sglang 0.4.1.post4__py3-none-any.whl → 0.4.1.post6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. sglang/bench_serving.py +18 -1
  2. sglang/lang/interpreter.py +71 -1
  3. sglang/lang/ir.py +2 -0
  4. sglang/srt/configs/__init__.py +4 -0
  5. sglang/srt/configs/chatglm.py +78 -0
  6. sglang/srt/configs/dbrx.py +279 -0
  7. sglang/srt/configs/model_config.py +16 -7
  8. sglang/srt/hf_transformers_utils.py +9 -14
  9. sglang/srt/layers/attention/__init__.py +8 -1
  10. sglang/srt/layers/attention/flashinfer_backend.py +21 -5
  11. sglang/srt/layers/linear.py +89 -47
  12. sglang/srt/layers/logits_processor.py +6 -6
  13. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +16 -5
  14. sglang/srt/layers/moe/fused_moe_triton/layer.py +39 -12
  15. sglang/srt/layers/moe/topk.py +4 -2
  16. sglang/srt/layers/parameter.py +439 -0
  17. sglang/srt/layers/quantization/__init__.py +5 -2
  18. sglang/srt/layers/quantization/fp8.py +107 -53
  19. sglang/srt/layers/quantization/fp8_utils.py +1 -1
  20. sglang/srt/layers/quantization/int8_kernel.py +54 -0
  21. sglang/srt/layers/quantization/modelopt_quant.py +174 -0
  22. sglang/srt/layers/quantization/w8a8_int8.py +117 -0
  23. sglang/srt/layers/radix_attention.py +2 -0
  24. sglang/srt/layers/vocab_parallel_embedding.py +16 -3
  25. sglang/srt/managers/cache_controller.py +307 -0
  26. sglang/srt/managers/configure_logging.py +43 -0
  27. sglang/srt/managers/data_parallel_controller.py +2 -0
  28. sglang/srt/managers/detokenizer_manager.py +0 -2
  29. sglang/srt/managers/io_struct.py +29 -13
  30. sglang/srt/managers/schedule_batch.py +7 -1
  31. sglang/srt/managers/scheduler.py +58 -15
  32. sglang/srt/managers/session_controller.py +1 -1
  33. sglang/srt/managers/tokenizer_manager.py +109 -45
  34. sglang/srt/mem_cache/memory_pool.py +313 -53
  35. sglang/srt/metrics/collector.py +32 -35
  36. sglang/srt/model_executor/cuda_graph_runner.py +14 -7
  37. sglang/srt/model_executor/forward_batch_info.py +20 -15
  38. sglang/srt/model_executor/model_runner.py +53 -10
  39. sglang/srt/models/chatglm.py +1 -1
  40. sglang/srt/models/dbrx.py +1 -1
  41. sglang/srt/models/grok.py +25 -16
  42. sglang/srt/models/llama.py +46 -4
  43. sglang/srt/models/qwen2.py +11 -0
  44. sglang/srt/models/qwen2_eagle.py +131 -0
  45. sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py +15 -5
  46. sglang/srt/sampling/sampling_batch_info.py +15 -5
  47. sglang/srt/sampling/sampling_params.py +1 -1
  48. sglang/srt/server.py +125 -69
  49. sglang/srt/server_args.py +39 -19
  50. sglang/srt/speculative/eagle_utils.py +93 -85
  51. sglang/srt/speculative/eagle_worker.py +48 -33
  52. sglang/srt/torch_memory_saver_adapter.py +59 -0
  53. sglang/srt/utils.py +61 -5
  54. sglang/test/test_programs.py +23 -1
  55. sglang/test/test_utils.py +36 -7
  56. sglang/version.py +1 -1
  57. {sglang-0.4.1.post4.dist-info → sglang-0.4.1.post6.dist-info}/METADATA +16 -15
  58. {sglang-0.4.1.post4.dist-info → sglang-0.4.1.post6.dist-info}/RECORD +61 -51
  59. {sglang-0.4.1.post4.dist-info → sglang-0.4.1.post6.dist-info}/WHEEL +1 -1
  60. {sglang-0.4.1.post4.dist-info → sglang-0.4.1.post6.dist-info}/LICENSE +0 -0
  61. {sglang-0.4.1.post4.dist-info → sglang-0.4.1.post6.dist-info}/top_level.txt +0 -0
sglang/test/test_utils.py CHANGED
@@ -36,7 +36,7 @@ DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
36
36
  DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
37
37
  DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
38
38
  DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
39
- DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
39
+ DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
40
40
  DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
41
41
  DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
42
42
  DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
@@ -532,6 +532,8 @@ def run_bench_serving(
532
532
  request_rate,
533
533
  other_server_args,
534
534
  dataset_name="random",
535
+ dataset_path="",
536
+ tokenizer=None,
535
537
  random_input_len=4096,
536
538
  random_output_len=2048,
537
539
  disable_stream=False,
@@ -553,9 +555,9 @@ def run_bench_serving(
553
555
  host=None,
554
556
  port=None,
555
557
  dataset_name=dataset_name,
556
- dataset_path="",
558
+ dataset_path=dataset_path,
557
559
  model=None,
558
- tokenizer=None,
560
+ tokenizer=tokenizer,
559
561
  num_prompts=num_prompts,
560
562
  sharegpt_output_len=None,
561
563
  random_input_len=random_input_len,
@@ -657,16 +659,16 @@ STDERR_FILENAME = "stderr.txt"
657
659
  STDOUT_FILENAME = "stdout.txt"
658
660
 
659
661
 
660
- def read_output(output_lines):
662
+ def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
661
663
  """Print the output in real time with another thread."""
662
- while not os.path.exists(STDERR_FILENAME):
664
+ while not os.path.exists(filename):
663
665
  time.sleep(1)
664
666
 
665
667
  pt = 0
666
668
  while pt >= 0:
667
- if pt > 0 and not os.path.exists(STDERR_FILENAME):
669
+ if pt > 0 and not os.path.exists(filename):
668
670
  break
669
- lines = open(STDERR_FILENAME).readlines()
671
+ lines = open(filename).readlines()
670
672
  for line in lines[pt:]:
671
673
  print(line, end="", flush=True)
672
674
  output_lines.append(line)
@@ -747,6 +749,33 @@ def run_and_check_memory_leak(
747
749
  assert has_abort
748
750
 
749
751
 
752
+ def run_command_and_capture_output(command, env: Optional[dict] = None):
753
+ stdout = open(STDOUT_FILENAME, "w")
754
+ stderr = open(STDERR_FILENAME, "w")
755
+ process = subprocess.Popen(
756
+ command, stdout=stdout, stderr=stderr, env=env, text=True
757
+ )
758
+
759
+ # Launch a thread to stream the output
760
+ output_lines = []
761
+ t = threading.Thread(target=read_output, args=(output_lines, STDOUT_FILENAME))
762
+ t.start()
763
+
764
+ # Join the process
765
+ process.wait()
766
+
767
+ stdout.close()
768
+ stderr.close()
769
+ if os.path.exists(STDOUT_FILENAME):
770
+ os.remove(STDOUT_FILENAME)
771
+ if os.path.exists(STDERR_FILENAME):
772
+ os.remove(STDERR_FILENAME)
773
+ kill_process_tree(process.pid)
774
+ t.join()
775
+
776
+ return output_lines
777
+
778
+
750
779
  def run_mmlu_test(
751
780
  disable_radix_cache=False,
752
781
  enable_mixed_chunk=False,
sglang/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.4.1.post4"
1
+ __version__ = "0.4.1.post6"
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: sglang
3
- Version: 0.4.1.post4
3
+ Version: 0.4.1.post6
4
4
  Summary: SGLang is yet another fast serving framework for large language models and vision language models.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -239,11 +239,11 @@ Requires-Dist: uvloop; extra == "runtime-common"
239
239
  Requires-Dist: xgrammar>=0.1.6; extra == "runtime-common"
240
240
  Provides-Extra: srt
241
241
  Requires-Dist: sglang[runtime_common]; extra == "srt"
242
+ Requires-Dist: cuda-python; extra == "srt"
243
+ Requires-Dist: sgl-kernel>=0.0.2.post12; extra == "srt"
242
244
  Requires-Dist: torch; extra == "srt"
243
245
  Requires-Dist: vllm<=0.6.4.post1,>=0.6.3.post1; extra == "srt"
244
- Requires-Dist: cuda-python; extra == "srt"
245
246
  Requires-Dist: flashinfer==0.1.6; extra == "srt"
246
- Requires-Dist: sgl-kernel>=0.0.2.post11; extra == "srt"
247
247
  Provides-Extra: srt-hip
248
248
  Requires-Dist: sglang[runtime_common]; extra == "srt-hip"
249
249
  Requires-Dist: torch; extra == "srt-hip"
@@ -259,6 +259,8 @@ Provides-Extra: anthropic
259
259
  Requires-Dist: anthropic>=0.20.0; extra == "anthropic"
260
260
  Provides-Extra: litellm
261
261
  Requires-Dist: litellm>=1.0.0; extra == "litellm"
262
+ Provides-Extra: torch-memory-saver
263
+ Requires-Dist: torch_memory_saver; extra == "torch-memory-saver"
262
264
  Provides-Extra: test
263
265
  Requires-Dist: jsonlines; extra == "test"
264
266
  Requires-Dist: matplotlib; extra == "test"
@@ -314,9 +316,9 @@ Requires-Dist: sglang[test]; extra == "dev-hpu"
314
316
  --------------------------------------------------------------------------------
315
317
 
316
318
  | [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/)
317
- | [**Documentation**](https://sgl-project.github.io/)
318
- | [**Join Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2um0ad92q-LkU19KQTxCGzlCgRiOiQEw)
319
- | [**Join Bi-Weekly Development Meeting**](https://docs.google.com/document/d/1xEow4eIM152xNcRxqZz9VEcOiTQo8-CEuuQ5qTmkt-E/edit?usp=sharing)
319
+ | [**Documentation**](https://docs.sglang.ai/)
320
+ | [**Join Slack**](https://slack.sglang.ai/)
321
+ | [**Join Bi-Weekly Development Meeting**](https://meeting.sglang.ai/)
320
322
  | [**Slides**](https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#slides) |
321
323
 
322
324
  ## News
@@ -346,14 +348,14 @@ The core features include:
346
348
  - **Active Community**: SGLang is open-source and backed by an active community with industry adoption.
347
349
 
348
350
  ## Getting Started
349
- - [Install SGLang](https://sgl-project.github.io/start/install.html)
350
- - [Quick Start](https://sgl-project.github.io/start/send_request.html)
351
- - [Backend Tutorial](https://sgl-project.github.io/backend/openai_api_completions.html)
352
- - [Frontend Tutorial](https://sgl-project.github.io/frontend/frontend.html)
353
- - [Contribution Guide](https://sgl-project.github.io/references/contribution_guide.html)
351
+ - [Install SGLang](https://docs.sglang.ai/start/install.html)
352
+ - [Quick Start](https://docs.sglang.ai/start/send_request.html)
353
+ - [Backend Tutorial](https://docs.sglang.ai/backend/openai_api_completions.html)
354
+ - [Frontend Tutorial](https://docs.sglang.ai/frontend/frontend.html)
355
+ - [Contribution Guide](https://docs.sglang.ai/references/contribution_guide.html)
354
356
 
355
357
  ## Benchmark and Performance
356
- Learn more in our release blogs: [v0.2 blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/), [v0.3 blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/), [v0.4 blog](https://lmsys.org/blog/2024-12-04-sglang-v0-4/)
358
+ Learn more in the release blogs: [v0.2 blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/), [v0.3 blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/), [v0.4 blog](https://lmsys.org/blog/2024-12-04-sglang-v0-4/)
357
359
 
358
360
  ## Roadmap
359
361
  [Development Roadmap (2024 Q4)](https://github.com/sgl-project/sglang/issues/1487)
@@ -362,5 +364,4 @@ Learn more in our release blogs: [v0.2 blog](https://lmsys.org/blog/2024-07-25-s
362
364
  The project is supported by (alphabetically): AMD, Baseten, DataCrunch, Etched, Hyperbolic, Jam & Tea Studios, LinkedIn, LMSYS.org, Meituan, NVIDIA, RunPod, Stanford, UC Berkeley, UCLA, xAI, 01.AI.
363
365
 
364
366
  ## Acknowledgment and Citation
365
- We learned the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).
366
- Please cite the paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
367
+ We learned the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql). Please cite the paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
@@ -4,20 +4,20 @@ sglang/bench_latency.py,sha256=oZjSAzX7dUiSu-zdz0dkyUPo-qAX_lsXFH1gf03akgI,76
4
4
  sglang/bench_offline_throughput.py,sha256=r-uBvpnx-30mAnVwQB4WlqiXxy2fn5a1NUARwZcaIo4,12533
5
5
  sglang/bench_one_batch.py,sha256=uw__0H3e3lY_6EDz4IAZUoYxq9kQIOPbbcyguYxttSA,15975
6
6
  sglang/bench_one_batch_server.py,sha256=-fV9FTLNNcSIy0pgYeggXedPVK0fVsXZqVQswT8OMOY,5945
7
- sglang/bench_serving.py,sha256=YQiCZreejCPBTqMmZsCB99RMi1N-Jx-dZtaafcQ8-14,53377
7
+ sglang/bench_serving.py,sha256=VCF1PW6zy2lhJBr2owiluHnMDgrakyA0Qw-m--mnehk,54253
8
8
  sglang/check_env.py,sha256=4OqpZaEJOfBM6-vtPILto5kqDmgiZM1Koc7lK78A7CI,8427
9
9
  sglang/global_config.py,sha256=fnT0U9vlHdGaQFKN9tYTnUF4-eVW4HYQURd5zvPtrg0,1286
10
10
  sglang/launch_server.py,sha256=4y2QeSj0wVNB9MJQZeahD4ahTDU6gwqo7MPUytyFop0,403
11
11
  sglang/launch_server_llavavid.py,sha256=tGc17S1vUfLwbi1GB26oOdXxTWr7gjlqpTrPnrMRNO8,1007
12
12
  sglang/llama3_eval.py,sha256=gWSboDchIGybIce88bJlrCG0yiLZ513mw4gcutJlzGM,10017
13
13
  sglang/utils.py,sha256=23jf4Mz8E5p5a6JOkjnfYZixdjZUk88F_mZ8rZcby5Q,11597
14
- sglang/version.py,sha256=efEbFOIgkOX__fKbqiqjj6UK2e0KofwnPDZo0VFdehs,28
14
+ sglang/version.py,sha256=67TlBPUpVb158CbDn3v32POQ-USKtg7P1fg71jmrBWc,28
15
15
  sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
16
  sglang/lang/chat_template.py,sha256=cnfjjxIIcYRGRxXlJlOGnpFxFuhMHut7DS52LsOMKcA,15826
17
17
  sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
18
18
  sglang/lang/compiler.py,sha256=o1C6G3TzhjSlsH-doTPy5oiVehr57dxNTa5oZw5TTAI,7639
19
- sglang/lang/interpreter.py,sha256=SBjejhLhTKzNM0HbjtTg5r17WPJ64WFSk6lcM_SCWKs,30717
20
- sglang/lang/ir.py,sha256=zpzzAO1YVldhE95Vwz5hU_TQltu-xt8A6rfFr0PuIDA,18410
19
+ sglang/lang/interpreter.py,sha256=r7x5mBxAOaEwmxjaMBMcn7N8HDFv6V6K9eINtffDygQ,33074
20
+ sglang/lang/ir.py,sha256=dtA6rs5JIN0tMm3jhgRqdpRhH2Sckil-BMyLRMyBEIY,18494
21
21
  sglang/lang/tracer.py,sha256=o-jLAPPSuy2vBfsGGrTAnbuWtORzQ50B4C_P5zvYkx8,8291
22
22
  sglang/lang/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
23
  sglang/lang/backend/anthropic.py,sha256=EXRX7xJgA5KZszX7toSLVnKzFQ5EO0Loj-YjHFtxSxg,2081
@@ -29,17 +29,20 @@ sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bE
29
29
  sglang/srt/_custom_ops.py,sha256=Y4gyTDGhWz-W2Igq25Ojm8XFiyvkawW9I-79iwYvxJ0,3574
30
30
  sglang/srt/aio_rwlock.py,sha256=6LYtOdeTUY3hkfa1dmYkgsaF2ttrwIF3hUWz2AZ2fqw,2970
31
31
  sglang/srt/conversation.py,sha256=u9zFU8aMYzwHUbQRKU76B_T-jfLlPoxUcWG_nRbDM2I,21201
32
- sglang/srt/hf_transformers_utils.py,sha256=38Ms0H2-VMerOS6jnczcFtZMS6lhw9B5rSWKAfxVUfQ,7945
32
+ sglang/srt/hf_transformers_utils.py,sha256=_24uqCkZ4dvS9Uc5p2cCzX0Q8ShUzrh_Hp6mvg7hxHY,7729
33
33
  sglang/srt/mm_utils.py,sha256=1ScBunw_x4W8ebM_AcJ62-1T2mfT8NlMJqdAhkF1lb0,12367
34
34
  sglang/srt/model_parallel.py,sha256=eLXZhvJ4wG6dh0FontNCIdVZvHYdWgaeY-5cu7TD9tE,6078
35
- sglang/srt/server.py,sha256=2HPaIwN8-KijB44ADUnpWD4A2mTKwW9CPl4NJBu9yzE,35068
36
- sglang/srt/server_args.py,sha256=oIwBCTwSoj6qyKJ5zD38dPfgdXcNol64wV7l6UjmJNo,36208
37
- sglang/srt/utils.py,sha256=Xn5Zf_HzRVSsGF6_lvd85hS-0I2MdQXbe0Yo46WsTOc,44447
38
- sglang/srt/configs/__init__.py,sha256=_usVIXHQjft4PAJ1Y-yGQOn2QNOv501GYMlQwpGXbns,208
35
+ sglang/srt/server.py,sha256=g2Wf1S3tOev0T2Wn98UkaOuDYPMixsy2xUzW2jUrQ3o,37148
36
+ sglang/srt/server_args.py,sha256=N8ByNO3vlQ-nl_-rgiCsRkiksefKtyKY9W7-24rhQKw,36965
37
+ sglang/srt/torch_memory_saver_adapter.py,sha256=--FgbrcvJxTcRe856plD9ktqgrHGPTE18eZCJlE50hY,1255
38
+ sglang/srt/utils.py,sha256=8TobQ4TwR22aa4j3W-XMkhJVBsuZ85t0zI8Mupx7L3M,46180
39
+ sglang/srt/configs/__init__.py,sha256=Nvwtif0X9IYUtj0aL9XvAo_RRZcxTshsaliwc8djooU,347
40
+ sglang/srt/configs/chatglm.py,sha256=j-b0YkdYUmQm2y1kNmMJtKeACxWKmBbvNNkDWbs6kbI,2907
41
+ sglang/srt/configs/dbrx.py,sha256=tdhIkXAQl1yr0MxqFmsDG1E0e2puRTTKm6UTyANBLac,11005
39
42
  sglang/srt/configs/device_config.py,sha256=dResqHjkg_dq10v6rnVpbXpvABZRB0jylOm-2_JAnx0,428
40
43
  sglang/srt/configs/exaone.py,sha256=Duxd4yQoKy8GWEzZD_kCY_OzmN_67CTJL_Kgn0eXk3g,10731
41
44
  sglang/srt/configs/load_config.py,sha256=TcPi_HY6xu5SiVZsxPOoB5pGeDUNebOk7muoUH9VBDg,3083
42
- sglang/srt/configs/model_config.py,sha256=QP_6WaWMrE4NNF-XODRomiQPO0FABmVZIj5A-qJfnYg,16427
45
+ sglang/srt/configs/model_config.py,sha256=qDTL1oxSlCxptPX8AI-VlEuxMB7m0UCAUDsbwXpUjow,16831
43
46
  sglang/srt/configs/qwen2vl.py,sha256=ZjLy9v2eZY4wptUfY3CWgYKg2B5DDrkfCSyTy_Zf_bg,4351
44
47
  sglang/srt/constrained/__init__.py,sha256=UWZNVLvOT5ZBX8M36sONgDmnKtkQ0cSfhQD2jO0ATuk,786
45
48
  sglang/srt/constrained/base_grammar_backend.py,sha256=FhVm7PxhXDl0joV9NP5RjKgz7dR1dZvUAQnh0mdtvVY,2353
@@ -62,17 +65,18 @@ sglang/srt/distributed/device_communicators/xpu_communicator.py,sha256=P3WKgddcf
62
65
  sglang/srt/layers/activation.py,sha256=EboMjT9HV2tNHQ6rzpojtlkzev1lAFbhQlxMg9hwxBQ,5471
63
66
  sglang/srt/layers/custom_op_util.py,sha256=0vu-yX2wwonmO1L_o5G7SA6C-8XuhDIh9rPDvNeLhoc,922
64
67
  sglang/srt/layers/layernorm.py,sha256=nRQ1w1xSUcU-zlqVC61BnGG6otS5W1w9VaSzeXizrx4,4037
65
- sglang/srt/layers/linear.py,sha256=KyRFU0VcoNuN-hnQB9QQcBN9NCpeqPtLzzufIHUpV6w,47064
66
- sglang/srt/layers/logits_processor.py,sha256=Yd7GisSfEgSq3cLMzz5lYiB5Cv-YgE4AMmVcACMBBZ4,12991
68
+ sglang/srt/layers/linear.py,sha256=s5hGfdBgYkFMHolTTsSLXQdOay9HZxYyrS6AYFZaeYA,48860
69
+ sglang/srt/layers/logits_processor.py,sha256=r2yGmNqQTpi1l7qvN2Bvjb7lVKfBsxIBrJ6CpBh-_wg,12993
70
+ sglang/srt/layers/parameter.py,sha256=pC6hz2Vu9bFKH4Mt5lh-BwNWUNrJO_GsaFY9aNVDsrY,14684
67
71
  sglang/srt/layers/pooler.py,sha256=rj2lygvleBnyLCBZ8I11HGMgpfIDsT0l3PIkshJwdu4,1606
68
- sglang/srt/layers/radix_attention.py,sha256=E4cmvkcCdCtb6VyLNrCKy1D6VwHQ063oH3JQXPaRy6w,2178
72
+ sglang/srt/layers/radix_attention.py,sha256=nVHKPFyr-CWNm6AnMGPhuuTFTtgYwPL8sAVBZ5u3d94,2232
69
73
  sglang/srt/layers/rotary_embedding.py,sha256=29tx3JNR40AoXqBa2cFGBjva9vU2xgFipETlpMaaZas,3985
70
74
  sglang/srt/layers/sampler.py,sha256=HQWi1zb1gmD9pHMQyEP3WPjnL8vy-ncZDVMENbjQW7c,6944
71
75
  sglang/srt/layers/torchao_utils.py,sha256=8c2vzt106iP_QKbJtfN1GuABW8nCuP5dElQLUeci6qg,3934
72
- sglang/srt/layers/vocab_parallel_embedding.py,sha256=slGwLiWjuFLCUdRe-GTlfumyZpqVX9VF6No_UGOT-hA,21624
73
- sglang/srt/layers/attention/__init__.py,sha256=GUoygIsXzDFt9I1w9p0GO7leaDK6l2J3cBRQfpp4oDI,2869
76
+ sglang/srt/layers/vocab_parallel_embedding.py,sha256=8TvdxJZipUy6Ewm8Ovsbho7GzZ_yvDZ-eXjK_8vc_8k,22149
77
+ sglang/srt/layers/attention/__init__.py,sha256=KlQ0fl-o9v_NxBDhNZ4dPW2uQ2HeJjLm-0MTMWgaa28,2980
74
78
  sglang/srt/layers/attention/double_sparsity_backend.py,sha256=QEDF8tQKMkh-nbt4jHKHZhhgHuV0Fla_BPzzoo9JfT4,9231
75
- sglang/srt/layers/attention/flashinfer_backend.py,sha256=I8b3Dq1O9PijLN40lEK0Gjj8GNS46WF4K-QVOtVccTg,33218
79
+ sglang/srt/layers/attention/flashinfer_backend.py,sha256=1He2KvcPQmLbr-8wkgy20NYjsu_hicW6NlumoVP9-kM,33842
76
80
  sglang/srt/layers/attention/torch_native_backend.py,sha256=KrcAqTLVZLtwgOmB0xhwUUsX32M-5LYZpNxaRNT4VuA,9252
77
81
  sglang/srt/layers/attention/triton_backend.py,sha256=44ScKsVs-rFvqsaAZG_mREEpczhGaUBvaflvWqrukVE,6743
78
82
  sglang/srt/layers/attention/triton_ops/decode_attention.py,sha256=ltWcZ00ugpglSYvszpGb-UCpGIixdG25cWtSrOOOMik,17943
@@ -80,13 +84,13 @@ sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py,sha256=1pSXf
80
84
  sglang/srt/layers/attention/triton_ops/extend_attention.py,sha256=DWOZXSTVN5ZbcFjDjcqs-nPdUkxSwum0SVXhVKqwh2g,11688
81
85
  sglang/srt/layers/attention/triton_ops/prefill_attention.py,sha256=lojFXRZMLWkzS2Y8uxaolnQhXaWKG19mCAWaF5KQeiI,6087
82
86
  sglang/srt/layers/moe/fused_moe_native.py,sha256=8q-LFZMSCGLc2_Gltp2lH0gSb4A1WOuKQW3wo3rpj5g,1601
83
- sglang/srt/layers/moe/topk.py,sha256=JpeIl_-CNk0yyG3k5fmmNbbmR2_9bkKC23UoLOlMkjw,6954
87
+ sglang/srt/layers/moe/topk.py,sha256=qcWDUVvEV6TIO_idymStylkpPp6dMk-wbYj2Zq4ZYJ0,7057
84
88
  sglang/srt/layers/moe/ep_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
85
89
  sglang/srt/layers/moe/ep_moe/kernels.py,sha256=wb_S2qLxoWWgQu9coXy0XLNGvHzdZSdwXr0PGy4QySg,10940
86
90
  sglang/srt/layers/moe/ep_moe/layer.py,sha256=6iQU5ZjQ8IXGoQ8ZlBuJqyQxYTEem9vXI6rbVIWKlZw,22303
87
91
  sglang/srt/layers/moe/fused_moe_triton/__init__.py,sha256=h9yMFAL_bagUf-qBED8gSWdCOb7d8IdA-pE-L_nIg8E,842
88
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py,sha256=JjSn3fNTHgXFDxcAINZUYAttbYOxl9VSIF305NT73Wg,36255
89
- sglang/srt/layers/moe/fused_moe_triton/layer.py,sha256=MZF6BHJVjduz-XerTrHvCP3qSZ3NW0pUK2p8zNwDuac,20798
92
+ sglang/srt/layers/moe/fused_moe_triton/fused_moe.py,sha256=3at2h0NDC8JF144jH6h5ze_YkBasvjo227bdFLiK0vs,36759
93
+ sglang/srt/layers/moe/fused_moe_triton/layer.py,sha256=KCYdT1kftwY8V_wRahoW6GbXkrm7lAZ86xvmu1qZK8w,21802
90
94
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json",sha256=iNGsE2ZeVnQEnN4A8UJ9Jv0d3hbRF2MJ9oBgjup5Szk,2737
91
95
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json",sha256=JJN0hryyLr5Zv3dSS7C8cPFhAwTT6XxUVnBGMZvV6JA,2752
92
96
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json",sha256=ouRyZ5PEMPP2njPftCNhs-1g1y6wueWLmhI7G1SjV1k,4131
@@ -178,11 +182,14 @@ sglang/srt/layers/moe/fused_moe_triton/layer.py,sha256=MZF6BHJVjduz-XerTrHvCP3qS
178
182
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json",sha256=aMP7oZmh8BZnPOrl0MFibcdhTn3VmOSjqoKoK2rMSbU,4323
179
183
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json",sha256=sY2nWMPh9lsIkhPCjkHO245wpnfFbrHmzdcZDVFPVww,3265
180
184
  "sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json",sha256=Uz5X80VcNBOaxshwVNUEittHk2zqB4HQCfTJ4TPG5aM,3274
181
- sglang/srt/layers/quantization/__init__.py,sha256=VPYXShHvbvkOgVBlkIqic4RhdJ1y6EZ3r34T-nZMT1k,4606
185
+ sglang/srt/layers/quantization/__init__.py,sha256=vM6Vhlu-Jv4t9DDwywitXGz58psTQ5k7guVuK0o4jTk,4785
182
186
  sglang/srt/layers/quantization/base_config.py,sha256=daK9p0aijMszLUm1W4Pc33FK87MdqYK1NoWFKif-j80,4599
183
- sglang/srt/layers/quantization/fp8.py,sha256=ypIb8wUN18trzMhot8QKUj9sSdCXgPC1i2Qi-ESToWw,32670
187
+ sglang/srt/layers/quantization/fp8.py,sha256=2k6vk2sTVB6JCtEJLsFFn5bJKR8lWwMRke4tu9nnTP0,34806
184
188
  sglang/srt/layers/quantization/fp8_kernel.py,sha256=cYF4ckqrUyhCO9Ha7zi05R8EhRaqSa8rFpYisz-9Ed0,10743
185
- sglang/srt/layers/quantization/fp8_utils.py,sha256=qBVJXxbxqmf8-Juq0t-IXWjlaZoePJqFNYcs9-oT5Yo,4150
189
+ sglang/srt/layers/quantization/fp8_utils.py,sha256=7v-RNwuYXa-gPO3msRDB0Z3uajOQMYd2Cj0NMoq1hg4,4148
190
+ sglang/srt/layers/quantization/int8_kernel.py,sha256=t_BLVf8XjOyn7S3Lu3B4hXvw8DvTg4Anco7TNadL58U,1436
191
+ sglang/srt/layers/quantization/modelopt_quant.py,sha256=64Qec1kzduAcxyDLd_Y47wDHZ4ShS9Vb-Rf57jc1Zmg,6245
192
+ sglang/srt/layers/quantization/w8a8_int8.py,sha256=RO_s0KPH5wSx2HaI5PbAkdEXVqPS05AS6yo3oyZnIbw,3353
186
193
  "sglang/srt/layers/quantization/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=tkLjwLC_aVXhzuvo-2QHkojXZauPJsf3jNHFn1S7uRA,3244
187
194
  "sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=Qoj9rLLRDbKM4IKBCXvN8RcxzSmNPd0TQUiM7CXDqHI,3241
188
195
  "sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json",sha256=4D3Ku4y7BCVEJzueKvQC_KvOR026w3ONWsxfsA_YrEc,3249
@@ -224,35 +231,37 @@ sglang/srt/layers/quantization/fp8_utils.py,sha256=qBVJXxbxqmf8-Juq0t-IXWjlaZoeP
224
231
  sglang/srt/lora/lora.py,sha256=-o2mBmUvoVpdkgdAkWTARN4kfyep3UNEJLcg6moh0SU,15056
225
232
  sglang/srt/lora/lora_config.py,sha256=a2fTQESlCbG1xLiBYy4ptZ6c0Burcqyg1_6V1XSok-Y,1506
226
233
  sglang/srt/lora/lora_manager.py,sha256=DHiqdl0_4wQ5PxZBZtlCpP14515mDV2_H9tzL3Rdss8,12886
227
- sglang/srt/managers/data_parallel_controller.py,sha256=psI4FAuBGjtdnEuwagnGdtRqvqSSxOROfNKQqVDqlVA,8382
228
- sglang/srt/managers/detokenizer_manager.py,sha256=XvyxUhY_SNXlAcVsx9zczrGllpEMzj7p2Vbh6M_yHy8,8555
234
+ sglang/srt/managers/cache_controller.py,sha256=DXnIunJgtTws1WF2vZOYVQe56vacV7Mn4wL9zoG8Xz8,10909
235
+ sglang/srt/managers/configure_logging.py,sha256=wa1NLWaxC2NGSTJflZvCvUrONH4i6wreNvVHb90bd14,1374
236
+ sglang/srt/managers/data_parallel_controller.py,sha256=VZSXGsNJ029BJlu56lCugaapMPvzjzE2yFATd8KWLNY,8468
237
+ sglang/srt/managers/detokenizer_manager.py,sha256=nZkbwt4yty_oy8rvg4T7PbgyVLoBLohvHl25xlQpBoo,8439
229
238
  sglang/srt/managers/image_processor.py,sha256=Y8RgyrzbJjJTpjbnZDa5qiiG5wWjZ68rOXUPDi6kkFo,13698
230
- sglang/srt/managers/io_struct.py,sha256=02NMBHRCjs9TUSdhKJmvMp3HculMC-50SkCGOEaYEHg,16197
231
- sglang/srt/managers/schedule_batch.py,sha256=WlJstk0MP4QA434zu6_VZ4FhDByEPjSggFDT8em4GvQ,46851
239
+ sglang/srt/managers/io_struct.py,sha256=H1rNLCl2iqDijUGLBafjodTrohaUi1ztJn69XjkhjTk,16207
240
+ sglang/srt/managers/schedule_batch.py,sha256=jmPTc-XyI-AXktz9Rofs-Fb3OlOgb-bThI142kOy--g,47134
232
241
  sglang/srt/managers/schedule_policy.py,sha256=aHkIL9pZtc4Kdmy8XU9tsjaDzdChVN2dnGKvJkSyqFg,17965
233
- sglang/srt/managers/scheduler.py,sha256=sTnZDLN8gLLHkiQW4UvMZsdKBMkgKfUk-rAHUZ9zNR0,65272
234
- sglang/srt/managers/session_controller.py,sha256=3laMRIXEYWDjfytCjPs0vw_Tw__k-nKBY-bYzycYbfc,5482
235
- sglang/srt/managers/tokenizer_manager.py,sha256=Xryex_dgdZzRmPtSe16WUz1p9IlGysjVWmocaHjOJz4,33686
242
+ sglang/srt/managers/scheduler.py,sha256=Kn7NyoLwHIeuGKQercV4jKsC5-KVLK4JhRiflNNLu9A,66790
243
+ sglang/srt/managers/session_controller.py,sha256=0L9_3lhFGU4kLm8b2G1QAeslxvTT_y_Iw8spwrpgr30,5508
244
+ sglang/srt/managers/tokenizer_manager.py,sha256=p9k7fvFWyKkHO-Am-2JdbR6-VRsuGEiwQO7t1F7_rfs,35956
236
245
  sglang/srt/managers/tp_worker.py,sha256=-bvUFCo544QQSEHqPPjeOvCWMEFn01Bva6AeO39Qe3o,8043
237
246
  sglang/srt/managers/tp_worker_overlap_thread.py,sha256=rdHz2thdGSmceDedrolHOqjNPhrralyDTuNREL56oNI,9067
238
247
  sglang/srt/mem_cache/base_prefix_cache.py,sha256=QC8HS8RC5DXu14kyXsxAgEUsn0f932p2DjqzbKjc6Bs,962
239
248
  sglang/srt/mem_cache/chunk_cache.py,sha256=R2gHAuqKd5ayQW3NnsgoGUH31---Z5izCDyCqLL0FjQ,2524
240
249
  sglang/srt/mem_cache/flush_cache.py,sha256=GYcxmNXh4hsMpFfNOuCTpKilW7guZwTtAg_usVeM3J0,979
241
- sglang/srt/mem_cache/memory_pool.py,sha256=oxk3UtiiFA3_1iIP6eFsk8HIcRI_8Z1-FE2KOWDr-YM,11366
250
+ sglang/srt/mem_cache/memory_pool.py,sha256=McBKAcV444ewM-idOuCbfeKHoF-lhCL9m5R27M8H9ew,20401
242
251
  sglang/srt/mem_cache/radix_cache.py,sha256=c5voySV5L855c0G9cBEc9iQ4nR7PDDmg0V6fWWJHcq4,10945
243
- sglang/srt/metrics/collector.py,sha256=ZWoFx_FKN0sNMSZ8RJWUVQ0RFEYhIHxdw0d4TZTluMU,6861
252
+ sglang/srt/metrics/collector.py,sha256=sbgruNDzxBmTd-lnRi8mBZGCt2J7qgRVvDk2LQ5HvQU,6936
244
253
  sglang/srt/metrics/func_timer.py,sha256=VFyNRrbnKVCwnQsrlLin1lITJfjQpf9m8sGPqL5LIsQ,3438
245
- sglang/srt/model_executor/cuda_graph_runner.py,sha256=PFK4aRu8ffOBQw0zU_yYofUK_poi5C1vCc3ePixj0JY,18243
246
- sglang/srt/model_executor/forward_batch_info.py,sha256=Z4VrcyQt3f4jPYvvm1vimMx3hSNNeUEONAFvSziy6N0,14788
247
- sglang/srt/model_executor/model_runner.py,sha256=MZv0CNevcZ85L2JYVc1MnXRKbvUWoSuCFcShES07YN4,29889
254
+ sglang/srt/model_executor/cuda_graph_runner.py,sha256=rGG0ZS673YC_RVaXMlmNTBJln-L7ugsgDz0Q6XmO0Cc,18544
255
+ sglang/srt/model_executor/forward_batch_info.py,sha256=Vu6qlbfm6dMUfvGaSmmLIroi8hBqfDpNVLxl7oECzIs,15001
256
+ sglang/srt/model_executor/model_runner.py,sha256=AQPN4q-Wuw3yCeFjXwWvN5m07geS07l21SXFKr-FeCk,31955
248
257
  sglang/srt/model_loader/__init__.py,sha256=zGZkOBz1zx-pkaIy47BasL3fjDlAcxAXUTjInOhXHAE,919
249
258
  sglang/srt/model_loader/loader.py,sha256=7OG_8-66vFDFZ9kVKGNK1BFBjZ6ql449dlyvdCbMqvE,43876
250
259
  sglang/srt/model_loader/utils.py,sha256=0NaMR67fESFopaklmsleiL27XH1QUrjZW246MUu1EJ0,1369
251
260
  sglang/srt/model_loader/weight_utils.py,sha256=kQo9KPThjH3HAOCfC_tdwdrshdWuWJOVpPR0skSyaRY,24193
252
261
  sglang/srt/models/baichuan.py,sha256=PzBOFcEAixakPEkQSaJwC0Xc1fu-yCsN9T0I67r8QmY,14919
253
- sglang/srt/models/chatglm.py,sha256=DOrEhmb0s-yPId88R6nJeLOTUEtogk-vkB69qT2JdWc,12913
262
+ sglang/srt/models/chatglm.py,sha256=uAScfDA9V1FtSdW0sA-QMnluCQoKkfVcDyQ_X4nh1-A,12900
254
263
  sglang/srt/models/commandr.py,sha256=PNXgfOZF84h-rSH0edEECUmEGW8YLb44V75Z_oDhFiA,14223
255
- sglang/srt/models/dbrx.py,sha256=okIpIwdr8Cfrz_thzc1F75XqCUfHhFLvZ1B6BaswKoA,14585
264
+ sglang/srt/models/dbrx.py,sha256=KwsiP6Bnz-lJGhksHgfPswnLC35hv2etHRKJgWkmvzs,14567
256
265
  sglang/srt/models/deepseek.py,sha256=_cVOvR6eSEgRf6TUBpTD5uMdijDWFw4sSt4lGzl8tbg,15697
257
266
  sglang/srt/models/deepseek_v2.py,sha256=vbRhgI8yD7EmHUpq5pzI_sVpGLnkeyJ7ew-3Pl6D8F4,38499
258
267
  sglang/srt/models/exaone.py,sha256=dkERTZVxrRroqu5AGLP7D4N6n8HvDqlNaDQUIe15mZY,13038
@@ -262,10 +271,10 @@ sglang/srt/models/gemma2_reward.py,sha256=nJ01KfqLSJtqMLm3sG8p2mGZFK1xhhjh7I7Ccb
262
271
  sglang/srt/models/gpt2.py,sha256=2je1kE09sGcaORWnJuGYAkcwwOrT9EK-KhQaoCKjCSA,9517
263
272
  sglang/srt/models/gpt_bigcode.py,sha256=tovyOdJu2x3LkzmkdFXX_iJdkxuyChIDxwgvPBy6UPo,9528
264
273
  sglang/srt/models/granite.py,sha256=AeQY9Dxd1ZnwgCYBK0vSXXiMGM-yt9iaOVf_ruOUHXw,20409
265
- sglang/srt/models/grok.py,sha256=PbLmYP-UEbImJgbEpkHhTjkqibIvt0oENPlAIrK0qSE,17751
274
+ sglang/srt/models/grok.py,sha256=gIr6uFNLv42v-yjAko4w8uugAA7vE0396S23V98Aiu4,18002
266
275
  sglang/srt/models/internlm2.py,sha256=_xcKtd6YtEFUTozaN-yUb0xbSYckRpomfPSKcAk4j-Y,12127
267
276
  sglang/srt/models/internlm2_reward.py,sha256=8K26A9oIFFGx_9U2mF87j7FX8K87HGKMnVL3ht1Uc7I,2398
268
- sglang/srt/models/llama.py,sha256=4UPKF7erp7qqBD11uvvQkO1Fo_wDs71BmA8Y2csXRcA,20302
277
+ sglang/srt/models/llama.py,sha256=r9MwIsKv5SrwpLewdB_gqai1YDfjyG-2dlT_pYPNIac,22087
269
278
  sglang/srt/models/llama_classification.py,sha256=DwboM1xHXdf3Fddf7xGnrfdOLJwXdiJs994cIpAPa2g,2984
270
279
  sglang/srt/models/llama_eagle.py,sha256=88DzR54DKBIKJ1h-bkIa8mc1qJnlkdZ1eGYY3c5mpBY,4442
271
280
  sglang/srt/models/llama_embedding.py,sha256=rh-AiczPY_pTpzcACHvSMVjh1hsV_MZBBwP0LQxPsGM,3130
@@ -283,7 +292,8 @@ sglang/srt/models/olmo2.py,sha256=aC7svioN7XT5owRxPrvhvWBNMON9QXGQBWJ1KHMyXeA,13
283
292
  sglang/srt/models/olmoe.py,sha256=LiHVGfRaC5c_BU_vVgtV9uLuDH_SC0dw1kEc61posmI,15351
284
293
  sglang/srt/models/phi3_small.py,sha256=44_my3QmgJ2N7SOkGZzEb62DXBeCVHojfmCWgkk2uCI,14802
285
294
  sglang/srt/models/qwen.py,sha256=_FKDbwaS5C07uJyyivZpBrXJVej4Ph9ivzJdzWJPxJ4,9904
286
- sglang/srt/models/qwen2.py,sha256=be4xgcuqNa9kBdaL7x3PjsnUky6fh5K33c_khAWSi04,12959
295
+ sglang/srt/models/qwen2.py,sha256=aRumlGWYYUntMHR3LoOpeduelnzo9Ls0FXVwVKiL7tY,13332
296
+ sglang/srt/models/qwen2_eagle.py,sha256=KTtejEezdLfd_odg3Na1i5kBk7W-YFg9hImfWyrMgVc,4288
287
297
  sglang/srt/models/qwen2_moe.py,sha256=6xRRJxWWh1M5UFPfvhsCpY477zv-30AeSRJXsvOkgFc,16542
288
298
  sglang/srt/models/qwen2_vl.py,sha256=3EaUlTbyWOTRXA7eViK1WqmVbCFhXLIpnos49zzf-yM,26561
289
299
  sglang/srt/models/registry.py,sha256=inKh9iwOp3LFYm3nqujg-OtABClOP-ifc1stA9cZegA,3434
@@ -294,17 +304,17 @@ sglang/srt/models/xverse_moe.py,sha256=7E60YIST4ELYwLRgjtHiLRI5Uyc7XqQTM7jQXiWaQ
294
304
  sglang/srt/models/yivl.py,sha256=88OubtuZ38Dxb2LzfV_MTPBI4wKhh4NJqFu--efbhFM,4809
295
305
  sglang/srt/openai_api/adapter.py,sha256=Yv-rEA0Jd54iFlnkVy-OZM4EnPqkW_NLtDPGCiPWVWo,56386
296
306
  sglang/srt/openai_api/protocol.py,sha256=v_YUwH1PF4vIVqSE5rj1ODdSglprTe_vGiXoS99cOV4,11613
297
- sglang/srt/sampling/sampling_batch_info.py,sha256=4FZIt_w5pDerRbny3uUplQO23xxnU8lmtG91OPCB_4w,9254
298
- sglang/srt/sampling/sampling_params.py,sha256=KjUhZzRJvNTQZgJul2zSq3U8r352WzMKLbXfhP3V-nU,5685
307
+ sglang/srt/sampling/sampling_batch_info.py,sha256=BEcDjMlTQ6wRuvwwCjB-2cy6GMgS3dpmjG4xetBuI4Q,9637
308
+ sglang/srt/sampling/sampling_params.py,sha256=YdfObBzfkgK9rU2XY6_7kxl7H1wjtDGrinpyIszTGUw,5678
299
309
  sglang/srt/sampling/penaltylib/__init__.py,sha256=5vQw0Y5DSzmsoFg1IdMIKLwFVhYZ5ArADHVBYbSmOec,513
300
310
  sglang/srt/sampling/penaltylib/orchestrator.py,sha256=J-DEemZcKm1--o37kf3qDOE8SZ_6H3d5oex49Mgq2ZU,10762
301
311
  sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py,sha256=1Zp2aL6dD60mwD1tCcSG0x5IYo0v4z9ce-q_YwbJ9f8,2490
302
312
  sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py,sha256=_Nxv0XgUPirZjw2SEJYp_Cd9ZcLwmt7h6JE6J4hhFq4,3629
303
313
  sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py,sha256=5tOgCg7OvE9kSN9VMCpH1hwqo1YMxt9iS5PVpct9HpU,2468
304
- sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=m22Rfn1RuB1HpImBDECsiJ2VooBYpsFADAwnk1EPzk0,2751
314
+ sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=vmE5muVz_ztRA6glgYOiQnKas_zTvQZ3nxcUEQao-L8,3070
305
315
  sglang/srt/speculative/build_eagle_tree.py,sha256=SIKuOFUOIzMLyanL5vViPmFBEiUHm_ezwiGuIyLmauE,9886
306
- sglang/srt/speculative/eagle_utils.py,sha256=VI8P8j9f1R5fRBIjiLXC8iYteMpqqeTQmaZ9OEudFuE,22983
307
- sglang/srt/speculative/eagle_worker.py,sha256=cAqw91E-5Tl6Sgltf0q2eYwUEH_trWHdibMWqy1rPKQ,7548
316
+ sglang/srt/speculative/eagle_utils.py,sha256=Z51xGuvn-ZIMp0OXENZUhpDOz8kTDkujhHZA-Z2MKbA,23422
317
+ sglang/srt/speculative/eagle_worker.py,sha256=P__BMJ0eKLaPzCS8jEWylk2POstue5u3RIVZeFtj84I,7843
308
318
  sglang/srt/speculative/spec_info.py,sha256=D7A27UU1iOwIBEjXTgAxZ7jdftbTiVlMCvK8GmYr2zg,488
309
319
  sglang/test/few_shot_gsm8k.py,sha256=7yDbEQe49gZeJhz2wFFX-gf_59ThDKsCS1xwfogNc7k,4034
310
320
  sglang/test/few_shot_gsm8k_engine.py,sha256=QQbrwOX6-cJDD3RZC_e7zPnt6aSo8JdF8X_lRHSjdDM,3886
@@ -319,11 +329,11 @@ sglang/test/simple_eval_mmlu.py,sha256=FkwamjGMjueTixymkedF-YiPloSLiy4ftILFUrKZ9
319
329
  sglang/test/test_activation.py,sha256=jkdNRzJnbd5OgZliQaIXpxovlcky17UrweomcOcMxoE,1442
320
330
  sglang/test/test_block_fp8.py,sha256=rhrIun8aW5zq2qvuGRlo7F7aZ_upjVxtQMVlyc2Th_E,11771
321
331
  sglang/test/test_layernorm.py,sha256=IacByD5d-stXjzBz8Ypamc7povlcedpKPbb_4JLgo3c,3720
322
- sglang/test/test_programs.py,sha256=1Z0umrsUu9pagzyGH5SrXl_qhKSyTfUv_kWC2mcn0qo,18208
323
- sglang/test/test_utils.py,sha256=HJG7kUQOk6n9FBbH89PDtQ41C3kt1cfJODhAEcFT0AQ,23823
332
+ sglang/test/test_programs.py,sha256=AABFLu0W9FlK-VN2wb2rLkwFCK6YCkLYrgQClymzpcw,18835
333
+ sglang/test/test_utils.py,sha256=3xUJpb-HNSwzoRZ_eVO_Q52m5pWlQMU84PXnsSzoD9g,24585
324
334
  sglang/test/srt/sampling/penaltylib/utils.py,sha256=CjxHgywh0hx_87iynzQt_ztHu6zBVuE-YrZ-XPmW6U4,12906
325
- sglang-0.4.1.post4.dist-info/LICENSE,sha256=FJXh51fvTQklojUFY89XVLsjxRcBqOxPs8XNy-2uZ0c,11346
326
- sglang-0.4.1.post4.dist-info/METADATA,sha256=nI0C5ivDIygS7D_lOrLwV_xqvHAnlthIEA6zXmf_-54,22601
327
- sglang-0.4.1.post4.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
328
- sglang-0.4.1.post4.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
329
- sglang-0.4.1.post4.dist-info/RECORD,,
335
+ sglang-0.4.1.post6.dist-info/LICENSE,sha256=FJXh51fvTQklojUFY89XVLsjxRcBqOxPs8XNy-2uZ0c,11346
336
+ sglang-0.4.1.post6.dist-info/METADATA,sha256=hls-gahHEVIiMlj9JHUiKHzKkiUiS_J5_JACvVh6riM,22527
337
+ sglang-0.4.1.post6.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
338
+ sglang-0.4.1.post6.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
339
+ sglang-0.4.1.post6.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.7.0)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5