
349
|
-
except Exception as e:
|
350
|
-
return _create_error_response(e)
|
351
|
-
|
352
|
-
|
353
|
-
@app.api_route("/close_session", methods=["GET", "POST"])
|
354
|
-
async def close_session(obj: CloseSessionReqInput, request: Request):
|
355
|
-
"""Close the session"""
|
356
|
-
try:
|
357
|
-
await tokenizer_manager.close_session(obj, request)
|
358
|
-
return Response(status_code=200)
|
359
|
-
except Exception as e:
|
360
|
-
return _create_error_response(e)
|
361
|
-
|
362
|
-
|
363
|
-
@app.api_route("/configure_logging", methods=["GET", "POST"])
|
364
|
-
async def configure_logging(obj: ConfigureLoggingReq, request: Request):
|
365
|
-
"""Close the session"""
|
366
|
-
tokenizer_manager.configure_logging(obj)
|
367
|
-
return Response(status_code=200)
|
368
|
-
|
369
|
-
|
370
|
-
##### OpenAI-compatible API endpoints #####
|
371
|
-
|
372
|
-
|
373
|
-
@app.post("/v1/completions")
|
374
|
-
@time_func_latency
|
375
|
-
async def openai_v1_completions(raw_request: Request):
|
376
|
-
return await v1_completions(tokenizer_manager, raw_request)
|
377
|
-
|
378
|
-
|
379
|
-
@app.post("/v1/chat/completions")
|
380
|
-
@time_func_latency
|
381
|
-
async def openai_v1_chat_completions(raw_request: Request):
|
382
|
-
return await v1_chat_completions(tokenizer_manager, raw_request)
|
383
|
-
|
384
|
-
|
385
|
-
@app.post("/v1/embeddings", response_class=ORJSONResponse)
|
386
|
-
@time_func_latency
|
387
|
-
async def openai_v1_embeddings(raw_request: Request):
|
388
|
-
response = await v1_embeddings(tokenizer_manager, raw_request)
|
389
|
-
return response
|
390
|
-
|
391
|
-
|
392
|
-
@app.get("/v1/models", response_class=ORJSONResponse)
|
393
|
-
def available_models():
|
394
|
-
"""Show available models."""
|
395
|
-
served_model_names = [tokenizer_manager.served_model_name]
|
396
|
-
model_cards = []
|
397
|
-
for served_model_name in served_model_names:
|
398
|
-
model_cards.append(ModelCard(id=served_model_name, root=served_model_name))
|
399
|
-
return ModelList(data=model_cards)
|
400
|
-
|
401
|
-
|
402
|
-
@app.post("/v1/files")
|
403
|
-
async def openai_v1_files(file: UploadFile = File(...), purpose: str = Form("batch")):
|
404
|
-
return await v1_files_create(
|
405
|
-
file, purpose, tokenizer_manager.server_args.file_storage_pth
|
406
|
-
)
|
407
|
-
|
408
|
-
|
409
|
-
@app.delete("/v1/files/{file_id}")
|
410
|
-
async def delete_file(file_id: str):
|
411
|
-
# https://platform.openai.com/docs/api-reference/files/delete
|
412
|
-
return await v1_delete_file(file_id)
|
413
|
-
|
414
|
-
|
415
|
-
@app.post("/v1/batches")
|
416
|
-
async def openai_v1_batches(raw_request: Request):
|
417
|
-
return await v1_batches(tokenizer_manager, raw_request)
|
418
|
-
|
419
|
-
|
420
|
-
@app.post("/v1/batches/{batch_id}/cancel")
|
421
|
-
async def cancel_batches(batch_id: str):
|
422
|
-
# https://platform.openai.com/docs/api-reference/batch/cancel
|
423
|
-
return await v1_cancel_batch(tokenizer_manager, batch_id)
|
424
|
-
|
425
|
-
|
426
|
-
@app.get("/v1/batches/{batch_id}")
|
427
|
-
async def retrieve_batch(batch_id: str):
|
428
|
-
return await v1_retrieve_batch(batch_id)
|
429
|
-
|
430
|
-
|
431
|
-
@app.get("/v1/files/{file_id}")
|
432
|
-
async def retrieve_file(file_id: str):
|
433
|
-
# https://platform.openai.com/docs/api-reference/files/retrieve
|
434
|
-
return await v1_retrieve_file(file_id)
|
435
|
-
|
436
|
-
|
437
|
-
@app.get("/v1/files/{file_id}/content")
|
438
|
-
async def retrieve_file_content(file_id: str):
|
439
|
-
# https://platform.openai.com/docs/api-reference/files/retrieve-contents
|
440
|
-
return await v1_retrieve_file_content(file_id)
|
441
|
-
|
442
|
-
|
443
|
-
def _create_error_response(e):
|
444
|
-
return ORJSONResponse(
|
445
|
-
{"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST
|
446
|
-
)
|
447
|
-
|
448
|
-
|
449
|
-
def launch_engine(
|
450
|
-
server_args: ServerArgs,
|
451
|
-
):
|
452
|
-
"""
|
453
|
-
Launch the TokenizerManager in the main process, the Scheduler in a subprocess, and the DetokenizerManager in another subprocess.
|
454
|
-
"""
|
455
|
-
|
456
|
-
global tokenizer_manager
|
457
|
-
global scheduler_info
|
458
|
-
|
459
|
-
# Configure global environment
|
460
|
-
configure_logger(server_args)
|
461
|
-
server_args.check_server_args()
|
462
|
-
_set_envs_and_config(server_args)
|
463
|
-
|
464
|
-
# Allocate ports for inter-process communications
|
465
|
-
port_args = PortArgs.init_new(server_args)
|
466
|
-
logger.info(f"{server_args=}")
|
467
|
-
|
468
|
-
# If using model from www.modelscope.cn, first download the model.
|
469
|
-
server_args.model_path, server_args.tokenizer_path = prepare_model_and_tokenizer(
|
470
|
-
server_args.model_path, server_args.tokenizer_path
|
471
|
-
)
|
472
|
-
|
473
|
-
memory_saver_adapter = TorchMemorySaverAdapter.create(
|
474
|
-
enable=server_args.enable_memory_saver
|
475
|
-
)
|
476
|
-
|
477
|
-
if server_args.dp_size == 1:
|
478
|
-
# Launch tensor parallel scheduler processes
|
479
|
-
scheduler_procs = []
|
480
|
-
scheduler_pipe_readers = []
|
481
|
-
tp_size_per_node = server_args.tp_size // server_args.nnodes
|
482
|
-
tp_rank_range = range(
|
483
|
-
tp_size_per_node * server_args.node_rank,
|
484
|
-
tp_size_per_node * (server_args.node_rank + 1),
|
485
|
-
)
|
486
|
-
for tp_rank in tp_rank_range:
|
487
|
-
reader, writer = mp.Pipe(duplex=False)
|
488
|
-
gpu_id = server_args.base_gpu_id + tp_rank % tp_size_per_node
|
489
|
-
proc = mp.Process(
|
490
|
-
target=run_scheduler_process,
|
491
|
-
args=(server_args, port_args, gpu_id, tp_rank, None, writer),
|
492
|
-
)
|
493
|
-
with memory_saver_adapter.configure_subprocess():
|
494
|
-
proc.start()
|
495
|
-
scheduler_procs.append(proc)
|
496
|
-
scheduler_pipe_readers.append(reader)
|
497
|
-
|
498
|
-
if server_args.node_rank >= 1:
|
499
|
-
# For other nodes, they do not need to run tokenizer or detokenizer,
|
500
|
-
# so they can just wait here.
|
501
|
-
for proc in scheduler_procs:
|
502
|
-
proc.join()
|
503
|
-
else:
|
504
|
-
# Launch the data parallel controller
|
505
|
-
reader, writer = mp.Pipe(duplex=False)
|
506
|
-
scheduler_pipe_readers = [reader]
|
507
|
-
proc = mp.Process(
|
508
|
-
target=run_data_parallel_controller_process,
|
509
|
-
args=(server_args, port_args, writer),
|
510
|
-
)
|
511
|
-
with memory_saver_adapter.configure_subprocess():
|
512
|
-
proc.start()
|
513
|
-
|
514
|
-
# Launch detokenizer process
|
515
|
-
detoken_proc = mp.Process(
|
516
|
-
target=run_detokenizer_process,
|
517
|
-
args=(
|
518
|
-
server_args,
|
519
|
-
port_args,
|
520
|
-
),
|
521
|
-
)
|
522
|
-
detoken_proc.start()
|
523
|
-
|
524
|
-
# Launch tokenizer process
|
525
|
-
tokenizer_manager = TokenizerManager(server_args, port_args)
|
526
|
-
if server_args.chat_template:
|
527
|
-
load_chat_template_for_openai_api(tokenizer_manager, server_args.chat_template)
|
528
|
-
|
529
|
-
# Wait for model to finish loading
|
530
|
-
scheduler_infos = []
|
531
|
-
for i in range(len(scheduler_pipe_readers)):
|
532
|
-
try:
|
533
|
-
data = scheduler_pipe_readers[i].recv()
|
534
|
-
except EOFError as e:
|
535
|
-
logger.exception(e)
|
536
|
-
logger.error(
|
537
|
-
f"Rank {i} scheduler is dead. Please check if there are relevant logs."
|
538
|
-
)
|
539
|
-
scheduler_procs[i].join()
|
540
|
-
logger.error(f"Exit code: {scheduler_procs[i].exitcode}")
|
541
|
-
raise
|
542
|
-
|
543
|
-
if data["status"] != "ready":
|
544
|
-
raise RuntimeError(
|
545
|
-
"Initialization failed. Please see the error messages above."
|
546
|
-
)
|
547
|
-
scheduler_infos.append(data)
|
548
|
-
|
549
|
-
# Assume all schedulers have same scheduler_info
|
550
|
-
scheduler_info = scheduler_infos[0]
|
551
|
-
|
552
|
-
|
553
|
-
def launch_server(
|
554
|
-
server_args: ServerArgs,
|
555
|
-
pipe_finish_writer: Optional[mp.connection.Connection] = None,
|
556
|
-
):
|
557
|
-
"""
|
558
|
-
Launch SRT (SGLang Runtime) Server
|
559
|
-
|
560
|
-
The SRT server consists of an HTTP server and the SRT engine.
|
561
|
-
|
562
|
-
1. HTTP server: A FastAPI server that routes requests to the engine.
|
563
|
-
2. SRT engine:
|
564
|
-
1. TokenizerManager: Tokenizes the requests and sends them to the scheduler.
|
565
|
-
2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager.
|
566
|
-
3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager.
|
567
|
-
|
568
|
-
Note:
|
569
|
-
1. The HTTP server and TokenizerManager both run in the main process.
|
570
|
-
2. Inter-process communication is done through ICP (each process uses a different port) via the ZMQ library.
|
571
|
-
"""
|
572
|
-
launch_engine(server_args=server_args)
|
573
|
-
|
574
|
-
# Add api key authorization
|
575
|
-
if server_args.api_key:
|
576
|
-
add_api_key_middleware(app, server_args.api_key)
|
577
|
-
|
578
|
-
# Add prometheus middleware
|
579
|
-
if server_args.enable_metrics:
|
580
|
-
add_prometheus_middleware(app)
|
581
|
-
enable_func_timer()
|
582
|
-
|
583
|
-
# Send a warmup request
|
584
|
-
t = threading.Thread(
|
585
|
-
target=_wait_and_warmup,
|
586
|
-
args=(
|
587
|
-
server_args,
|
588
|
-
pipe_finish_writer,
|
589
|
-
tokenizer_manager.image_token_id,
|
590
|
-
),
|
591
|
-
)
|
592
|
-
t.start()
|
593
|
-
|
594
|
-
try:
|
595
|
-
# Update logging configs
|
596
|
-
LOGGING_CONFIG["formatters"]["default"][
|
597
|
-
"fmt"
|
598
|
-
] = "[%(asctime)s] %(levelprefix)s %(message)s"
|
599
|
-
LOGGING_CONFIG["formatters"]["default"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
|
600
|
-
LOGGING_CONFIG["formatters"]["access"][
|
601
|
-
"fmt"
|
602
|
-
] = '[%(asctime)s] %(levelprefix)s %(client_addr)s - "%(request_line)s" %(status_code)s'
|
603
|
-
LOGGING_CONFIG["formatters"]["access"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
|
604
|
-
|
605
|
-
# Listen for HTTP requests
|
606
|
-
uvicorn.run(
|
607
|
-
app,
|
608
|
-
host=server_args.host,
|
609
|
-
port=server_args.port,
|
610
|
-
log_level=server_args.log_level_http or server_args.log_level,
|
611
|
-
timeout_keep_alive=5,
|
612
|
-
loop="uvloop",
|
613
|
-
)
|
614
|
-
finally:
|
615
|
-
t.join()
|
616
|
-
|
617
|
-
|
618
|
-
def _set_envs_and_config(server_args: ServerArgs):
|
619
|
-
# Set global environments
|
620
|
-
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
621
|
-
os.environ["NCCL_CUMEM_ENABLE"] = "0"
|
622
|
-
os.environ["NCCL_NVLS_ENABLE"] = "0"
|
623
|
-
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
|
624
|
-
os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "4"
|
625
|
-
|
626
|
-
# Set prometheus env vars
|
627
|
-
if server_args.enable_metrics:
|
628
|
-
set_prometheus_multiproc_dir()
|
629
|
-
|
630
|
-
# Set ulimit
|
631
|
-
set_ulimit()
|
632
|
-
|
633
|
-
# Fix triton bugs
|
634
|
-
if server_args.tp_size * server_args.dp_size > 1:
|
635
|
-
# FIXME: remove this after https://github.com/triton-lang/triton/pull/4295 is used as a dependency.
|
636
|
-
maybe_set_triton_cache_manager()
|
637
|
-
|
638
|
-
# Check flashinfer version
|
639
|
-
if server_args.attention_backend == "flashinfer":
|
640
|
-
assert_pkg_version(
|
641
|
-
"flashinfer",
|
642
|
-
"0.1.6",
|
643
|
-
"Please uninstall the old version and "
|
644
|
-
"reinstall the latest version by following the instructions "
|
645
|
-
"at https://docs.flashinfer.ai/installation.html.",
|
646
|
-
)
|
647
|
-
|
648
|
-
# Register the signal handler.
|
649
|
-
# The child processes will send SIGQUIT to this process when any error happens
|
650
|
-
# This process then clean up the whole process tree
|
651
|
-
def sigquit_handler(signum, frame):
|
652
|
-
logger.error(
|
653
|
-
"Received sigquit from a child proces. It usually means the child failed."
|
654
|
-
)
|
655
|
-
kill_process_tree(os.getpid())
|
656
|
-
|
657
|
-
signal.signal(signal.SIGQUIT, sigquit_handler)
|
658
|
-
|
659
|
-
# Set mp start method
|
660
|
-
mp.set_start_method("spawn", force=True)
|
661
|
-
|
662
|
-
|
663
|
-
def _wait_and_warmup(server_args, pipe_finish_writer, image_token_text):
|
664
|
-
headers = {}
|
665
|
-
url = server_args.url()
|
666
|
-
if server_args.api_key:
|
667
|
-
headers["Authorization"] = f"Bearer {server_args.api_key}"
|
668
|
-
|
669
|
-
# Wait until the server is launched
|
670
|
-
success = False
|
671
|
-
for _ in range(120):
|
672
|
-
time.sleep(1)
|
673
|
-
try:
|
674
|
-
res = requests.get(url + "/get_model_info", timeout=5, headers=headers)
|
675
|
-
assert res.status_code == 200, f"{res=}, {res.text=}"
|
676
|
-
success = True
|
677
|
-
break
|
678
|
-
except (AssertionError, requests.exceptions.RequestException):
|
679
|
-
last_traceback = get_exception_traceback()
|
680
|
-
pass
|
681
|
-
|
682
|
-
if not success:
|
683
|
-
if pipe_finish_writer is not None:
|
684
|
-
pipe_finish_writer.send(last_traceback)
|
685
|
-
logger.error(f"Initialization failed. warmup error: {last_traceback}")
|
686
|
-
kill_process_tree(os.getpid())
|
687
|
-
return
|
688
|
-
|
689
|
-
model_info = res.json()
|
690
|
-
|
691
|
-
# Send a warmup request
|
692
|
-
request_name = "/generate" if model_info["is_generation"] else "/encode"
|
693
|
-
max_new_tokens = 8 if model_info["is_generation"] else 1
|
694
|
-
json_data = {
|
695
|
-
"sampling_params": {
|
696
|
-
"temperature": 0,
|
697
|
-
"max_new_tokens": max_new_tokens,
|
698
|
-
},
|
699
|
-
}
|
700
|
-
if server_args.skip_tokenizer_init:
|
701
|
-
json_data["input_ids"] = [10, 11, 12]
|
702
|
-
else:
|
703
|
-
json_data["text"] = "The capital city of France is"
|
704
|
-
|
705
|
-
try:
|
706
|
-
for _ in range(server_args.dp_size):
|
707
|
-
res = requests.post(
|
708
|
-
url + request_name,
|
709
|
-
json=json_data,
|
710
|
-
headers=headers,
|
711
|
-
timeout=600,
|
712
|
-
)
|
713
|
-
assert res.status_code == 200, f"{res}"
|
714
|
-
except Exception:
|
715
|
-
last_traceback = get_exception_traceback()
|
716
|
-
if pipe_finish_writer is not None:
|
717
|
-
pipe_finish_writer.send(last_traceback)
|
718
|
-
logger.error(f"Initialization failed. warmup error: {last_traceback}")
|
719
|
-
kill_process_tree(os.getpid())
|
720
|
-
return
|
721
|
-
|
722
|
-
# Debug print
|
723
|
-
# logger.info(f"{res.json()=}")
|
724
|
-
|
725
|
-
logger.info("The server is fired up and ready to roll!")
|
726
|
-
if pipe_finish_writer is not None:
|
727
|
-
pipe_finish_writer.send("ready")
|
728
|
-
|
729
|
-
if server_args.delete_ckpt_after_loading:
|
730
|
-
delete_directory(server_args.model_path)
|
731
|
-
|
732
|
-
|
733
|
-
STREAM_END_SYMBOL = b"data: [DONE]"
|
734
|
-
STREAM_CHUNK_START_SYMBOL = b"data:"
|
735
|
-
|
736
|
-
|
737
|
-
class Engine:
|
738
|
-
"""
|
739
|
-
SRT Engine without an HTTP server layer.
|
740
|
-
|
741
|
-
This class provides a direct inference engine without the need for an HTTP server. It is designed for use cases where
|
742
|
-
launching the HTTP server adds unnecessary complexity or overhead,
|
743
|
-
"""
|
744
|
-
|
745
|
-
def __init__(self, log_level: str = "error", *args, **kwargs):
|
746
|
-
"""See the arguments in server_args.py::ServerArgs"""
|
747
|
-
|
748
|
-
# before python program terminates, call shutdown implicitly. Therefore, users don't have to explicitly call .shutdown()
|
749
|
-
atexit.register(self.shutdown)
|
750
|
-
|
751
|
-
server_args = ServerArgs(*args, log_level=log_level, **kwargs)
|
752
|
-
launch_engine(server_args=server_args)
|
753
|
-
|
754
|
-
def generate(
|
755
|
-
self,
|
756
|
-
# The input prompt. It can be a single prompt or a batch of prompts.
|
757
|
-
prompt: Optional[Union[List[str], str]] = None,
|
758
|
-
sampling_params: Optional[Union[List[Dict], Dict]] = None,
|
759
|
-
# The token ids for text; one can either specify text or input_ids.
|
760
|
-
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
|
761
|
-
return_logprob: Optional[Union[List[bool], bool]] = False,
|
762
|
-
logprob_start_len: Optional[Union[List[int], int]] = None,
|
763
|
-
top_logprobs_num: Optional[Union[List[int], int]] = None,
|
764
|
-
lora_path: Optional[List[Optional[str]]] = None,
|
765
|
-
stream: bool = False,
|
766
|
-
):
|
767
|
-
obj = GenerateReqInput(
|
768
|
-
text=prompt,
|
769
|
-
input_ids=input_ids,
|
770
|
-
sampling_params=sampling_params,
|
771
|
-
return_logprob=return_logprob,
|
772
|
-
logprob_start_len=logprob_start_len,
|
773
|
-
top_logprobs_num=top_logprobs_num,
|
774
|
-
lora_path=lora_path,
|
775
|
-
stream=stream,
|
776
|
-
)
|
777
|
-
|
778
|
-
# get the current event loop
|
779
|
-
loop = asyncio.get_event_loop()
|
780
|
-
ret = loop.run_until_complete(generate_request(obj, None))
|
781
|
-
|
782
|
-
if stream is True:
|
783
|
-
|
784
|
-
def generator_wrapper():
|
785
|
-
offset = 0
|
786
|
-
loop = asyncio.get_event_loop()
|
787
|
-
generator = ret.body_iterator
|
788
|
-
while True:
|
789
|
-
chunk = loop.run_until_complete(generator.__anext__())
|
790
|
-
|
791
|
-
if chunk.startswith(STREAM_END_SYMBOL):
|
792
|
-
break
|
793
|
-
else:
|
794
|
-
data = json.loads(chunk[len(STREAM_CHUNK_START_SYMBOL) :])
|
795
|
-
data["text"] = data["text"][offset:]
|
796
|
-
offset += len(data["text"])
|
797
|
-
yield data
|
798
|
-
|
799
|
-
# we cannot yield in the scope of generate() because python does not allow yield + return in the same function
|
800
|
-
# however, it allows to wrap the generator as a subfunction and return
|
801
|
-
return generator_wrapper()
|
802
|
-
else:
|
803
|
-
return ret
|
804
|
-
|
805
|
-
async def async_generate(
|
806
|
-
self,
|
807
|
-
# The input prompt. It can be a single prompt or a batch of prompts.
|
808
|
-
prompt: Optional[Union[List[str], str]] = None,
|
809
|
-
sampling_params: Optional[Dict] = None,
|
810
|
-
# The token ids for text; one can either specify text or input_ids.
|
811
|
-
input_ids: Optional[Union[List[List[int]], List[int]]] = None,
|
812
|
-
return_logprob: Optional[Union[List[bool], bool]] = False,
|
813
|
-
logprob_start_len: Optional[Union[List[int], int]] = None,
|
814
|
-
top_logprobs_num: Optional[Union[List[int], int]] = None,
|
815
|
-
lora_path: Optional[List[Optional[str]]] = None,
|
816
|
-
stream: bool = False,
|
817
|
-
):
|
818
|
-
obj = GenerateReqInput(
|
819
|
-
text=prompt,
|
820
|
-
input_ids=input_ids,
|
821
|
-
sampling_params=sampling_params,
|
822
|
-
return_logprob=return_logprob,
|
823
|
-
logprob_start_len=logprob_start_len,
|
824
|
-
top_logprobs_num=top_logprobs_num,
|
825
|
-
lora_path=lora_path,
|
826
|
-
stream=stream,
|
827
|
-
)
|
828
|
-
|
829
|
-
ret = await generate_request(obj, None)
|
830
|
-
|
831
|
-
if stream is True:
|
832
|
-
generator = ret.body_iterator
|
833
|
-
|
834
|
-
async def generator_wrapper():
|
835
|
-
|
836
|
-
offset = 0
|
837
|
-
|
838
|
-
while True:
|
839
|
-
chunk = await generator.__anext__()
|
840
|
-
|
841
|
-
if chunk.startswith(STREAM_END_SYMBOL):
|
842
|
-
break
|
843
|
-
else:
|
844
|
-
data = json.loads(chunk[len(STREAM_CHUNK_START_SYMBOL) :])
|
845
|
-
data["text"] = data["text"][offset:]
|
846
|
-
offset += len(data["text"])
|
847
|
-
yield data
|
848
|
-
|
849
|
-
return generator_wrapper()
|
850
|
-
else:
|
851
|
-
return ret
|
852
|
-
|
853
|
-
def shutdown(self):
|
854
|
-
kill_process_tree(os.getpid(), include_parent=False)
|
855
|
-
|
856
|
-
def get_tokenizer(self):
|
857
|
-
global tokenizer_manager
|
858
|
-
|
859
|
-
if tokenizer_manager is None:
|
860
|
-
raise ReferenceError("Tokenizer Manager is not initialized.")
|
861
|
-
else:
|
862
|
-
return tokenizer_manager.tokenizer
|
863
|
-
|
864
|
-
def encode(
|
865
|
-
self,
|
866
|
-
prompt: Union[str, List[str], List[Dict], List[List[Dict]]],
|
867
|
-
):
|
868
|
-
obj = EmbeddingReqInput(text=prompt)
|
869
|
-
|
870
|
-
# get the current event loop
|
871
|
-
loop = asyncio.get_event_loop()
|
872
|
-
return loop.run_until_complete(encode_request(obj, None))
|
873
|
-
|
874
|
-
def start_profile(self):
|
875
|
-
tokenizer_manager.start_profile()
|
876
|
-
|
877
|
-
def stop_profile(self):
|
878
|
-
tokenizer_manager.stop_profile()
|
879
|
-
|
880
|
-
def get_server_info(self):
|
881
|
-
return {
|
882
|
-
**dataclasses.asdict(tokenizer_manager.server_args), # server args
|
883
|
-
**scheduler_info,
|
884
|
-
"version": __version__,
|
885
|
-
}
|
886
|
-
|
887
|
-
def init_weights_update_group(
|
888
|
-
self,
|
889
|
-
master_address: str,
|
890
|
-
master_port: int,
|
891
|
-
rank_offset: int,
|
892
|
-
world_size: int,
|
893
|
-
group_name: str,
|
894
|
-
backend: str = "nccl",
|
895
|
-
):
|
896
|
-
"""Initialize parameter update group."""
|
897
|
-
obj = InitWeightsUpdateGroupReqInput(
|
898
|
-
master_address=master_address,
|
899
|
-
master_port=master_port,
|
900
|
-
rank_offset=rank_offset,
|
901
|
-
world_size=world_size,
|
902
|
-
group_name=group_name,
|
903
|
-
backend=backend,
|
904
|
-
)
|
905
|
-
loop = asyncio.get_event_loop()
|
906
|
-
return loop.run_until_complete(
|
907
|
-
tokenizer_manager.init_weights_update_group(obj, None)
|
908
|
-
)
|
909
|
-
|
910
|
-
def update_weights_from_distributed(self, name, dtype, shape):
|
911
|
-
"""Update weights from distributed source."""
|
912
|
-
obj = UpdateWeightsFromDistributedReqInput(
|
913
|
-
name=name,
|
914
|
-
dtype=dtype,
|
915
|
-
shape=shape,
|
916
|
-
)
|
917
|
-
loop = asyncio.get_event_loop()
|
918
|
-
return loop.run_until_complete(
|
919
|
-
tokenizer_manager.update_weights_from_distributed(obj, None)
|
920
|
-
)
|
921
|
-
|
922
|
-
def update_weights_from_tensor(self, named_tensors: List[Tuple[str, torch.Tensor]]):
|
923
|
-
"""Update weights from distributed source."""
|
924
|
-
obj = UpdateWeightsFromTensorReqInput(
|
925
|
-
serialized_named_tensors=MultiprocessingSerializer.serialize(named_tensors)
|
926
|
-
)
|
927
|
-
loop = asyncio.get_event_loop()
|
928
|
-
return loop.run_until_complete(
|
929
|
-
tokenizer_manager.update_weights_from_tensor(obj, None)
|
930
|
-
)
|
931
|
-
|
932
|
-
def get_weights_by_name(self, name, truncate_size=100):
|
933
|
-
"""Get weights by parameter name."""
|
934
|
-
obj = GetWeightsByNameReqInput(name=name, truncate_size=truncate_size)
|
935
|
-
loop = asyncio.get_event_loop()
|
936
|
-
return loop.run_until_complete(tokenizer_manager.get_weights_by_name(obj, None))
|
937
|
-
|
938
|
-
def release_memory_occupation(self):
|
939
|
-
"""Release GPU occupation temporarily"""
|
940
|
-
obj = ReleaseMemoryOccupationReqInput()
|
941
|
-
loop = asyncio.get_event_loop()
|
942
|
-
loop.run_until_complete(tokenizer_manager.release_memory_occupation(obj, None))
|
943
|
-
|
944
|
-
def resume_memory_occupation(self):
|
945
|
-
"""Resume GPU occupation"""
|
946
|
-
obj = ResumeMemoryOccupationReqInput()
|
947
|
-
loop = asyncio.get_event_loop()
|
948
|
-
loop.run_until_complete(tokenizer_manager.resume_memory_occupation(obj, None))
|
949
|
-
|
950
|
-
|
951
|
-
class Runtime:
|
952
|
-
"""
|
953
|
-
A wrapper for the HTTP server.
|
954
|
-
This is used for launching the server in a python program without
|
955
|
-
using the commond line interface.
|
956
|
-
|
957
|
-
It is mainly used for the frontend language.
|
958
|
-
You should use the Engine class above if you want to do normal offline processing.
|
959
|
-
"""
|
960
|
-
|
961
|
-
def __init__(
|
962
|
-
self,
|
963
|
-
log_level: str = "error",
|
964
|
-
*args,
|
965
|
-
**kwargs,
|
966
|
-
):
|
967
|
-
"""See the arguments in server_args.py::ServerArgs"""
|
968
|
-
self.server_args = ServerArgs(*args, log_level=log_level, **kwargs)
|
969
|
-
|
970
|
-
# before python program terminates, call shutdown implicitly. Therefore, users don't have to explicitly call .shutdown()
|
971
|
-
atexit.register(self.shutdown)
|
972
|
-
|
973
|
-
# Pre-allocate ports
|
974
|
-
for port in range(self.server_args.port, 40000):
|
975
|
-
if is_port_available(port):
|
976
|
-
break
|
977
|
-
self.server_args.port = port
|
978
|
-
|
979
|
-
self.url = self.server_args.url()
|
980
|
-
self.generate_url = self.url + "/generate"
|
981
|
-
|
982
|
-
# NOTE: We store pid instead of proc to fix some issues during __delete__
|
983
|
-
self.pid = None
|
984
|
-
pipe_reader, pipe_writer = mp.Pipe(duplex=False)
|
985
|
-
|
986
|
-
proc = mp.Process(
|
987
|
-
target=launch_server,
|
988
|
-
args=(self.server_args, pipe_writer),
|
989
|
-
)
|
990
|
-
proc.start()
|
991
|
-
pipe_writer.close()
|
992
|
-
self.pid = proc.pid
|
993
|
-
|
994
|
-
try:
|
995
|
-
init_state = pipe_reader.recv()
|
996
|
-
except EOFError:
|
997
|
-
init_state = ""
|
998
|
-
|
999
|
-
if init_state != "ready":
|
1000
|
-
self.shutdown()
|
1001
|
-
raise RuntimeError(
|
1002
|
-
"Initialization failed. Please see the error messages above."
|
1003
|
-
)
|
1004
|
-
|
1005
|
-
self.endpoint = RuntimeEndpoint(self.url)
|
1006
|
-
|
1007
|
-
def shutdown(self):
|
1008
|
-
if self.pid is not None:
|
1009
|
-
kill_process_tree(self.pid)
|
1010
|
-
self.pid = None
|
1011
|
-
|
1012
|
-
def cache_prefix(self, prefix: str):
|
1013
|
-
self.endpoint.cache_prefix(prefix)
|
1014
|
-
|
1015
|
-
def get_tokenizer(self):
|
1016
|
-
return get_tokenizer(
|
1017
|
-
self.server_args.tokenizer_path,
|
1018
|
-
tokenizer_mode=self.server_args.tokenizer_mode,
|
1019
|
-
trust_remote_code=self.server_args.trust_remote_code,
|
1020
|
-
)
|
1021
|
-
|
1022
|
-
async def async_generate(
|
1023
|
-
self,
|
1024
|
-
prompt: str,
|
1025
|
-
sampling_params: Optional[Dict] = None,
|
1026
|
-
):
|
1027
|
-
if self.server_args.skip_tokenizer_init:
|
1028
|
-
json_data = {
|
1029
|
-
"input_ids": prompt,
|
1030
|
-
"sampling_params": sampling_params,
|
1031
|
-
"stream": True,
|
1032
|
-
}
|
1033
|
-
else:
|
1034
|
-
json_data = {
|
1035
|
-
"text": prompt,
|
1036
|
-
"sampling_params": sampling_params,
|
1037
|
-
"stream": True,
|
1038
|
-
}
|
1039
|
-
pos = 0
|
1040
|
-
|
1041
|
-
timeout = aiohttp.ClientTimeout(total=3 * 3600)
|
1042
|
-
async with aiohttp.ClientSession(timeout=timeout, trust_env=True) as session:
|
1043
|
-
async with session.post(self.generate_url, json=json_data) as response:
|
1044
|
-
async for chunk, _ in response.content.iter_chunks():
|
1045
|
-
chunk = chunk.decode("utf-8")
|
1046
|
-
if chunk and chunk.startswith("data:"):
|
1047
|
-
if chunk == "data: [DONE]\n\n":
|
1048
|
-
break
|
1049
|
-
data = json.loads(chunk[5:].strip("\n"))
|
1050
|
-
if "text" in data:
|
1051
|
-
cur = data["text"][pos:]
|
1052
|
-
if cur:
|
1053
|
-
yield cur
|
1054
|
-
pos += len(cur)
|
1055
|
-
else:
|
1056
|
-
yield data
|
1057
|
-
|
1058
|
-
add_request = async_generate
|
1059
|
-
|
1060
|
-
def generate(
|
1061
|
-
self,
|
1062
|
-
prompt: Union[str, List[str]],
|
1063
|
-
sampling_params: Optional[Dict] = None,
|
1064
|
-
return_logprob: Optional[Union[List[bool], bool]] = False,
|
1065
|
-
logprob_start_len: Optional[Union[List[int], int]] = None,
|
1066
|
-
top_logprobs_num: Optional[Union[List[int], int]] = None,
|
1067
|
-
lora_path: Optional[List[Optional[str]]] = None,
|
1068
|
-
):
|
1069
|
-
json_data = {
|
1070
|
-
"text": prompt,
|
1071
|
-
"sampling_params": sampling_params,
|
1072
|
-
"return_logprob": return_logprob,
|
1073
|
-
"logprob_start_len": logprob_start_len,
|
1074
|
-
"top_logprobs_num": top_logprobs_num,
|
1075
|
-
"lora_path": lora_path,
|
1076
|
-
}
|
1077
|
-
assert not isinstance(lora_path, list) or len(lora_path) == len(prompt)
|
1078
|
-
response = requests.post(
|
1079
|
-
self.url + "/generate",
|
1080
|
-
json=json_data,
|
1081
|
-
)
|
1082
|
-
return json.dumps(response.json())
|
1083
|
-
|
1084
|
-
def encode(
|
1085
|
-
self,
|
1086
|
-
prompt: Union[str, List[str], List[Dict], List[List[Dict]]],
|
1087
|
-
):
|
1088
|
-
json_data = {"text": prompt}
|
1089
|
-
response = requests.post(self.url + "/encode", json=json_data)
|
1090
|
-
return json.dumps(response.json())
|
1091
|
-
|
1092
|
-
async def get_server_info(self):
|
1093
|
-
async with aiohttp.ClientSession() as session:
|
1094
|
-
async with session.get(f"{self.url}/get_server_info") as response:
|
1095
|
-
if response.status == 200:
|
1096
|
-
return await response.json()
|
1097
|
-
else:
|
1098
|
-
error_data = await response.json()
|
1099
|
-
raise RuntimeError(
|
1100
|
-
f"Failed to get server info. {error_data['error']['message']}"
|
1101
|
-
)
|
1102
|
-
|
1103
|
-
def __del__(self):
|
1104
|
-
self.shutdown()
|
15
|
+
# Some shortcuts for backward compatibility.
|
16
|
+
# They will be removed in new versions.
|
17
|
+
from sglang.srt.entrypoints.engine import Engine
|
18
|
+
from sglang.srt.entrypoints.http_server import kill_process_tree, launch_server
|