sglang 0.4.1.post5__py3-none-any.whl → 0.4.1.post7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (129) hide show
  1. sglang/__init__.py +21 -23
  2. sglang/api.py +2 -7
  3. sglang/bench_offline_throughput.py +24 -16
  4. sglang/bench_one_batch.py +51 -3
  5. sglang/bench_one_batch_server.py +1 -1
  6. sglang/bench_serving.py +37 -28
  7. sglang/lang/backend/runtime_endpoint.py +183 -4
  8. sglang/lang/chat_template.py +15 -4
  9. sglang/launch_server.py +1 -1
  10. sglang/srt/_custom_ops.py +80 -42
  11. sglang/srt/configs/device_config.py +1 -1
  12. sglang/srt/configs/model_config.py +16 -6
  13. sglang/srt/constrained/base_grammar_backend.py +21 -0
  14. sglang/srt/constrained/xgrammar_backend.py +8 -4
  15. sglang/srt/conversation.py +14 -1
  16. sglang/srt/distributed/__init__.py +3 -3
  17. sglang/srt/distributed/communication_op.py +2 -1
  18. sglang/srt/distributed/device_communicators/cuda_wrapper.py +2 -1
  19. sglang/srt/distributed/device_communicators/custom_all_reduce.py +107 -40
  20. sglang/srt/distributed/device_communicators/custom_all_reduce_utils.py +2 -2
  21. sglang/srt/distributed/device_communicators/hpu_communicator.py +2 -1
  22. sglang/srt/distributed/device_communicators/pynccl.py +80 -1
  23. sglang/srt/distributed/device_communicators/pynccl_wrapper.py +112 -2
  24. sglang/srt/distributed/device_communicators/shm_broadcast.py +5 -72
  25. sglang/srt/distributed/device_communicators/xpu_communicator.py +2 -1
  26. sglang/srt/distributed/parallel_state.py +1 -1
  27. sglang/srt/distributed/utils.py +2 -1
  28. sglang/srt/entrypoints/engine.py +449 -0
  29. sglang/srt/entrypoints/http_server.py +579 -0
  30. sglang/srt/layers/activation.py +3 -3
  31. sglang/srt/layers/attention/flashinfer_backend.py +27 -12
  32. sglang/srt/layers/attention/triton_backend.py +4 -6
  33. sglang/srt/layers/attention/vision.py +204 -0
  34. sglang/srt/layers/dp_attention.py +69 -0
  35. sglang/srt/layers/linear.py +76 -102
  36. sglang/srt/layers/logits_processor.py +48 -63
  37. sglang/srt/layers/moe/ep_moe/layer.py +4 -4
  38. sglang/srt/layers/moe/fused_moe_native.py +69 -0
  39. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +9 -6
  40. sglang/srt/layers/moe/fused_moe_triton/layer.py +66 -14
  41. sglang/srt/layers/moe/topk.py +4 -2
  42. sglang/srt/layers/parameter.py +26 -17
  43. sglang/srt/layers/quantization/__init__.py +22 -23
  44. sglang/srt/layers/quantization/fp8.py +112 -55
  45. sglang/srt/layers/quantization/fp8_utils.py +1 -1
  46. sglang/srt/layers/quantization/int8_kernel.py +54 -0
  47. sglang/srt/layers/quantization/modelopt_quant.py +2 -3
  48. sglang/srt/layers/quantization/w8a8_int8.py +117 -0
  49. sglang/srt/layers/radix_attention.py +2 -0
  50. sglang/srt/layers/rotary_embedding.py +1179 -31
  51. sglang/srt/layers/sampler.py +39 -1
  52. sglang/srt/layers/vocab_parallel_embedding.py +17 -4
  53. sglang/srt/lora/lora.py +1 -9
  54. sglang/srt/managers/configure_logging.py +46 -0
  55. sglang/srt/managers/data_parallel_controller.py +79 -72
  56. sglang/srt/managers/detokenizer_manager.py +23 -8
  57. sglang/srt/managers/image_processor.py +158 -2
  58. sglang/srt/managers/io_struct.py +54 -15
  59. sglang/srt/managers/schedule_batch.py +49 -22
  60. sglang/srt/managers/schedule_policy.py +26 -12
  61. sglang/srt/managers/scheduler.py +319 -181
  62. sglang/srt/managers/session_controller.py +1 -0
  63. sglang/srt/managers/tokenizer_manager.py +303 -158
  64. sglang/srt/managers/tp_worker.py +6 -4
  65. sglang/srt/managers/tp_worker_overlap_thread.py +5 -8
  66. sglang/srt/managers/utils.py +44 -0
  67. sglang/srt/mem_cache/memory_pool.py +110 -77
  68. sglang/srt/metrics/collector.py +25 -11
  69. sglang/srt/model_executor/cuda_graph_runner.py +4 -6
  70. sglang/srt/model_executor/model_runner.py +80 -21
  71. sglang/srt/model_loader/loader.py +8 -6
  72. sglang/srt/model_loader/weight_utils.py +55 -2
  73. sglang/srt/models/baichuan.py +6 -6
  74. sglang/srt/models/chatglm.py +2 -2
  75. sglang/srt/models/commandr.py +3 -3
  76. sglang/srt/models/dbrx.py +4 -4
  77. sglang/srt/models/deepseek.py +3 -3
  78. sglang/srt/models/deepseek_v2.py +8 -8
  79. sglang/srt/models/exaone.py +2 -2
  80. sglang/srt/models/gemma.py +2 -2
  81. sglang/srt/models/gemma2.py +6 -24
  82. sglang/srt/models/gpt2.py +3 -5
  83. sglang/srt/models/gpt_bigcode.py +1 -1
  84. sglang/srt/models/granite.py +2 -2
  85. sglang/srt/models/grok.py +3 -3
  86. sglang/srt/models/internlm2.py +2 -2
  87. sglang/srt/models/llama.py +41 -4
  88. sglang/srt/models/minicpm.py +2 -2
  89. sglang/srt/models/minicpm3.py +6 -6
  90. sglang/srt/models/minicpmv.py +1238 -0
  91. sglang/srt/models/mixtral.py +3 -3
  92. sglang/srt/models/mixtral_quant.py +3 -3
  93. sglang/srt/models/mllama.py +2 -2
  94. sglang/srt/models/olmo.py +3 -3
  95. sglang/srt/models/olmo2.py +4 -4
  96. sglang/srt/models/olmoe.py +7 -13
  97. sglang/srt/models/phi3_small.py +2 -2
  98. sglang/srt/models/qwen.py +2 -2
  99. sglang/srt/models/qwen2.py +52 -4
  100. sglang/srt/models/qwen2_eagle.py +131 -0
  101. sglang/srt/models/qwen2_moe.py +3 -3
  102. sglang/srt/models/qwen2_vl.py +22 -122
  103. sglang/srt/models/stablelm.py +2 -2
  104. sglang/srt/models/torch_native_llama.py +3 -3
  105. sglang/srt/models/xverse.py +6 -6
  106. sglang/srt/models/xverse_moe.py +6 -6
  107. sglang/srt/openai_api/protocol.py +2 -0
  108. sglang/srt/sampling/custom_logit_processor.py +38 -0
  109. sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py +15 -5
  110. sglang/srt/sampling/sampling_batch_info.py +153 -9
  111. sglang/srt/sampling/sampling_params.py +4 -2
  112. sglang/srt/server.py +4 -1037
  113. sglang/srt/server_args.py +84 -32
  114. sglang/srt/speculative/eagle_worker.py +1 -0
  115. sglang/srt/torch_memory_saver_adapter.py +59 -0
  116. sglang/srt/utils.py +130 -63
  117. sglang/test/runners.py +8 -13
  118. sglang/test/test_programs.py +1 -1
  119. sglang/test/test_utils.py +3 -1
  120. sglang/utils.py +12 -2
  121. sglang/version.py +1 -1
  122. {sglang-0.4.1.post5.dist-info → sglang-0.4.1.post7.dist-info}/METADATA +26 -13
  123. {sglang-0.4.1.post5.dist-info → sglang-0.4.1.post7.dist-info}/RECORD +126 -117
  124. sglang/launch_server_llavavid.py +0 -25
  125. sglang/srt/constrained/__init__.py +0 -16
  126. sglang/srt/distributed/device_communicators/__init__.py +0 -0
  127. {sglang-0.4.1.post5.dist-info → sglang-0.4.1.post7.dist-info}/LICENSE +0 -0
  128. {sglang-0.4.1.post5.dist-info → sglang-0.4.1.post7.dist-info}/WHEEL +0 -0
  129. {sglang-0.4.1.post5.dist-info → sglang-0.4.1.post7.dist-info}/top_level.txt +0 -0
sglang/srt/server.py CHANGED
@@ -11,1041 +11,8 @@
11
11
  # See the License for the specific language governing permissions and
12
12
  # limitations under the License.
13
13
  # ==============================================================================
14
- """
15
- The entry point of inference server.
16
- SRT = SGLang Runtime.
17
- """
18
14
 
19
- import asyncio
20
- import atexit
21
- import dataclasses
22
- import json
23
- import logging
24
- import multiprocessing as mp
25
- import os
26
- import signal
27
- import threading
28
- import time
29
- from http import HTTPStatus
30
- from typing import AsyncIterator, Dict, List, Optional, Tuple, Union
31
-
32
- import torch
33
-
34
- # Fix a bug of Python threading
35
- setattr(threading, "_register_atexit", lambda *args, **kwargs: None)
36
-
37
- import aiohttp
38
- import orjson
39
- import requests
40
- import uvicorn
41
- import uvloop
42
- from fastapi import FastAPI, File, Form, Request, UploadFile
43
- from fastapi.middleware.cors import CORSMiddleware
44
- from fastapi.responses import ORJSONResponse, Response, StreamingResponse
45
- from uvicorn.config import LOGGING_CONFIG
46
-
47
- from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
48
- from sglang.srt.hf_transformers_utils import get_tokenizer
49
- from sglang.srt.managers.data_parallel_controller import (
50
- run_data_parallel_controller_process,
51
- )
52
- from sglang.srt.managers.detokenizer_manager import run_detokenizer_process
53
- from sglang.srt.managers.io_struct import (
54
- CloseSessionReqInput,
55
- EmbeddingReqInput,
56
- GenerateReqInput,
57
- GetWeightsByNameReqInput,
58
- InitWeightsUpdateGroupReqInput,
59
- OpenSessionReqInput,
60
- UpdateWeightFromDiskReqInput,
61
- UpdateWeightsFromDistributedReqInput,
62
- UpdateWeightsFromTensorReqInput,
63
- )
64
- from sglang.srt.managers.scheduler import run_scheduler_process
65
- from sglang.srt.managers.tokenizer_manager import TokenizerManager
66
- from sglang.srt.metrics.func_timer import enable_func_timer, time_func_latency
67
- from sglang.srt.openai_api.adapter import (
68
- load_chat_template_for_openai_api,
69
- v1_batches,
70
- v1_cancel_batch,
71
- v1_chat_completions,
72
- v1_completions,
73
- v1_delete_file,
74
- v1_embeddings,
75
- v1_files_create,
76
- v1_retrieve_batch,
77
- v1_retrieve_file,
78
- v1_retrieve_file_content,
79
- )
80
- from sglang.srt.openai_api.protocol import ModelCard, ModelList
81
- from sglang.srt.server_args import PortArgs, ServerArgs
82
- from sglang.srt.utils import (
83
- MultiprocessingSerializer,
84
- add_api_key_middleware,
85
- add_prometheus_middleware,
86
- assert_pkg_version,
87
- configure_logger,
88
- delete_directory,
89
- is_port_available,
90
- kill_process_tree,
91
- maybe_set_triton_cache_manager,
92
- prepare_model_and_tokenizer,
93
- set_prometheus_multiproc_dir,
94
- set_ulimit,
95
- )
96
- from sglang.utils import get_exception_traceback
97
- from sglang.version import __version__
98
-
99
- logger = logging.getLogger(__name__)
100
-
101
- asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
102
-
103
- # Fast API
104
- app = FastAPI()
105
- app.add_middleware(
106
- CORSMiddleware,
107
- allow_origins=["*"],
108
- allow_credentials=True,
109
- allow_methods=["*"],
110
- allow_headers=["*"],
111
- )
112
-
113
- tokenizer_manager: TokenizerManager = None
114
- scheduler_info: Dict = None
115
-
116
-
117
- ##### Native API endpoints #####
118
-
119
-
120
- @app.get("/health")
121
- async def health() -> Response:
122
- """Check the health of the http server."""
123
- return Response(status_code=200)
124
-
125
-
126
- @app.get("/health_generate")
127
- async def health_generate(request: Request) -> Response:
128
- """Check the health of the inference server by generating one token."""
129
-
130
- sampling_params = {"max_new_tokens": 1, "temperature": 0.7}
131
-
132
- if tokenizer_manager.is_generation:
133
- gri = GenerateReqInput(input_ids=[0], sampling_params=sampling_params)
134
- else:
135
- gri = EmbeddingReqInput(input_ids=[0], sampling_params=sampling_params)
136
-
137
- try:
138
- async for _ in tokenizer_manager.generate_request(gri, request):
139
- break
140
- return Response(status_code=200)
141
- except Exception as e:
142
- logger.exception(e)
143
- return Response(status_code=503)
144
-
145
-
146
- @app.get("/get_model_info")
147
- async def get_model_info():
148
- """Get the model information."""
149
- result = {
150
- "model_path": tokenizer_manager.model_path,
151
- "tokenizer_path": tokenizer_manager.server_args.tokenizer_path,
152
- "is_generation": tokenizer_manager.is_generation,
153
- }
154
- return result
155
-
156
-
157
- @app.get("/get_server_info")
158
- async def get_server_info():
159
- return {
160
- **dataclasses.asdict(tokenizer_manager.server_args), # server args
161
- **scheduler_info,
162
- "version": __version__,
163
- }
164
-
165
-
166
- @app.post("/flush_cache")
167
- async def flush_cache():
168
- """Flush the radix cache."""
169
- tokenizer_manager.flush_cache()
170
- return Response(
171
- content="Cache flushed.\nPlease check backend logs for more details. "
172
- "(When there are running or waiting requests, the operation will not be performed.)\n",
173
- status_code=200,
174
- )
175
-
176
-
177
- @app.get("/start_profile")
178
- @app.post("/start_profile")
179
- async def start_profile_async():
180
- """Start profiling."""
181
- tokenizer_manager.start_profile()
182
- return Response(
183
- content="Start profiling.\n",
184
- status_code=200,
185
- )
186
-
187
-
188
- @app.get("/stop_profile")
189
- @app.post("/stop_profile")
190
- async def stop_profile_async():
191
- """Stop profiling."""
192
- tokenizer_manager.stop_profile()
193
- return Response(
194
- content="Stop profiling. This will take some time.\n",
195
- status_code=200,
196
- )
197
-
198
-
199
- @app.post("/update_weights_from_disk")
200
- @time_func_latency
201
- async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request):
202
- """Update the weights from disk in-place without re-launching the server."""
203
- success, message = await tokenizer_manager.update_weights_from_disk(obj, request)
204
- content = {"success": success, "message": message}
205
- if success:
206
- return ORJSONResponse(
207
- content,
208
- status_code=HTTPStatus.OK,
209
- )
210
- else:
211
- return ORJSONResponse(
212
- content,
213
- status_code=HTTPStatus.BAD_REQUEST,
214
- )
215
-
216
-
217
- @app.post("/init_weights_update_group")
218
- async def init_weights_update_group(
219
- obj: InitWeightsUpdateGroupReqInput, request: Request
220
- ):
221
- """Initialize the parameter update group."""
222
- success, message = await tokenizer_manager.init_weights_update_group(obj, request)
223
- content = {"success": success, "message": message}
224
- if success:
225
- return ORJSONResponse(content, status_code=200)
226
- else:
227
- return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)
228
-
229
-
230
- @app.post("/update_weights_from_distributed")
231
- async def update_weights_from_distributed(
232
- obj: UpdateWeightsFromDistributedReqInput, request: Request
233
- ):
234
- """Update model parameter from distributed online."""
235
- success, message = await tokenizer_manager.update_weights_from_distributed(
236
- obj, request
237
- )
238
- content = {"success": success, "message": message}
239
- if success:
240
- return ORJSONResponse(content, status_code=200)
241
- else:
242
- return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)
243
-
244
-
245
- @app.api_route("/get_weights_by_name", methods=["GET", "POST"])
246
- async def get_weights_by_name(obj: GetWeightsByNameReqInput, request: Request):
247
- """Get model parameter by name."""
248
- try:
249
- ret = await tokenizer_manager.get_weights_by_name(obj, request)
250
- if ret is None:
251
- return _create_error_response("Get parameter by name failed")
252
- else:
253
- return ORJSONResponse(ret, status_code=200)
254
- except Exception as e:
255
- return _create_error_response(e)
256
-
257
-
258
- @app.api_route("/open_session", methods=["GET", "POST"])
259
- async def open_session(obj: OpenSessionReqInput, request: Request):
260
- """Open a session, and return its unique session id."""
261
- try:
262
- session_id = await tokenizer_manager.open_session(obj, request)
263
- if session_id is None:
264
- raise Exception(
265
- "Failed to open the session. Check if a session with the same id is still open."
266
- )
267
- return session_id
268
- except Exception as e:
269
- return _create_error_response(e)
270
-
271
-
272
- @app.api_route("/close_session", methods=["GET", "POST"])
273
- async def close_session(obj: CloseSessionReqInput, request: Request):
274
- """Close the session"""
275
- try:
276
- await tokenizer_manager.close_session(obj, request)
277
- return Response(status_code=200)
278
- except Exception as e:
279
- return _create_error_response(e)
280
-
281
-
282
- # fastapi implicitly converts json in the request to obj (dataclass)
283
- @app.api_route("/generate", methods=["POST", "PUT"])
284
- @time_func_latency
285
- async def generate_request(obj: GenerateReqInput, request: Request):
286
- """Handle a generate request."""
287
- if obj.stream:
288
-
289
- async def stream_results() -> AsyncIterator[bytes]:
290
- try:
291
- async for out in tokenizer_manager.generate_request(obj, request):
292
- yield b"data: " + orjson.dumps(
293
- out, option=orjson.OPT_NON_STR_KEYS
294
- ) + b"\n\n"
295
- except ValueError as e:
296
- out = {"error": {"message": str(e)}}
297
- yield b"data: " + orjson.dumps(
298
- out, option=orjson.OPT_NON_STR_KEYS
299
- ) + b"\n\n"
300
- yield b"data: [DONE]\n\n"
301
-
302
- return StreamingResponse(
303
- stream_results(),
304
- media_type="text/event-stream",
305
- background=tokenizer_manager.create_abort_task(obj),
306
- )
307
- else:
308
- try:
309
- ret = await tokenizer_manager.generate_request(obj, request).__anext__()
310
- return ret
311
- except ValueError as e:
312
- logger.error(f"Error: {e}")
313
- return _create_error_response(e)
314
-
315
-
316
- @app.api_route("/encode", methods=["POST", "PUT"])
317
- @time_func_latency
318
- async def encode_request(obj: EmbeddingReqInput, request: Request):
319
- """Handle an embedding request."""
320
- try:
321
- ret = await tokenizer_manager.generate_request(obj, request).__anext__()
322
- return ret
323
- except ValueError as e:
324
- return _create_error_response(e)
325
-
326
-
327
- @app.api_route("/classify", methods=["POST", "PUT"])
328
- @time_func_latency
329
- async def classify_request(obj: EmbeddingReqInput, request: Request):
330
- """Handle a reward model request. Now the arguments and return values are the same as embedding models."""
331
- try:
332
- ret = await tokenizer_manager.generate_request(obj, request).__anext__()
333
- return ret
334
- except ValueError as e:
335
- return _create_error_response(e)
336
-
337
-
338
- ##### OpenAI-compatible API endpoints #####
339
-
340
-
341
- @app.post("/v1/completions")
342
- @time_func_latency
343
- async def openai_v1_completions(raw_request: Request):
344
- return await v1_completions(tokenizer_manager, raw_request)
345
-
346
-
347
- @app.post("/v1/chat/completions")
348
- @time_func_latency
349
- async def openai_v1_chat_completions(raw_request: Request):
350
- return await v1_chat_completions(tokenizer_manager, raw_request)
351
-
352
-
353
- @app.post("/v1/embeddings", response_class=ORJSONResponse)
354
- @time_func_latency
355
- async def openai_v1_embeddings(raw_request: Request):
356
- response = await v1_embeddings(tokenizer_manager, raw_request)
357
- return response
358
-
359
-
360
- @app.get("/v1/models", response_class=ORJSONResponse)
361
- def available_models():
362
- """Show available models."""
363
- served_model_names = [tokenizer_manager.served_model_name]
364
- model_cards = []
365
- for served_model_name in served_model_names:
366
- model_cards.append(ModelCard(id=served_model_name, root=served_model_name))
367
- return ModelList(data=model_cards)
368
-
369
-
370
- @app.post("/v1/files")
371
- async def openai_v1_files(file: UploadFile = File(...), purpose: str = Form("batch")):
372
- return await v1_files_create(
373
- file, purpose, tokenizer_manager.server_args.file_storage_pth
374
- )
375
-
376
-
377
- @app.delete("/v1/files/{file_id}")
378
- async def delete_file(file_id: str):
379
- # https://platform.openai.com/docs/api-reference/files/delete
380
- return await v1_delete_file(file_id)
381
-
382
-
383
- @app.post("/v1/batches")
384
- async def openai_v1_batches(raw_request: Request):
385
- return await v1_batches(tokenizer_manager, raw_request)
386
-
387
-
388
- @app.post("/v1/batches/{batch_id}/cancel")
389
- async def cancel_batches(batch_id: str):
390
- # https://platform.openai.com/docs/api-reference/batch/cancel
391
- return await v1_cancel_batch(tokenizer_manager, batch_id)
392
-
393
-
394
- @app.get("/v1/batches/{batch_id}")
395
- async def retrieve_batch(batch_id: str):
396
- return await v1_retrieve_batch(batch_id)
397
-
398
-
399
- @app.get("/v1/files/{file_id}")
400
- async def retrieve_file(file_id: str):
401
- # https://platform.openai.com/docs/api-reference/files/retrieve
402
- return await v1_retrieve_file(file_id)
403
-
404
-
405
- @app.get("/v1/files/{file_id}/content")
406
- async def retrieve_file_content(file_id: str):
407
- # https://platform.openai.com/docs/api-reference/files/retrieve-contents
408
- return await v1_retrieve_file_content(file_id)
409
-
410
-
411
- def _create_error_response(e):
412
- return ORJSONResponse(
413
- {"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST
414
- )
415
-
416
-
417
- def launch_engine(
418
- server_args: ServerArgs,
419
- ):
420
- """
421
- Launch the TokenizerManager in the main process, the Scheduler in a subprocess, and the DetokenizerManager in another subprocess.
422
- """
423
-
424
- global tokenizer_manager
425
- global scheduler_info
426
-
427
- # Configure global environment
428
- configure_logger(server_args)
429
- server_args.check_server_args()
430
- _set_envs_and_config(server_args)
431
-
432
- # Allocate ports for inter-process communications
433
- port_args = PortArgs.init_new(server_args)
434
- logger.info(f"{server_args=}")
435
-
436
- # If using model from www.modelscope.cn, first download the model.
437
- server_args.model_path, server_args.tokenizer_path = prepare_model_and_tokenizer(
438
- server_args.model_path, server_args.tokenizer_path
439
- )
440
-
441
- if server_args.dp_size == 1:
442
- # Launch tensor parallel scheduler processes
443
- scheduler_procs = []
444
- scheduler_pipe_readers = []
445
- tp_size_per_node = server_args.tp_size // server_args.nnodes
446
- tp_rank_range = range(
447
- tp_size_per_node * server_args.node_rank,
448
- tp_size_per_node * (server_args.node_rank + 1),
449
- )
450
- for tp_rank in tp_rank_range:
451
- reader, writer = mp.Pipe(duplex=False)
452
- gpu_id = server_args.base_gpu_id + tp_rank % tp_size_per_node
453
- proc = mp.Process(
454
- target=run_scheduler_process,
455
- args=(server_args, port_args, gpu_id, tp_rank, None, writer),
456
- )
457
- proc.start()
458
- scheduler_procs.append(proc)
459
- scheduler_pipe_readers.append(reader)
460
-
461
- if server_args.node_rank >= 1:
462
- # For other nodes, they do not need to run tokenizer or detokenizer,
463
- # so they can just wait here.
464
- for proc in scheduler_procs:
465
- proc.join()
466
- else:
467
- # Launch the data parallel controller
468
- reader, writer = mp.Pipe(duplex=False)
469
- scheduler_pipe_readers = [reader]
470
- proc = mp.Process(
471
- target=run_data_parallel_controller_process,
472
- args=(server_args, port_args, writer),
473
- )
474
- proc.start()
475
-
476
- # Launch detokenizer process
477
- detoken_proc = mp.Process(
478
- target=run_detokenizer_process,
479
- args=(
480
- server_args,
481
- port_args,
482
- ),
483
- )
484
- detoken_proc.start()
485
-
486
- # Launch tokenizer process
487
- tokenizer_manager = TokenizerManager(server_args, port_args)
488
- if server_args.chat_template:
489
- load_chat_template_for_openai_api(tokenizer_manager, server_args.chat_template)
490
-
491
- # Wait for model to finish loading
492
- scheduler_infos = []
493
- for i in range(len(scheduler_pipe_readers)):
494
- try:
495
- data = scheduler_pipe_readers[i].recv()
496
- except EOFError as e:
497
- logger.exception(e)
498
- logger.error(
499
- f"Rank {i} scheduler is dead. Please check if there are relevant logs."
500
- )
501
- scheduler_procs[i].join()
502
- logger.error(f"Exit code: {scheduler_procs[i].exitcode}")
503
- raise
504
-
505
- if data["status"] != "ready":
506
- raise RuntimeError(
507
- "Initialization failed. Please see the error messages above."
508
- )
509
- scheduler_infos.append(data)
510
-
511
- # Assume all schedulers have same scheduler_info
512
- scheduler_info = scheduler_infos[0]
513
-
514
-
515
- def launch_server(
516
- server_args: ServerArgs,
517
- pipe_finish_writer: Optional[mp.connection.Connection] = None,
518
- ):
519
- """
520
- Launch SRT (SGLang Runtime) Server
521
-
522
- The SRT server consists of an HTTP server and the SRT engine.
523
-
524
- 1. HTTP server: A FastAPI server that routes requests to the engine.
525
- 2. SRT engine:
526
- 1. TokenizerManager: Tokenizes the requests and sends them to the scheduler.
527
- 2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager.
528
- 3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager.
529
-
530
- Note:
531
- 1. The HTTP server and TokenizerManager both run in the main process.
532
- 2. Inter-process communication is done through ICP (each process uses a different port) via the ZMQ library.
533
- """
534
- launch_engine(server_args=server_args)
535
-
536
- # Add api key authorization
537
- if server_args.api_key:
538
- add_api_key_middleware(app, server_args.api_key)
539
-
540
- # Add prometheus middleware
541
- if server_args.enable_metrics:
542
- add_prometheus_middleware(app)
543
- enable_func_timer()
544
-
545
- # Send a warmup request
546
- t = threading.Thread(
547
- target=_wait_and_warmup,
548
- args=(
549
- server_args,
550
- pipe_finish_writer,
551
- tokenizer_manager.image_token_id,
552
- ),
553
- )
554
- t.start()
555
-
556
- try:
557
- # Update logging configs
558
- LOGGING_CONFIG["formatters"]["default"][
559
- "fmt"
560
- ] = "[%(asctime)s] %(levelprefix)s %(message)s"
561
- LOGGING_CONFIG["formatters"]["default"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
562
- LOGGING_CONFIG["formatters"]["access"][
563
- "fmt"
564
- ] = '[%(asctime)s] %(levelprefix)s %(client_addr)s - "%(request_line)s" %(status_code)s'
565
- LOGGING_CONFIG["formatters"]["access"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
566
-
567
- # Listen for HTTP requests
568
- uvicorn.run(
569
- app,
570
- host=server_args.host,
571
- port=server_args.port,
572
- log_level=server_args.log_level_http or server_args.log_level,
573
- timeout_keep_alive=5,
574
- loop="uvloop",
575
- )
576
- finally:
577
- t.join()
578
-
579
-
580
- def _set_envs_and_config(server_args: ServerArgs):
581
- # Set global environments
582
- os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
583
- os.environ["NCCL_CUMEM_ENABLE"] = "0"
584
- os.environ["NCCL_NVLS_ENABLE"] = "0"
585
- os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
586
- os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "4"
587
-
588
- # Set prometheus env vars
589
- if server_args.enable_metrics:
590
- set_prometheus_multiproc_dir()
591
-
592
- # Set ulimit
593
- set_ulimit()
594
-
595
- # Fix triton bugs
596
- if server_args.tp_size * server_args.dp_size > 1:
597
- # FIXME: remove this after https://github.com/triton-lang/triton/pull/4295 is used as a dependency.
598
- maybe_set_triton_cache_manager()
599
-
600
- # Check flashinfer version
601
- if server_args.attention_backend == "flashinfer":
602
- assert_pkg_version(
603
- "flashinfer",
604
- "0.1.6",
605
- "Please uninstall the old version and "
606
- "reinstall the latest version by following the instructions "
607
- "at https://docs.flashinfer.ai/installation.html.",
608
- )
609
-
610
- # Register the signal handler.
611
- # The child processes will send SIGQUIT to this process when any error happens
612
- # This process then clean up the whole process tree
613
- def sigquit_handler(signum, frame):
614
- kill_process_tree(os.getpid())
615
-
616
- signal.signal(signal.SIGQUIT, sigquit_handler)
617
-
618
- # Set mp start method
619
- mp.set_start_method("spawn", force=True)
620
-
621
-
622
- def _wait_and_warmup(server_args, pipe_finish_writer, image_token_text):
623
- headers = {}
624
- url = server_args.url()
625
- if server_args.api_key:
626
- headers["Authorization"] = f"Bearer {server_args.api_key}"
627
-
628
- # Wait until the server is launched
629
- success = False
630
- for _ in range(120):
631
- time.sleep(1)
632
- try:
633
- res = requests.get(url + "/get_model_info", timeout=5, headers=headers)
634
- assert res.status_code == 200, f"{res=}, {res.text=}"
635
- success = True
636
- break
637
- except (AssertionError, requests.exceptions.RequestException):
638
- last_traceback = get_exception_traceback()
639
- pass
640
-
641
- if not success:
642
- if pipe_finish_writer is not None:
643
- pipe_finish_writer.send(last_traceback)
644
- logger.error(f"Initialization failed. warmup error: {last_traceback}")
645
- kill_process_tree(os.getpid())
646
- return
647
-
648
- model_info = res.json()
649
-
650
- # Send a warmup request
651
- request_name = "/generate" if model_info["is_generation"] else "/encode"
652
- max_new_tokens = 8 if model_info["is_generation"] else 1
653
- json_data = {
654
- "sampling_params": {
655
- "temperature": 0,
656
- "max_new_tokens": max_new_tokens,
657
- },
658
- }
659
- if server_args.skip_tokenizer_init:
660
- json_data["input_ids"] = [10, 11, 12]
661
- else:
662
- json_data["text"] = "The capital city of France is"
663
-
664
- try:
665
- for _ in range(server_args.dp_size):
666
- res = requests.post(
667
- url + request_name,
668
- json=json_data,
669
- headers=headers,
670
- timeout=600,
671
- )
672
- assert res.status_code == 200, f"{res}"
673
- except Exception:
674
- last_traceback = get_exception_traceback()
675
- if pipe_finish_writer is not None:
676
- pipe_finish_writer.send(last_traceback)
677
- logger.error(f"Initialization failed. warmup error: {last_traceback}")
678
- kill_process_tree(os.getpid())
679
- return
680
-
681
- # Debug print
682
- # logger.info(f"{res.json()=}")
683
-
684
- logger.info("The server is fired up and ready to roll!")
685
- if pipe_finish_writer is not None:
686
- pipe_finish_writer.send("ready")
687
-
688
- if server_args.delete_ckpt_after_loading:
689
- delete_directory(server_args.model_path)
690
-
691
-
692
- STREAM_END_SYMBOL = b"data: [DONE]"
693
- STREAM_CHUNK_START_SYMBOL = b"data:"
694
-
695
-
696
- class Engine:
697
- """
698
- SRT Engine without an HTTP server layer.
699
-
700
- This class provides a direct inference engine without the need for an HTTP server. It is designed for use cases where
701
- launching the HTTP server adds unnecessary complexity or overhead,
702
- """
703
-
704
- def __init__(self, log_level: str = "error", *args, **kwargs):
705
- """See the arguments in server_args.py::ServerArgs"""
706
-
707
- # before python program terminates, call shutdown implicitly. Therefore, users don't have to explicitly call .shutdown()
708
- atexit.register(self.shutdown)
709
-
710
- server_args = ServerArgs(*args, log_level=log_level, **kwargs)
711
- launch_engine(server_args=server_args)
712
-
713
- def generate(
714
- self,
715
- # The input prompt. It can be a single prompt or a batch of prompts.
716
- prompt: Optional[Union[List[str], str]] = None,
717
- sampling_params: Optional[Union[List[Dict], Dict]] = None,
718
- # The token ids for text; one can either specify text or input_ids.
719
- input_ids: Optional[Union[List[List[int]], List[int]]] = None,
720
- return_logprob: Optional[Union[List[bool], bool]] = False,
721
- logprob_start_len: Optional[Union[List[int], int]] = None,
722
- top_logprobs_num: Optional[Union[List[int], int]] = None,
723
- lora_path: Optional[List[Optional[str]]] = None,
724
- stream: bool = False,
725
- ):
726
- obj = GenerateReqInput(
727
- text=prompt,
728
- input_ids=input_ids,
729
- sampling_params=sampling_params,
730
- return_logprob=return_logprob,
731
- logprob_start_len=logprob_start_len,
732
- top_logprobs_num=top_logprobs_num,
733
- lora_path=lora_path,
734
- stream=stream,
735
- )
736
-
737
- # get the current event loop
738
- loop = asyncio.get_event_loop()
739
- ret = loop.run_until_complete(generate_request(obj, None))
740
-
741
- if stream is True:
742
-
743
- def generator_wrapper():
744
- offset = 0
745
- loop = asyncio.get_event_loop()
746
- generator = ret.body_iterator
747
- while True:
748
- chunk = loop.run_until_complete(generator.__anext__())
749
-
750
- if chunk.startswith(STREAM_END_SYMBOL):
751
- break
752
- else:
753
- data = json.loads(chunk[len(STREAM_CHUNK_START_SYMBOL) :])
754
- data["text"] = data["text"][offset:]
755
- offset += len(data["text"])
756
- yield data
757
-
758
- # we cannot yield in the scope of generate() because python does not allow yield + return in the same function
759
- # however, it allows to wrap the generator as a subfunction and return
760
- return generator_wrapper()
761
- else:
762
- return ret
763
-
764
- async def async_generate(
765
- self,
766
- # The input prompt. It can be a single prompt or a batch of prompts.
767
- prompt: Optional[Union[List[str], str]] = None,
768
- sampling_params: Optional[Dict] = None,
769
- # The token ids for text; one can either specify text or input_ids.
770
- input_ids: Optional[Union[List[List[int]], List[int]]] = None,
771
- return_logprob: Optional[Union[List[bool], bool]] = False,
772
- logprob_start_len: Optional[Union[List[int], int]] = None,
773
- top_logprobs_num: Optional[Union[List[int], int]] = None,
774
- lora_path: Optional[List[Optional[str]]] = None,
775
- stream: bool = False,
776
- ):
777
- obj = GenerateReqInput(
778
- text=prompt,
779
- input_ids=input_ids,
780
- sampling_params=sampling_params,
781
- return_logprob=return_logprob,
782
- logprob_start_len=logprob_start_len,
783
- top_logprobs_num=top_logprobs_num,
784
- lora_path=lora_path,
785
- stream=stream,
786
- )
787
-
788
- ret = await generate_request(obj, None)
789
-
790
- if stream is True:
791
- generator = ret.body_iterator
792
-
793
- async def generator_wrapper():
794
-
795
- offset = 0
796
-
797
- while True:
798
- chunk = await generator.__anext__()
799
-
800
- if chunk.startswith(STREAM_END_SYMBOL):
801
- break
802
- else:
803
- data = json.loads(chunk[len(STREAM_CHUNK_START_SYMBOL) :])
804
- data["text"] = data["text"][offset:]
805
- offset += len(data["text"])
806
- yield data
807
-
808
- return generator_wrapper()
809
- else:
810
- return ret
811
-
812
- def shutdown(self):
813
- kill_process_tree(os.getpid(), include_parent=False)
814
-
815
- def get_tokenizer(self):
816
- global tokenizer_manager
817
-
818
- if tokenizer_manager is None:
819
- raise ReferenceError("Tokenizer Manager is not initialized.")
820
- else:
821
- return tokenizer_manager.tokenizer
822
-
823
- def encode(
824
- self,
825
- prompt: Union[str, List[str], List[Dict], List[List[Dict]]],
826
- ):
827
- obj = EmbeddingReqInput(text=prompt)
828
-
829
- # get the current event loop
830
- loop = asyncio.get_event_loop()
831
- return loop.run_until_complete(encode_request(obj, None))
832
-
833
- def start_profile(self):
834
- tokenizer_manager.start_profile()
835
-
836
- def stop_profile(self):
837
- tokenizer_manager.stop_profile()
838
-
839
- def get_server_info(self):
840
- return {
841
- **dataclasses.asdict(tokenizer_manager.server_args), # server args
842
- **scheduler_info,
843
- "version": __version__,
844
- }
845
-
846
- def init_weights_update_group(
847
- self,
848
- master_address: str,
849
- master_port: int,
850
- rank_offset: int,
851
- world_size: int,
852
- group_name: str,
853
- backend: str = "nccl",
854
- ):
855
- """Initialize parameter update group."""
856
- obj = InitWeightsUpdateGroupReqInput(
857
- master_address=master_address,
858
- master_port=master_port,
859
- rank_offset=rank_offset,
860
- world_size=world_size,
861
- group_name=group_name,
862
- backend=backend,
863
- )
864
- loop = asyncio.get_event_loop()
865
- return loop.run_until_complete(
866
- tokenizer_manager.init_weights_update_group(obj, None)
867
- )
868
-
869
- def update_weights_from_distributed(self, name, dtype, shape):
870
- """Update weights from distributed source."""
871
- obj = UpdateWeightsFromDistributedReqInput(
872
- name=name,
873
- dtype=dtype,
874
- shape=shape,
875
- )
876
- loop = asyncio.get_event_loop()
877
- return loop.run_until_complete(
878
- tokenizer_manager.update_weights_from_distributed(obj, None)
879
- )
880
-
881
- def update_weights_from_tensor(self, named_tensors: List[Tuple[str, torch.Tensor]]):
882
- """Update weights from distributed source."""
883
- obj = UpdateWeightsFromTensorReqInput(
884
- serialized_named_tensors=MultiprocessingSerializer.serialize(named_tensors)
885
- )
886
- loop = asyncio.get_event_loop()
887
- return loop.run_until_complete(
888
- tokenizer_manager.update_weights_from_tensor(obj, None)
889
- )
890
-
891
- def get_weights_by_name(self, name, truncate_size=100):
892
- """Get weights by parameter name."""
893
- obj = GetWeightsByNameReqInput(name=name, truncate_size=truncate_size)
894
- loop = asyncio.get_event_loop()
895
- return loop.run_until_complete(tokenizer_manager.get_weights_by_name(obj, None))
896
-
897
-
898
- class Runtime:
899
- """
900
- A wrapper for the HTTP server.
901
- This is used for launching the server in a python program without
902
- using the commond line interface.
903
-
904
- It is mainly used for the frontend language.
905
- You should use the Engine class above if you want to do normal offline processing.
906
- """
907
-
908
- def __init__(
909
- self,
910
- log_level: str = "error",
911
- *args,
912
- **kwargs,
913
- ):
914
- """See the arguments in server_args.py::ServerArgs"""
915
- self.server_args = ServerArgs(*args, log_level=log_level, **kwargs)
916
-
917
- # before python program terminates, call shutdown implicitly. Therefore, users don't have to explicitly call .shutdown()
918
- atexit.register(self.shutdown)
919
-
920
- # Pre-allocate ports
921
- for port in range(self.server_args.port, 40000):
922
- if is_port_available(port):
923
- break
924
- self.server_args.port = port
925
-
926
- self.url = self.server_args.url()
927
- self.generate_url = self.url + "/generate"
928
-
929
- # NOTE: We store pid instead of proc to fix some issues during __delete__
930
- self.pid = None
931
- pipe_reader, pipe_writer = mp.Pipe(duplex=False)
932
-
933
- proc = mp.Process(
934
- target=launch_server,
935
- args=(self.server_args, pipe_writer),
936
- )
937
- proc.start()
938
- pipe_writer.close()
939
- self.pid = proc.pid
940
-
941
- try:
942
- init_state = pipe_reader.recv()
943
- except EOFError:
944
- init_state = ""
945
-
946
- if init_state != "ready":
947
- self.shutdown()
948
- raise RuntimeError(
949
- "Initialization failed. Please see the error messages above."
950
- )
951
-
952
- self.endpoint = RuntimeEndpoint(self.url)
953
-
954
- def shutdown(self):
955
- if self.pid is not None:
956
- kill_process_tree(self.pid)
957
- self.pid = None
958
-
959
- def cache_prefix(self, prefix: str):
960
- self.endpoint.cache_prefix(prefix)
961
-
962
- def get_tokenizer(self):
963
- return get_tokenizer(
964
- self.server_args.tokenizer_path,
965
- tokenizer_mode=self.server_args.tokenizer_mode,
966
- trust_remote_code=self.server_args.trust_remote_code,
967
- )
968
-
969
- async def async_generate(
970
- self,
971
- prompt: str,
972
- sampling_params: Optional[Dict] = None,
973
- ):
974
- if self.server_args.skip_tokenizer_init:
975
- json_data = {
976
- "input_ids": prompt,
977
- "sampling_params": sampling_params,
978
- "stream": True,
979
- }
980
- else:
981
- json_data = {
982
- "text": prompt,
983
- "sampling_params": sampling_params,
984
- "stream": True,
985
- }
986
- pos = 0
987
-
988
- timeout = aiohttp.ClientTimeout(total=3 * 3600)
989
- async with aiohttp.ClientSession(timeout=timeout, trust_env=True) as session:
990
- async with session.post(self.generate_url, json=json_data) as response:
991
- async for chunk, _ in response.content.iter_chunks():
992
- chunk = chunk.decode("utf-8")
993
- if chunk and chunk.startswith("data:"):
994
- if chunk == "data: [DONE]\n\n":
995
- break
996
- data = json.loads(chunk[5:].strip("\n"))
997
- if "text" in data:
998
- cur = data["text"][pos:]
999
- if cur:
1000
- yield cur
1001
- pos += len(cur)
1002
- else:
1003
- yield data
1004
-
1005
- add_request = async_generate
1006
-
1007
- def generate(
1008
- self,
1009
- prompt: Union[str, List[str]],
1010
- sampling_params: Optional[Dict] = None,
1011
- return_logprob: Optional[Union[List[bool], bool]] = False,
1012
- logprob_start_len: Optional[Union[List[int], int]] = None,
1013
- top_logprobs_num: Optional[Union[List[int], int]] = None,
1014
- lora_path: Optional[List[Optional[str]]] = None,
1015
- ):
1016
- json_data = {
1017
- "text": prompt,
1018
- "sampling_params": sampling_params,
1019
- "return_logprob": return_logprob,
1020
- "logprob_start_len": logprob_start_len,
1021
- "top_logprobs_num": top_logprobs_num,
1022
- "lora_path": lora_path,
1023
- }
1024
- assert not isinstance(lora_path, list) or len(lora_path) == len(prompt)
1025
- response = requests.post(
1026
- self.url + "/generate",
1027
- json=json_data,
1028
- )
1029
- return json.dumps(response.json())
1030
-
1031
- def encode(
1032
- self,
1033
- prompt: Union[str, List[str], List[Dict], List[List[Dict]]],
1034
- ):
1035
- json_data = {"text": prompt}
1036
- response = requests.post(self.url + "/encode", json=json_data)
1037
- return json.dumps(response.json())
1038
-
1039
- async def get_server_info(self):
1040
- async with aiohttp.ClientSession() as session:
1041
- async with session.get(f"{self.url}/get_server_info") as response:
1042
- if response.status == 200:
1043
- return await response.json()
1044
- else:
1045
- error_data = await response.json()
1046
- raise RuntimeError(
1047
- f"Failed to get server info. {error_data['error']['message']}"
1048
- )
1049
-
1050
- def __del__(self):
1051
- self.shutdown()
15
+ # Some shortcuts for backward compatbility.
16
+ # They will be removed in new versions.
17
+ from sglang.srt.entrypoints.engine import Engine
18
+ from sglang.srt.entrypoints.http_server import launch_server