sglang 0.4.1.post3__py3-none-any.whl → 0.4.1.post5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +2 -0
- sglang/bench_serving.py +18 -1
- sglang/lang/interpreter.py +71 -1
- sglang/lang/ir.py +2 -0
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/chatglm.py +78 -0
- sglang/srt/configs/dbrx.py +279 -0
- sglang/srt/configs/model_config.py +1 -1
- sglang/srt/hf_transformers_utils.py +9 -14
- sglang/srt/layers/attention/__init__.py +22 -6
- sglang/srt/layers/attention/double_sparsity_backend.py +0 -52
- sglang/srt/layers/attention/flashinfer_backend.py +215 -83
- sglang/srt/layers/attention/torch_native_backend.py +1 -38
- sglang/srt/layers/attention/triton_backend.py +20 -11
- sglang/srt/layers/attention/triton_ops/decode_attention.py +4 -0
- sglang/srt/layers/linear.py +159 -55
- sglang/srt/layers/logits_processor.py +170 -215
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +198 -29
- sglang/srt/layers/moe/fused_moe_triton/layer.py +14 -7
- sglang/srt/layers/parameter.py +431 -0
- sglang/srt/layers/quantization/__init__.py +3 -2
- sglang/srt/layers/quantization/fp8.py +3 -3
- sglang/srt/layers/quantization/modelopt_quant.py +174 -0
- sglang/srt/layers/sampler.py +57 -21
- sglang/srt/layers/torchao_utils.py +17 -3
- sglang/srt/layers/vocab_parallel_embedding.py +1 -1
- sglang/srt/managers/cache_controller.py +307 -0
- sglang/srt/managers/data_parallel_controller.py +2 -0
- sglang/srt/managers/io_struct.py +1 -2
- sglang/srt/managers/schedule_batch.py +33 -3
- sglang/srt/managers/schedule_policy.py +159 -90
- sglang/srt/managers/scheduler.py +68 -28
- sglang/srt/managers/session_controller.py +1 -1
- sglang/srt/managers/tokenizer_manager.py +27 -21
- sglang/srt/managers/tp_worker.py +16 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +3 -4
- sglang/srt/mem_cache/memory_pool.py +206 -1
- sglang/srt/metrics/collector.py +22 -30
- sglang/srt/model_executor/cuda_graph_runner.py +129 -77
- sglang/srt/model_executor/forward_batch_info.py +51 -21
- sglang/srt/model_executor/model_runner.py +72 -64
- sglang/srt/models/chatglm.py +1 -1
- sglang/srt/models/dbrx.py +1 -1
- sglang/srt/models/deepseek_v2.py +34 -7
- sglang/srt/models/grok.py +109 -29
- sglang/srt/models/llama.py +9 -2
- sglang/srt/openai_api/adapter.py +0 -17
- sglang/srt/openai_api/protocol.py +3 -3
- sglang/srt/sampling/sampling_batch_info.py +22 -0
- sglang/srt/sampling/sampling_params.py +9 -1
- sglang/srt/server.py +20 -13
- sglang/srt/server_args.py +120 -58
- sglang/srt/speculative/build_eagle_tree.py +347 -0
- sglang/srt/speculative/eagle_utils.py +626 -0
- sglang/srt/speculative/eagle_worker.py +184 -0
- sglang/srt/speculative/spec_info.py +5 -0
- sglang/srt/utils.py +47 -7
- sglang/test/test_programs.py +23 -1
- sglang/test/test_utils.py +36 -7
- sglang/version.py +1 -1
- {sglang-0.4.1.post3.dist-info → sglang-0.4.1.post5.dist-info}/METADATA +12 -12
- {sglang-0.4.1.post3.dist-info → sglang-0.4.1.post5.dist-info}/RECORD +86 -57
- {sglang-0.4.1.post3.dist-info → sglang-0.4.1.post5.dist-info}/WHEEL +1 -1
- {sglang-0.4.1.post3.dist-info → sglang-0.4.1.post5.dist-info}/LICENSE +0 -0
- {sglang-0.4.1.post3.dist-info → sglang-0.4.1.post5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,626 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
from typing import TYPE_CHECKING, List
|
4
|
+
|
5
|
+
import torch
|
6
|
+
import triton
|
7
|
+
import triton.language as tl
|
8
|
+
|
9
|
+
from sglang.srt.layers.attention.flashinfer_backend import (
|
10
|
+
create_flashinfer_kv_indices_triton,
|
11
|
+
)
|
12
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardMode
|
13
|
+
from sglang.srt.speculative.build_eagle_tree import build_tree_kernel
|
14
|
+
from sglang.srt.speculative.spec_info import SpecInfo
|
15
|
+
|
16
|
+
if TYPE_CHECKING:
|
17
|
+
from sglang.srt.managers.schedule_batch import ScheduleBatch
|
18
|
+
from sglang.srt.server_args import ServerArgs
|
19
|
+
|
20
|
+
|
21
|
+
@triton.jit
|
22
|
+
def eagle_verify_retrive(
|
23
|
+
retrive_index,
|
24
|
+
accept_mask,
|
25
|
+
retrive_cum_len,
|
26
|
+
accept_index,
|
27
|
+
accept_length,
|
28
|
+
extract_index,
|
29
|
+
max_len: tl.constexpr,
|
30
|
+
draft_token_num: tl.constexpr,
|
31
|
+
max_len_upper: tl.constexpr,
|
32
|
+
):
|
33
|
+
pid = tl.program_id(axis=0)
|
34
|
+
|
35
|
+
retrive_end = tl.load(retrive_cum_len + pid + 1)
|
36
|
+
retrive_start = tl.load(retrive_cum_len + pid)
|
37
|
+
retrive_len = retrive_end - retrive_start
|
38
|
+
accept_ptr = accept_mask + retrive_start
|
39
|
+
accept_offset = tl.arange(0, draft_token_num)
|
40
|
+
accept_load_mask = accept_offset < retrive_len
|
41
|
+
accept_len_list = tl.load(
|
42
|
+
accept_ptr + accept_offset, mask=accept_load_mask, other=-1
|
43
|
+
)
|
44
|
+
|
45
|
+
accept_len = tl.max(accept_len_list)
|
46
|
+
max_index = tl.argmax(accept_len_list, axis=0, tie_break_left=True)
|
47
|
+
# triton is not support argmax with tie_break_right, so I need implement it by some way
|
48
|
+
mask_max = accept_len_list == accept_len
|
49
|
+
|
50
|
+
count_mask = tl.full(shape=[draft_token_num], value=0, dtype=tl.int32)
|
51
|
+
count = tl.sum(tl.where(mask_max, 1, count_mask))
|
52
|
+
if count > 1:
|
53
|
+
index = tl.arange(0, draft_token_num)
|
54
|
+
mask_left = index != max_index
|
55
|
+
remained_index = tl.where(mask_max and mask_left, index, 0)
|
56
|
+
max_index = tl.max(remained_index)
|
57
|
+
|
58
|
+
tl.store(accept_length + pid, accept_len)
|
59
|
+
retrive_index_ptr = retrive_index + (retrive_start + max_index) * max_len
|
60
|
+
retrive_offset = tl.arange(0, max_len_upper)
|
61
|
+
retrive_load_mask = retrive_offset < accept_len + 1
|
62
|
+
data = tl.load(retrive_index_ptr + retrive_offset, mask=retrive_load_mask)
|
63
|
+
|
64
|
+
tl.store(
|
65
|
+
accept_index + pid * max_len + retrive_offset, data, mask=retrive_load_mask
|
66
|
+
)
|
67
|
+
|
68
|
+
extract_load_ptr = accept_index + pid * max_len + accept_len
|
69
|
+
if accept_len == max_len - 1:
|
70
|
+
extract_data = tl.load(extract_load_ptr - 1)
|
71
|
+
tl.store(extract_index + pid * 2, extract_data)
|
72
|
+
extract_data = tl.load(extract_load_ptr)
|
73
|
+
tl.store(extract_index + pid * 2 + 1, extract_data)
|
74
|
+
|
75
|
+
else:
|
76
|
+
extract_data = tl.load(extract_load_ptr)
|
77
|
+
tl.store(extract_index + pid * 2, extract_data)
|
78
|
+
|
79
|
+
|
80
|
+
@triton.jit
|
81
|
+
def create_extend_spec_info(
|
82
|
+
verified_id,
|
83
|
+
seq_len,
|
84
|
+
accept_len,
|
85
|
+
accept_len_cum,
|
86
|
+
positions,
|
87
|
+
new_verified_id,
|
88
|
+
accept_len_upper: tl.constexpr,
|
89
|
+
):
|
90
|
+
pid = tl.program_id(axis=0)
|
91
|
+
offset = 0 if pid == 0 else tl.load(accept_len_cum + pid - 1)
|
92
|
+
seq_length = tl.load(seq_len + pid)
|
93
|
+
accept_length = tl.load(accept_len + pid)
|
94
|
+
positions_ptr = positions + offset
|
95
|
+
data = tl.arange(0, accept_len_upper)
|
96
|
+
mask = data < accept_length
|
97
|
+
tl.store(positions_ptr + data, seq_length - accept_length + data, mask)
|
98
|
+
|
99
|
+
offset = tl.load(accept_len_cum + pid) - 1
|
100
|
+
verified_id_data = tl.load(verified_id + offset)
|
101
|
+
tl.store(new_verified_id + pid, verified_id_data)
|
102
|
+
|
103
|
+
|
104
|
+
@triton.jit
|
105
|
+
def assign_req_to_token_pool(
|
106
|
+
req_pool_indices,
|
107
|
+
req_to_token,
|
108
|
+
start_offset,
|
109
|
+
end_offset,
|
110
|
+
out_cache_loc,
|
111
|
+
pool_len: tl.constexpr,
|
112
|
+
bs_upper: tl.constexpr,
|
113
|
+
):
|
114
|
+
BLOCK_SIZE: tl.constexpr = 32
|
115
|
+
pid = tl.program_id(axis=0)
|
116
|
+
kv_start = tl.load(start_offset + pid)
|
117
|
+
kv_end = tl.load(end_offset + pid)
|
118
|
+
token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
|
119
|
+
|
120
|
+
length_offset = tl.arange(0, bs_upper)
|
121
|
+
start = tl.load(start_offset + length_offset, mask=length_offset < pid)
|
122
|
+
end = tl.load(end_offset + length_offset, mask=length_offset < pid)
|
123
|
+
out_offset = tl.sum(end - start, axis=0)
|
124
|
+
|
125
|
+
out_cache_ptr = out_cache_loc + out_offset
|
126
|
+
|
127
|
+
save_offset = tl.arange(0, BLOCK_SIZE) + kv_start
|
128
|
+
load_offset = tl.arange(0, BLOCK_SIZE)
|
129
|
+
|
130
|
+
num_loop = tl.cdiv(kv_end - kv_start, BLOCK_SIZE)
|
131
|
+
for _ in range(num_loop):
|
132
|
+
mask = save_offset < kv_end
|
133
|
+
data = tl.load(out_cache_ptr + load_offset, mask=mask)
|
134
|
+
tl.store(token_pool + save_offset, data, mask=mask)
|
135
|
+
save_offset += BLOCK_SIZE
|
136
|
+
load_offset += BLOCK_SIZE
|
137
|
+
|
138
|
+
|
139
|
+
@triton.jit
|
140
|
+
def generate_draft_decode_kv_indices(
|
141
|
+
req_pool_indices,
|
142
|
+
req_to_token,
|
143
|
+
paged_kernel_lens,
|
144
|
+
kv_indices,
|
145
|
+
iters: tl.constexpr,
|
146
|
+
topk: tl.constexpr,
|
147
|
+
pool_len: tl.constexpr,
|
148
|
+
bs_upper: tl.constexpr,
|
149
|
+
iter_upper: tl.constexpr,
|
150
|
+
):
|
151
|
+
BLOCK_SIZE: tl.constexpr = 128
|
152
|
+
bid = tl.program_id(axis=0)
|
153
|
+
topk_id = tl.program_id(axis=1)
|
154
|
+
|
155
|
+
load_offset = tl.arange(0, bs_upper)
|
156
|
+
seq_lens = tl.load(paged_kernel_lens + load_offset, mask=load_offset < bid)
|
157
|
+
seq_len = tl.load(paged_kernel_lens + bid)
|
158
|
+
cum_seq_len = tl.sum(seq_lens)
|
159
|
+
|
160
|
+
kv_offset = cum_seq_len * topk + bid * iters * topk + topk_id * (seq_len + iters)
|
161
|
+
kv_ptr = kv_indices + kv_offset
|
162
|
+
token_pool_ptr = req_to_token + tl.load(req_pool_indices + bid) * pool_len
|
163
|
+
|
164
|
+
kv_offset = tl.arange(0, BLOCK_SIZE)
|
165
|
+
num_loop = tl.cdiv(seq_len, BLOCK_SIZE)
|
166
|
+
for _ in range(num_loop):
|
167
|
+
mask = kv_offset < seq_len
|
168
|
+
data = tl.load(token_pool_ptr + kv_offset, mask=mask)
|
169
|
+
tl.store(kv_ptr + kv_offset, data, mask=mask)
|
170
|
+
kv_offset += BLOCK_SIZE
|
171
|
+
|
172
|
+
extend_offset = tl.arange(0, iter_upper)
|
173
|
+
extend_data = tl.load(
|
174
|
+
token_pool_ptr + seq_len + tl.arange(0, iter_upper) * topk + topk_id,
|
175
|
+
mask=extend_offset < iters,
|
176
|
+
)
|
177
|
+
tl.store(kv_ptr + seq_len + extend_offset, extend_data, mask=extend_offset < iters)
|
178
|
+
|
179
|
+
|
180
|
+
class EAGLEDraftInput(SpecInfo):
|
181
|
+
def __init__(self):
|
182
|
+
self.prev_mode = ForwardMode.DECODE
|
183
|
+
self.sample_output = None
|
184
|
+
|
185
|
+
self.scores: torch.Tensor = None
|
186
|
+
self.score_list: List[torch.Tensor] = []
|
187
|
+
self.token_list: List[torch.Tensor] = []
|
188
|
+
self.origin_score_list: List[torch.Tensor] = [] # used for sampling
|
189
|
+
self.parents_list: List[torch.Tensor] = []
|
190
|
+
self.cache_list: List[torch.Tenor] = []
|
191
|
+
self.iter = 0
|
192
|
+
|
193
|
+
self.hidden_states: torch.Tensor = None
|
194
|
+
self.verified_id: torch.Tensor = None
|
195
|
+
self.positions: torch.Tensor = None
|
196
|
+
self.accept_length: torch.Tensor = None
|
197
|
+
self.has_finished: bool = False
|
198
|
+
self.unfinished_index: List[int] = None
|
199
|
+
|
200
|
+
def load_server_args(self, server_args: ServerArgs):
|
201
|
+
self.topk: int = server_args.speculative_eagle_topk
|
202
|
+
self.num_verify_token: int = server_args.speculative_num_draft_tokens
|
203
|
+
self.spec_steps = server_args.speculative_num_steps
|
204
|
+
|
205
|
+
def prepare_for_extend(self, batch: ScheduleBatch):
|
206
|
+
req_pool_indices = batch.alloc_req_slots(len(batch.reqs))
|
207
|
+
out_cache_loc = batch.alloc_token_slots(batch.input_ids.numel())
|
208
|
+
batch.out_cache_loc = out_cache_loc
|
209
|
+
|
210
|
+
pt = 0
|
211
|
+
for i, req in enumerate(batch.reqs):
|
212
|
+
req.req_pool_idx = req_pool_indices[i]
|
213
|
+
pre_len, seq_len = len(req.prefix_indices), len(req.fill_ids)
|
214
|
+
assert seq_len - pre_len == req.extend_input_len
|
215
|
+
|
216
|
+
if pre_len > 0:
|
217
|
+
batch.req_to_token_pool.req_to_token[req.req_pool_idx][
|
218
|
+
:pre_len
|
219
|
+
] = req.prefix_indices
|
220
|
+
|
221
|
+
batch.req_to_token_pool.req_to_token[req.req_pool_idx][pre_len:seq_len] = (
|
222
|
+
out_cache_loc[pt : pt + req.extend_input_len]
|
223
|
+
)
|
224
|
+
|
225
|
+
pt += req.extend_input_len
|
226
|
+
|
227
|
+
# TODO: support batching inputs
|
228
|
+
assert len(batch.extend_lens) == 1
|
229
|
+
batch.input_ids = torch.concat((batch.input_ids[1:], self.verified_id))
|
230
|
+
|
231
|
+
def prepare_for_decode(self, batch: ScheduleBatch):
|
232
|
+
prob = self.sample_output # shape: (b * top_k, vocab) or (b, vocab)
|
233
|
+
top = torch.topk(prob, self.topk, dim=-1)
|
234
|
+
topk_index, topk_p = (
|
235
|
+
top.indices,
|
236
|
+
top.values,
|
237
|
+
) # shape: (b * top_k, top_k) or (b, top_k)
|
238
|
+
|
239
|
+
if self.prev_mode.is_decode():
|
240
|
+
scores = torch.mul(
|
241
|
+
self.scores.unsqueeze(2), topk_p.reshape(-1, self.topk, self.topk)
|
242
|
+
) # (b, topk, 1) x (b, topk ,topk) -> (b, topk, topk)
|
243
|
+
topk_cs = torch.topk(
|
244
|
+
scores.flatten(start_dim=1), self.topk, dim=-1
|
245
|
+
) # (b, topk)
|
246
|
+
topk_cs_index, topk_cs_p = topk_cs.indices, topk_cs.values
|
247
|
+
|
248
|
+
selected_input_index = topk_cs_index.flatten() // self.topk + torch.arange(
|
249
|
+
0, batch.batch_size() * self.topk, step=self.topk, device="cuda"
|
250
|
+
).repeat_interleave(self.topk)
|
251
|
+
|
252
|
+
batch.spec_info.hidden_states = batch.spec_info.hidden_states[
|
253
|
+
selected_input_index, :
|
254
|
+
]
|
255
|
+
|
256
|
+
topk_index = topk_index.reshape(-1, self.topk**2)
|
257
|
+
batch.input_ids = torch.gather(
|
258
|
+
topk_index, index=topk_cs_index, dim=1
|
259
|
+
).flatten()
|
260
|
+
batch.out_cache_loc = batch.alloc_token_slots(len(batch.input_ids))
|
261
|
+
|
262
|
+
self.scores = topk_cs_p
|
263
|
+
self.score_list.append(scores) # (b, topk, topk)
|
264
|
+
self.token_list.append(topk_index) # (b, topk * topk)
|
265
|
+
self.origin_score_list.append(topk_p.reshape(topk_index.shape))
|
266
|
+
self.parents_list.append(
|
267
|
+
topk_cs_index + (self.topk**2 * (self.iter - 1) + self.topk)
|
268
|
+
) # shape: (b, topk)
|
269
|
+
else:
|
270
|
+
# ForwardMode.EXTEND or ForwardMode.DRAFT_EXTEND
|
271
|
+
batch.spec_info.hidden_states = (
|
272
|
+
batch.spec_info.hidden_states.repeat_interleave(self.topk, dim=0)
|
273
|
+
)
|
274
|
+
|
275
|
+
batch.input_ids = topk_index.flatten()
|
276
|
+
batch.out_cache_loc = batch.alloc_token_slots(topk_index.numel())
|
277
|
+
|
278
|
+
self.scores = topk_p # shape: (b, topk)
|
279
|
+
self.score_list.append(topk_p.unsqueeze(1)) # shape: (b, 1, topk)
|
280
|
+
self.token_list.append(topk_index) # shape: (b, topk)
|
281
|
+
self.origin_score_list.append(topk_p)
|
282
|
+
self.parents_list.append(
|
283
|
+
torch.arange(-1, self.topk, dtype=torch.long, device="cuda")
|
284
|
+
.unsqueeze(0)
|
285
|
+
.repeat(self.scores.shape[0], 1)
|
286
|
+
) # shape: (b, topk + 1)
|
287
|
+
self.cache_list.append(batch.out_cache_loc)
|
288
|
+
self.positions = (
|
289
|
+
batch.seq_lens[:, None]
|
290
|
+
+ torch.ones([1, self.topk], device="cuda", dtype=torch.long) * self.iter
|
291
|
+
).flatten()
|
292
|
+
|
293
|
+
bs = len(batch.seq_lens)
|
294
|
+
assign_req_to_token_pool[(bs,)](
|
295
|
+
batch.req_pool_indices,
|
296
|
+
batch.req_to_token_pool.req_to_token,
|
297
|
+
batch.seq_lens + self.topk * self.iter,
|
298
|
+
batch.seq_lens + self.topk * (self.iter + 1),
|
299
|
+
batch.out_cache_loc,
|
300
|
+
batch.req_to_token_pool.req_to_token.shape[1],
|
301
|
+
triton.next_power_of_2(bs),
|
302
|
+
)
|
303
|
+
self.iter += 1
|
304
|
+
|
305
|
+
def prepare_extend_after_decode(self, batch: ScheduleBatch):
|
306
|
+
batch.out_cache_loc = batch.alloc_token_slots(self.verified_id.numel())
|
307
|
+
batch.extend_lens = (self.accept_length + 1).tolist()
|
308
|
+
|
309
|
+
pt = 0
|
310
|
+
seq_lens = batch.seq_lens.tolist()
|
311
|
+
|
312
|
+
i = 0
|
313
|
+
|
314
|
+
for req in batch.reqs:
|
315
|
+
if req.finished():
|
316
|
+
continue
|
317
|
+
# assert seq_len - pre_len == req.extend_input_len
|
318
|
+
input_len = self.accept_length[i] + 1
|
319
|
+
seq_len = seq_lens[i]
|
320
|
+
batch.req_to_token_pool.req_to_token[req.req_pool_idx][
|
321
|
+
seq_len - input_len : seq_len
|
322
|
+
] = batch.out_cache_loc[pt : pt + input_len]
|
323
|
+
pt += input_len
|
324
|
+
i += 1
|
325
|
+
|
326
|
+
self.positions = torch.empty_like(self.verified_id)
|
327
|
+
new_verified_id = torch.empty_like(self.accept_length, dtype=torch.long)
|
328
|
+
self.accept_length.add_(1)
|
329
|
+
|
330
|
+
create_extend_spec_info[(self.accept_length.numel(),)](
|
331
|
+
self.verified_id,
|
332
|
+
batch.seq_lens,
|
333
|
+
self.accept_length,
|
334
|
+
torch.cumsum(self.accept_length, axis=0, dtype=torch.int),
|
335
|
+
self.positions,
|
336
|
+
new_verified_id,
|
337
|
+
triton.next_power_of_2(self.spec_steps + 1),
|
338
|
+
)
|
339
|
+
|
340
|
+
batch.seq_lens_sum = sum(batch.seq_lens)
|
341
|
+
batch.input_ids = self.verified_id
|
342
|
+
self.verified_id = new_verified_id
|
343
|
+
|
344
|
+
def prepare_for_verify(self, batch: ScheduleBatch):
|
345
|
+
score_list = torch.cat(self.score_list, dim=1).flatten(
|
346
|
+
1
|
347
|
+
) # b, n, topk; n= 1+(self.iter-1)*self.topk
|
348
|
+
ss_token_list = torch.cat(
|
349
|
+
self.token_list, dim=1
|
350
|
+
) # b, (self.topk+(self.iter-1)*self.topk)
|
351
|
+
origin_token_list = torch.cat(self.origin_score_list, dim=1)
|
352
|
+
top_scores = torch.topk(score_list, self.num_verify_token - 1, dim=-1)
|
353
|
+
top_scores_index = top_scores.indices
|
354
|
+
top_scores_index = torch.sort(top_scores_index).values
|
355
|
+
|
356
|
+
draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1)
|
357
|
+
scores = torch.gather(origin_token_list, index=top_scores_index, dim=1)
|
358
|
+
draft_tokens = torch.cat((self.verified_id.unsqueeze(1), draft_tokens), dim=1)
|
359
|
+
parent_list = torch.cat(self.parents_list[:-1], dim=1)
|
360
|
+
|
361
|
+
tree_mask, position, retrive_index, retrive_cum_len = build_tree_kernel(
|
362
|
+
parent_list,
|
363
|
+
top_scores_index,
|
364
|
+
batch.seq_lens,
|
365
|
+
self.topk,
|
366
|
+
self.iter - 1,
|
367
|
+
self.num_verify_token,
|
368
|
+
)
|
369
|
+
|
370
|
+
return EagleVerifyInput(
|
371
|
+
draft_tokens.flatten(),
|
372
|
+
scores.flatten(),
|
373
|
+
tree_mask,
|
374
|
+
position,
|
375
|
+
retrive_index,
|
376
|
+
retrive_cum_len,
|
377
|
+
self.num_verify_token,
|
378
|
+
)
|
379
|
+
|
380
|
+
def generate_attn_arg_decode(
|
381
|
+
self,
|
382
|
+
req_pool_indices: torch.Tensor,
|
383
|
+
paged_kernel_lens: torch.Tensor,
|
384
|
+
req_to_token: torch.Tensor,
|
385
|
+
):
|
386
|
+
seq_num = req_pool_indices.numel()
|
387
|
+
bs = self.topk * req_pool_indices.numel()
|
388
|
+
seq_len = self.positions.reshape(-1).contiguous()
|
389
|
+
|
390
|
+
cum_kv_seq_len = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
|
391
|
+
cum_kv_seq_len[1:] = torch.cumsum(seq_len + 1, dim=0)
|
392
|
+
total_len = torch.sum(paged_kernel_lens).item()
|
393
|
+
|
394
|
+
kv_indices = torch.empty(
|
395
|
+
(total_len * self.topk + seq_num * self.iter * self.topk,),
|
396
|
+
dtype=torch.int32,
|
397
|
+
device="cuda",
|
398
|
+
)
|
399
|
+
|
400
|
+
generate_draft_decode_kv_indices[(req_pool_indices.numel(), self.topk)](
|
401
|
+
req_pool_indices,
|
402
|
+
req_to_token,
|
403
|
+
paged_kernel_lens,
|
404
|
+
kv_indices,
|
405
|
+
self.iter,
|
406
|
+
self.topk,
|
407
|
+
req_to_token.shape[1],
|
408
|
+
triton.next_power_of_2(seq_num),
|
409
|
+
triton.next_power_of_2(self.spec_steps),
|
410
|
+
)
|
411
|
+
return bs, kv_indices, cum_kv_seq_len
|
412
|
+
|
413
|
+
def clear_draft_cache(self, batch):
|
414
|
+
draft_cache = torch.cat(self.cache_list, dim=0)
|
415
|
+
batch.token_to_kv_pool.free(draft_cache)
|
416
|
+
|
417
|
+
def generate_attn_arg_prefill(
|
418
|
+
self,
|
419
|
+
req_pool_indices: torch.Tensor,
|
420
|
+
paged_kernel_lens: torch.Tensor,
|
421
|
+
req_to_token: torch.Tensor,
|
422
|
+
):
|
423
|
+
bs = self.accept_length.numel()
|
424
|
+
qo_indptr = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
|
425
|
+
qo_indptr[1:] = torch.cumsum(self.accept_length, dim=0)
|
426
|
+
|
427
|
+
cum_kv_seq_len = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
|
428
|
+
cum_kv_seq_len[1:] = torch.cumsum(paged_kernel_lens, dim=0)
|
429
|
+
kv_indices = torch.empty(cum_kv_seq_len[-1], dtype=torch.int32, device="cuda")
|
430
|
+
|
431
|
+
create_flashinfer_kv_indices_triton[(bs,)](
|
432
|
+
req_to_token,
|
433
|
+
req_pool_indices,
|
434
|
+
paged_kernel_lens,
|
435
|
+
cum_kv_seq_len,
|
436
|
+
None,
|
437
|
+
kv_indices,
|
438
|
+
req_to_token.size(1),
|
439
|
+
)
|
440
|
+
|
441
|
+
return kv_indices, cum_kv_seq_len, qo_indptr, None
|
442
|
+
|
443
|
+
def merge_batch(self, spec_info: EAGLEDraftInput):
|
444
|
+
if self.hidden_states is None:
|
445
|
+
self.hidden_states = spec_info.hidden_states
|
446
|
+
self.verified_id = spec_info.verified_id
|
447
|
+
self.sample_output = spec_info.sample_output
|
448
|
+
self.prev_mode = spec_info.prev_mode
|
449
|
+
return
|
450
|
+
if spec_info.hidden_states is None:
|
451
|
+
return
|
452
|
+
self.hidden_states = torch.cat(
|
453
|
+
[self.hidden_states, spec_info.hidden_states], axis=0
|
454
|
+
)
|
455
|
+
self.verified_id = torch.cat([self.verified_id, spec_info.verified_id], axis=0)
|
456
|
+
self.sample_output = torch.cat([self.sample_output, spec_info.sample_output])
|
457
|
+
|
458
|
+
|
459
|
+
class EagleVerifyInput(SpecInfo):
|
460
|
+
def __init__(
|
461
|
+
self,
|
462
|
+
draft_token: torch.Tensor,
|
463
|
+
draft_score: torch.Tensor,
|
464
|
+
tree_mask: torch.Tensor,
|
465
|
+
positions: torch.Tensor,
|
466
|
+
retrive_index: torch.Tensor,
|
467
|
+
retrive_cum_len: torch.Tensor,
|
468
|
+
draft_token_num: int,
|
469
|
+
):
|
470
|
+
self.draft_token = draft_token
|
471
|
+
self.draft_score = draft_score
|
472
|
+
self.custom_mask = tree_mask
|
473
|
+
self.positions = positions
|
474
|
+
self.retrive_index = retrive_index
|
475
|
+
self.retrive_cum_len = retrive_cum_len
|
476
|
+
self.draft_token_num = draft_token_num
|
477
|
+
|
478
|
+
def prepare_for_verify(self, batch: ScheduleBatch):
|
479
|
+
batch.input_ids = self.draft_token
|
480
|
+
batch.out_cache_loc = batch.alloc_token_slots(batch.input_ids.numel())
|
481
|
+
bs = batch.seq_lens.numel()
|
482
|
+
assign_req_to_token_pool[(bs,)](
|
483
|
+
batch.req_pool_indices,
|
484
|
+
batch.req_to_token_pool.req_to_token,
|
485
|
+
batch.seq_lens,
|
486
|
+
batch.seq_lens + self.draft_token_num,
|
487
|
+
batch.out_cache_loc,
|
488
|
+
batch.req_to_token_pool.req_to_token.shape[1],
|
489
|
+
triton.next_power_of_2(bs),
|
490
|
+
)
|
491
|
+
|
492
|
+
def generate_attn_arg_prefill(
|
493
|
+
self,
|
494
|
+
req_pool_indices: torch.Tensor,
|
495
|
+
paged_kernel_lens: torch.Tensor,
|
496
|
+
req_to_token: torch.Tensor,
|
497
|
+
):
|
498
|
+
batch_size = len(req_pool_indices)
|
499
|
+
qo_indptr = torch.arange(
|
500
|
+
0,
|
501
|
+
(1 + batch_size) * self.draft_token_num,
|
502
|
+
step=self.draft_token_num,
|
503
|
+
dtype=torch.int32,
|
504
|
+
device="cuda",
|
505
|
+
)
|
506
|
+
|
507
|
+
cum_kv_seq_len = torch.zeros(
|
508
|
+
(batch_size + 1,), dtype=torch.int32, device="cuda"
|
509
|
+
)
|
510
|
+
|
511
|
+
paged_kernel_lens = paged_kernel_lens + self.draft_token_num
|
512
|
+
cum_kv_seq_len[1:] = torch.cumsum(paged_kernel_lens, dim=0)
|
513
|
+
|
514
|
+
kv_indices = torch.empty(cum_kv_seq_len[-1], dtype=torch.int32, device="cuda")
|
515
|
+
|
516
|
+
create_flashinfer_kv_indices_triton[(batch_size,)](
|
517
|
+
req_to_token,
|
518
|
+
req_pool_indices,
|
519
|
+
paged_kernel_lens,
|
520
|
+
cum_kv_seq_len,
|
521
|
+
None,
|
522
|
+
kv_indices,
|
523
|
+
req_to_token.size(1),
|
524
|
+
)
|
525
|
+
return kv_indices, cum_kv_seq_len, qo_indptr, self.custom_mask
|
526
|
+
|
527
|
+
def verify(self, batch: ScheduleBatch, logits_output: torch.Tensor) -> torch.Tensor:
|
528
|
+
predict = torch.argmax(logits_output.next_token_logits, dim=-1)
|
529
|
+
predict = torch.cat(
|
530
|
+
[predict, torch.full([1], -1, dtype=torch.long, device="cuda")], dim=-1
|
531
|
+
)
|
532
|
+
draft_token = torch.cat(
|
533
|
+
[self.draft_token, torch.full([1], -1, dtype=torch.long, device="cuda")],
|
534
|
+
dim=-1,
|
535
|
+
)
|
536
|
+
target_predict = predict[self.retrive_index]
|
537
|
+
candidates = draft_token[self.retrive_index]
|
538
|
+
# logits = logits_output.next_token_logits[self.retrive_index]
|
539
|
+
# target_predict = torch.argmax(logits[:, :-1], dim=-1)
|
540
|
+
accept_mask = candidates[:, 1:] == target_predict[:, :-1]
|
541
|
+
accept_mask = (torch.cumprod(accept_mask, dim=1)).sum(dim=1)
|
542
|
+
bs = self.retrive_cum_len.numel() - 1
|
543
|
+
|
544
|
+
max_draft_len = self.retrive_index.shape[-1]
|
545
|
+
accept_index = torch.full(
|
546
|
+
(bs, max_draft_len), -1, dtype=torch.long, device="cuda"
|
547
|
+
)
|
548
|
+
accept_length = torch.empty((bs,), dtype=torch.int, device="cuda")
|
549
|
+
extract_index = torch.full((bs * 2,), 0, dtype=torch.int, device="cuda")
|
550
|
+
eagle_verify_retrive[(bs,)](
|
551
|
+
self.retrive_index.contiguous(),
|
552
|
+
accept_mask.contiguous(),
|
553
|
+
self.retrive_cum_len,
|
554
|
+
accept_index,
|
555
|
+
accept_length,
|
556
|
+
extract_index,
|
557
|
+
max_draft_len,
|
558
|
+
self.draft_token_num,
|
559
|
+
triton.next_power_of_2(max_draft_len),
|
560
|
+
)
|
561
|
+
|
562
|
+
draft_input = EAGLEDraftInput()
|
563
|
+
new_accept_index = []
|
564
|
+
unfinished_index = []
|
565
|
+
finished_extend_len = {} # {rid:accept_length + 1}
|
566
|
+
accept_index_cpu = accept_index.tolist()
|
567
|
+
predict_cpu = predict.tolist()
|
568
|
+
# iterate every accepted token and check if req has finished after append the token
|
569
|
+
# should be checked BEFORE free kv cache slots
|
570
|
+
for i, (req, accept_index_row) in enumerate(zip(batch.reqs, accept_index_cpu)):
|
571
|
+
new_accept_index_ = []
|
572
|
+
for j, idx in enumerate(accept_index_row):
|
573
|
+
if idx == -1:
|
574
|
+
break
|
575
|
+
id = predict_cpu[idx]
|
576
|
+
# if not found_finished:
|
577
|
+
req.output_ids.append(id)
|
578
|
+
finished_extend_len[req.rid] = j + 1
|
579
|
+
req.check_finished()
|
580
|
+
if req.finished():
|
581
|
+
draft_input.has_finished = True
|
582
|
+
# set all tokens after finished token to -1 and break
|
583
|
+
accept_index[i, j + 1 :] = -1
|
584
|
+
break
|
585
|
+
else:
|
586
|
+
new_accept_index_.append(idx)
|
587
|
+
if not req.finished():
|
588
|
+
new_accept_index.extend(new_accept_index_)
|
589
|
+
unfinished_index.append(i)
|
590
|
+
accept_length = (accept_index != -1).sum(dim=1) - 1
|
591
|
+
|
592
|
+
accept_index = accept_index[accept_index != -1]
|
593
|
+
accept_length_cpu = accept_length.tolist()
|
594
|
+
verified_id = predict[accept_index]
|
595
|
+
verified_id_cpu = verified_id.tolist()
|
596
|
+
|
597
|
+
evict_mask = torch.full_like(self.draft_token, True, dtype=torch.bool)
|
598
|
+
evict_mask[accept_index] = False
|
599
|
+
mem_need_free_idx = batch.out_cache_loc[evict_mask]
|
600
|
+
batch.token_to_kv_pool.free(mem_need_free_idx)
|
601
|
+
assign_req_to_token_pool[(bs,)](
|
602
|
+
batch.req_pool_indices,
|
603
|
+
batch.req_to_token_pool.req_to_token,
|
604
|
+
batch.seq_lens,
|
605
|
+
batch.seq_lens + accept_length + 1,
|
606
|
+
batch.out_cache_loc[accept_index],
|
607
|
+
batch.req_to_token_pool.req_to_token.shape[1],
|
608
|
+
triton.next_power_of_2(bs),
|
609
|
+
)
|
610
|
+
batch.seq_lens.add_(accept_length + 1)
|
611
|
+
|
612
|
+
if len(new_accept_index) > 0:
|
613
|
+
new_accept_index = torch.tensor(new_accept_index, device="cuda")
|
614
|
+
draft_input.verified_id = predict[new_accept_index]
|
615
|
+
draft_input.hidden_states = batch.spec_info.hidden_states[new_accept_index]
|
616
|
+
draft_input.accept_length = accept_length[unfinished_index]
|
617
|
+
draft_input.unfinished_index = unfinished_index
|
618
|
+
|
619
|
+
logits_output.next_token_logits = logits_output.next_token_logits[accept_index]
|
620
|
+
return (
|
621
|
+
draft_input,
|
622
|
+
logits_output,
|
623
|
+
verified_id,
|
624
|
+
finished_extend_len,
|
625
|
+
accept_length_cpu,
|
626
|
+
)
|