sglang 0.4.0.post2__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_offline_throughput.py +0 -12
- sglang/bench_one_batch.py +0 -12
- sglang/bench_serving.py +1 -0
- sglang/srt/aio_rwlock.py +100 -0
- sglang/srt/configs/model_config.py +8 -1
- sglang/srt/layers/attention/flashinfer_backend.py +49 -5
- sglang/srt/layers/linear.py +20 -2
- sglang/srt/layers/{ep_moe → moe/ep_moe}/layer.py +14 -39
- sglang/srt/layers/moe/fused_moe_native.py +46 -0
- sglang/srt/layers/{fused_moe_triton → moe/fused_moe_triton}/__init__.py +3 -7
- sglang/srt/layers/{fused_moe_triton → moe/fused_moe_triton}/fused_moe.py +110 -98
- sglang/srt/layers/{fused_moe_triton → moe/fused_moe_triton}/layer.py +16 -48
- sglang/srt/layers/moe/topk.py +191 -0
- sglang/srt/layers/quantization/__init__.py +3 -3
- sglang/srt/layers/quantization/fp8.py +169 -32
- sglang/srt/layers/quantization/fp8_kernel.py +278 -0
- sglang/srt/layers/quantization/fp8_utils.py +90 -1
- sglang/srt/layers/torchao_utils.py +11 -15
- sglang/srt/managers/schedule_batch.py +16 -10
- sglang/srt/managers/scheduler.py +2 -2
- sglang/srt/managers/tokenizer_manager.py +86 -76
- sglang/srt/mem_cache/memory_pool.py +15 -8
- sglang/srt/model_executor/cuda_graph_runner.py +1 -1
- sglang/srt/model_executor/model_runner.py +6 -0
- sglang/srt/models/dbrx.py +1 -1
- sglang/srt/models/deepseek.py +1 -1
- sglang/srt/models/deepseek_v2.py +67 -18
- sglang/srt/models/grok.py +1 -1
- sglang/srt/models/mixtral.py +2 -2
- sglang/srt/models/olmoe.py +1 -1
- sglang/srt/models/qwen2_moe.py +1 -1
- sglang/srt/models/xverse_moe.py +1 -1
- sglang/srt/openai_api/adapter.py +4 -0
- sglang/srt/server.py +1 -0
- sglang/srt/utils.py +33 -44
- sglang/test/test_block_fp8.py +341 -0
- sglang/version.py +1 -1
- {sglang-0.4.0.post2.dist-info → sglang-0.4.1.dist-info}/METADATA +3 -3
- {sglang-0.4.0.post2.dist-info → sglang-0.4.1.dist-info}/RECORD +44 -40
- sglang/srt/layers/fused_moe_patch.py +0 -133
- /sglang/srt/layers/{ep_moe → moe/ep_moe}/__init__.py +0 -0
- /sglang/srt/layers/{ep_moe → moe/ep_moe}/kernels.py +0 -0
- {sglang-0.4.0.post2.dist-info → sglang-0.4.1.dist-info}/LICENSE +0 -0
- {sglang-0.4.0.post2.dist-info → sglang-0.4.1.dist-info}/WHEEL +0 -0
- {sglang-0.4.0.post2.dist-info → sglang-0.4.1.dist-info}/top_level.txt +0 -0
@@ -322,18 +322,6 @@ def throughput_test(
|
|
322
322
|
)
|
323
323
|
time.sleep(0.5)
|
324
324
|
|
325
|
-
try:
|
326
|
-
import os
|
327
|
-
import pwd
|
328
|
-
|
329
|
-
from gemlite.core import GemLiteLinearTriton
|
330
|
-
|
331
|
-
GemLiteLinearTriton.cache_config(
|
332
|
-
f"/tmp/{pwd.getpwuid(os.getuid()).pw_gecos}_gemlite.json"
|
333
|
-
)
|
334
|
-
except ImportError:
|
335
|
-
pass
|
336
|
-
|
337
325
|
logging.info("\nBenchmark...")
|
338
326
|
result = throughput_test_once(
|
339
327
|
backend_name=bench_args.backend,
|
sglang/bench_one_batch.py
CHANGED
@@ -386,18 +386,6 @@ def latency_test(
|
|
386
386
|
server_args.device,
|
387
387
|
)
|
388
388
|
|
389
|
-
try:
|
390
|
-
import os
|
391
|
-
import pwd
|
392
|
-
|
393
|
-
from gemlite.core import GemLiteLinearTriton
|
394
|
-
|
395
|
-
GemLiteLinearTriton.cache_config(
|
396
|
-
f"/tmp/{pwd.getpwuid(os.getuid()).pw_gecos}_gemlite.json"
|
397
|
-
)
|
398
|
-
except ImportError:
|
399
|
-
pass
|
400
|
-
|
401
389
|
rank_print("Benchmark ...")
|
402
390
|
|
403
391
|
# Run the sweep
|
sglang/bench_serving.py
CHANGED
sglang/srt/aio_rwlock.py
ADDED
@@ -0,0 +1,100 @@
|
|
1
|
+
import asyncio
|
2
|
+
|
3
|
+
|
4
|
+
class RWLock:
|
5
|
+
def __init__(self):
|
6
|
+
# Protects internal state
|
7
|
+
self._lock = asyncio.Lock()
|
8
|
+
|
9
|
+
# Condition variable used to wait for state changes
|
10
|
+
self._cond = asyncio.Condition(self._lock)
|
11
|
+
|
12
|
+
# Number of readers currently holding the lock
|
13
|
+
self._readers = 0
|
14
|
+
|
15
|
+
# Whether a writer is currently holding the lock
|
16
|
+
self._writer_active = False
|
17
|
+
|
18
|
+
# How many writers are queued waiting for a turn
|
19
|
+
self._waiting_writers = 0
|
20
|
+
|
21
|
+
@property
|
22
|
+
def reader_lock(self):
|
23
|
+
"""
|
24
|
+
A context manager for acquiring a shared (reader) lock.
|
25
|
+
|
26
|
+
Example:
|
27
|
+
async with rwlock.reader_lock:
|
28
|
+
# read-only access
|
29
|
+
"""
|
30
|
+
return _ReaderLock(self)
|
31
|
+
|
32
|
+
@property
|
33
|
+
def writer_lock(self):
|
34
|
+
"""
|
35
|
+
A context manager for acquiring an exclusive (writer) lock.
|
36
|
+
|
37
|
+
Example:
|
38
|
+
async with rwlock.writer_lock:
|
39
|
+
# exclusive access
|
40
|
+
"""
|
41
|
+
return _WriterLock(self)
|
42
|
+
|
43
|
+
async def acquire_reader(self):
|
44
|
+
async with self._lock:
|
45
|
+
# Wait until there is no active writer or waiting writer
|
46
|
+
# to ensure fairness.
|
47
|
+
while self._writer_active or self._waiting_writers > 0:
|
48
|
+
await self._cond.wait()
|
49
|
+
self._readers += 1
|
50
|
+
|
51
|
+
async def release_reader(self):
|
52
|
+
async with self._lock:
|
53
|
+
self._readers -= 1
|
54
|
+
# If this was the last reader, wake up anyone waiting
|
55
|
+
# (potentially a writer or new readers).
|
56
|
+
if self._readers == 0:
|
57
|
+
self._cond.notify_all()
|
58
|
+
|
59
|
+
async def acquire_writer(self):
|
60
|
+
async with self._lock:
|
61
|
+
# Increment the count of writers waiting
|
62
|
+
self._waiting_writers += 1
|
63
|
+
try:
|
64
|
+
# Wait while either a writer is active or readers are present
|
65
|
+
while self._writer_active or self._readers > 0:
|
66
|
+
await self._cond.wait()
|
67
|
+
self._writer_active = True
|
68
|
+
finally:
|
69
|
+
# Decrement waiting writers only after we've acquired the writer lock
|
70
|
+
self._waiting_writers -= 1
|
71
|
+
|
72
|
+
async def release_writer(self):
|
73
|
+
async with self._lock:
|
74
|
+
self._writer_active = False
|
75
|
+
# Wake up anyone waiting (readers or writers)
|
76
|
+
self._cond.notify_all()
|
77
|
+
|
78
|
+
|
79
|
+
class _ReaderLock:
|
80
|
+
def __init__(self, rwlock: RWLock):
|
81
|
+
self._rwlock = rwlock
|
82
|
+
|
83
|
+
async def __aenter__(self):
|
84
|
+
await self._rwlock.acquire_reader()
|
85
|
+
return self
|
86
|
+
|
87
|
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
88
|
+
await self._rwlock.release_reader()
|
89
|
+
|
90
|
+
|
91
|
+
class _WriterLock:
|
92
|
+
def __init__(self, rwlock: RWLock):
|
93
|
+
self._rwlock = rwlock
|
94
|
+
|
95
|
+
async def __aenter__(self):
|
96
|
+
await self._rwlock.acquire_writer()
|
97
|
+
return self
|
98
|
+
|
99
|
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
100
|
+
await self._rwlock.release_writer()
|
@@ -94,7 +94,10 @@ class ModelConfig:
|
|
94
94
|
)
|
95
95
|
|
96
96
|
# FIXME: temporary special judge for MLA architecture
|
97
|
-
if
|
97
|
+
if (
|
98
|
+
"DeepseekV2ForCausalLM" in self.hf_config.architectures
|
99
|
+
or "DeepseekV3ForCausalLM" in self.hf_config.architectures
|
100
|
+
):
|
98
101
|
self.head_dim = 256
|
99
102
|
self.attention_arch = AttentionArch.MLA
|
100
103
|
self.kv_lora_rank = self.hf_config.kv_lora_rank
|
@@ -124,8 +127,12 @@ class ModelConfig:
|
|
124
127
|
self.num_hidden_layers = self.hf_text_config.num_hidden_layers
|
125
128
|
self.vocab_size = self.hf_text_config.vocab_size
|
126
129
|
|
130
|
+
# Veirfy quantization
|
127
131
|
self._verify_quantization()
|
128
132
|
|
133
|
+
# Multimodel attrs
|
134
|
+
self.image_token_id = getattr(self.hf_config, "image_token_id", None)
|
135
|
+
|
129
136
|
# adapted from https://github.com/vllm-project/vllm/blob/main/vllm/config.py#L289
|
130
137
|
def get_total_num_kv_heads(self) -> int:
|
131
138
|
"""Returns the total number of KV heads."""
|
@@ -18,11 +18,7 @@ import triton.language as tl
|
|
18
18
|
from sglang.global_config import global_config
|
19
19
|
from sglang.srt.layers.attention import AttentionBackend
|
20
20
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
21
|
-
from sglang.srt.utils import
|
22
|
-
get_bool_env_var,
|
23
|
-
is_flashinfer_available,
|
24
|
-
should_use_tensor_core,
|
25
|
-
)
|
21
|
+
from sglang.srt.utils import is_flashinfer_available
|
26
22
|
|
27
23
|
if TYPE_CHECKING:
|
28
24
|
from sglang.srt.layers.radix_attention import RadixAttention
|
@@ -731,3 +727,51 @@ def create_flashinfer_kv_indices_triton(
|
|
731
727
|
mask=mask,
|
732
728
|
)
|
733
729
|
tl.store(kv_indices_ptr + kv_indices_offset + offset, data, mask=mask)
|
730
|
+
|
731
|
+
|
732
|
+
def should_use_tensor_core(
|
733
|
+
kv_cache_dtype: torch.dtype,
|
734
|
+
num_attention_heads: int,
|
735
|
+
num_kv_heads: int,
|
736
|
+
) -> bool:
|
737
|
+
"""
|
738
|
+
Determine whether to use tensor cores for attention computation.
|
739
|
+
|
740
|
+
Args:
|
741
|
+
kv_cache_dtype: Data type of the KV cache
|
742
|
+
num_attention_heads: Number of attention heads
|
743
|
+
num_kv_heads: Number of key/value heads
|
744
|
+
|
745
|
+
Returns:
|
746
|
+
bool: Whether to use tensor cores
|
747
|
+
"""
|
748
|
+
# Try to use environment variable first
|
749
|
+
env_override = os.environ.get("SGLANG_FLASHINFER_USE_TENSOR_CORE")
|
750
|
+
if env_override is not None:
|
751
|
+
return env_override.lower() == "true"
|
752
|
+
|
753
|
+
# Try to use _grouped_size_compiled_for_decode_kernels if available
|
754
|
+
# This is for flashinfer <=0.1.6. Otherwise, there is an accuracy bug
|
755
|
+
try:
|
756
|
+
from flashinfer.decode import _grouped_size_compiled_for_decode_kernels
|
757
|
+
|
758
|
+
if not _grouped_size_compiled_for_decode_kernels(
|
759
|
+
num_attention_heads,
|
760
|
+
num_kv_heads,
|
761
|
+
):
|
762
|
+
return True
|
763
|
+
else:
|
764
|
+
return False
|
765
|
+
except (ImportError, AttributeError):
|
766
|
+
pass
|
767
|
+
|
768
|
+
# Calculate GQA group size
|
769
|
+
gqa_group_size = num_attention_heads // num_kv_heads
|
770
|
+
|
771
|
+
# Determine based on dtype and GQA group size
|
772
|
+
if kv_cache_dtype in (torch.float8_e4m3fn, torch.float8_e5m2):
|
773
|
+
return True
|
774
|
+
elif kv_cache_dtype in (torch.float16, torch.half, torch.bfloat16):
|
775
|
+
return gqa_group_size > 4
|
776
|
+
else:
|
777
|
+
return False
|
sglang/srt/layers/linear.py
CHANGED
@@ -30,6 +30,7 @@ from sglang.srt.layers.quantization.base_config import (
|
|
30
30
|
QuantizationConfig,
|
31
31
|
QuantizeMethodBase,
|
32
32
|
)
|
33
|
+
from sglang.srt.layers.quantization.fp8_utils import BlockQuantScaleParameter
|
33
34
|
from sglang.srt.utils import set_weight_attrs
|
34
35
|
|
35
36
|
logger = logging.getLogger(__name__)
|
@@ -628,8 +629,19 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
|
|
628
629
|
assert loaded_shard_id < len(self.output_sizes)
|
629
630
|
|
630
631
|
tp_size = get_tensor_model_parallel_world_size()
|
631
|
-
|
632
|
-
|
632
|
+
|
633
|
+
if isinstance(param, BlockQuantScaleParameter):
|
634
|
+
weight_block_size = self.quant_method.quant_config.weight_block_size
|
635
|
+
block_n, _ = weight_block_size[0], weight_block_size[1]
|
636
|
+
shard_offset = (
|
637
|
+
(sum(self.output_sizes[:loaded_shard_id]) + block_n - 1) // block_n
|
638
|
+
) // tp_size
|
639
|
+
shard_size = (
|
640
|
+
(self.output_sizes[loaded_shard_id] + block_n - 1) // block_n // tp_size
|
641
|
+
)
|
642
|
+
else:
|
643
|
+
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
|
644
|
+
shard_size = self.output_sizes[loaded_shard_id] // tp_size
|
633
645
|
|
634
646
|
param.load_merged_column_weight(
|
635
647
|
loaded_weight=loaded_weight,
|
@@ -795,6 +807,12 @@ class QKVParallelLinear(ColumnParallelLinear):
|
|
795
807
|
shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
|
796
808
|
shard_size = self._get_shard_size_mapping(loaded_shard_id)
|
797
809
|
|
810
|
+
if isinstance(param, BlockQuantScaleParameter):
|
811
|
+
weight_block_size = self.quant_method.quant_config.weight_block_size
|
812
|
+
block_n, _ = weight_block_size[0], weight_block_size[1]
|
813
|
+
shard_offset = (shard_offset + block_n - 1) // block_n
|
814
|
+
shard_size = (shard_size + block_n - 1) // block_n
|
815
|
+
|
798
816
|
param.load_qkv_weight(
|
799
817
|
loaded_weight=loaded_weight,
|
800
818
|
num_heads=self.num_kv_head_replicas,
|
@@ -12,15 +12,15 @@ from vllm.model_executor.custom_op import CustomOp
|
|
12
12
|
from vllm.model_executor.layers.quantization.fp8 import Fp8Config, Fp8MoEMethod
|
13
13
|
|
14
14
|
from sglang.srt.layers.custom_op_util import register_custom_op
|
15
|
-
from sglang.srt.layers.ep_moe.kernels import (
|
15
|
+
from sglang.srt.layers.moe.ep_moe.kernels import (
|
16
16
|
grouped_gemm_triton,
|
17
17
|
post_reorder_triton_kernel,
|
18
18
|
pre_reorder_triton_kernel,
|
19
19
|
run_moe_ep_preproess,
|
20
20
|
silu_and_mul_triton_kernel,
|
21
21
|
)
|
22
|
-
from sglang.srt.layers.fused_moe_triton.
|
23
|
-
from sglang.srt.layers.
|
22
|
+
from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoEMethodBase
|
23
|
+
from sglang.srt.layers.moe.topk import select_experts
|
24
24
|
from sglang.srt.layers.quantization.base_config import (
|
25
25
|
QuantizationConfig,
|
26
26
|
QuantizeMethodBase,
|
@@ -113,6 +113,7 @@ class EPMoE(torch.nn.Module):
|
|
113
113
|
quant_config: Optional[QuantizationConfig] = None,
|
114
114
|
tp_size: Optional[int] = None,
|
115
115
|
prefix: str = "",
|
116
|
+
correction_bias: Optional[torch.Tensor] = None,
|
116
117
|
):
|
117
118
|
super().__init__()
|
118
119
|
|
@@ -138,6 +139,7 @@ class EPMoE(torch.nn.Module):
|
|
138
139
|
assert num_expert_group is not None and topk_group is not None
|
139
140
|
self.num_expert_group = num_expert_group
|
140
141
|
self.topk_group = topk_group
|
142
|
+
self.correction_bias = correction_bias
|
141
143
|
|
142
144
|
if quant_config is None:
|
143
145
|
self.quant_method: Optional[QuantizeMethodBase] = UnquantizedEPMoEMethod()
|
@@ -170,13 +172,15 @@ class EPMoE(torch.nn.Module):
|
|
170
172
|
hidden_states.device, use_flashinfer=False # TODO: use flashinfer
|
171
173
|
)
|
172
174
|
|
173
|
-
topk_weights, topk_ids =
|
174
|
-
hidden_states,
|
175
|
-
router_logits,
|
176
|
-
self.top_k,
|
177
|
-
self.
|
178
|
-
self.
|
179
|
-
self.
|
175
|
+
topk_weights, topk_ids = select_experts(
|
176
|
+
hidden_states=hidden_states,
|
177
|
+
router_logits=router_logits,
|
178
|
+
top_k=self.top_k,
|
179
|
+
use_grouped_topk=self.use_grouped_topk,
|
180
|
+
renormalize=self.renormalize,
|
181
|
+
topk_group=self.topk_group,
|
182
|
+
num_expert_group=self.num_expert_group,
|
183
|
+
correction_bias=self.correction_bias,
|
180
184
|
)
|
181
185
|
|
182
186
|
reorder_topk_ids, src2dst, seg_indptr = run_moe_ep_preproess(
|
@@ -297,35 +301,6 @@ class EPMoE(torch.nn.Module):
|
|
297
301
|
)
|
298
302
|
return output
|
299
303
|
|
300
|
-
def select_experts(
|
301
|
-
self,
|
302
|
-
hidden_states: torch.Tensor,
|
303
|
-
router_logits: torch.Tensor,
|
304
|
-
top_k: int,
|
305
|
-
renormalize: bool,
|
306
|
-
topk_group: Optional[int] = None,
|
307
|
-
num_expert_group: Optional[int] = None,
|
308
|
-
):
|
309
|
-
if self.use_grouped_topk:
|
310
|
-
assert topk_group is not None
|
311
|
-
assert num_expert_group is not None
|
312
|
-
topk_weights, topk_ids = grouped_topk(
|
313
|
-
hidden_states=hidden_states,
|
314
|
-
gating_output=router_logits,
|
315
|
-
topk=top_k,
|
316
|
-
renormalize=renormalize,
|
317
|
-
num_expert_group=num_expert_group,
|
318
|
-
topk_group=topk_group,
|
319
|
-
)
|
320
|
-
else:
|
321
|
-
topk_weights, topk_ids = fused_topk(
|
322
|
-
hidden_states=hidden_states,
|
323
|
-
gating_output=router_logits,
|
324
|
-
topk=top_k,
|
325
|
-
renormalize=renormalize,
|
326
|
-
)
|
327
|
-
return topk_weights, topk_ids.to(torch.int32)
|
328
|
-
|
329
304
|
@classmethod
|
330
305
|
def make_expert_params_mapping(
|
331
306
|
cls,
|
@@ -0,0 +1,46 @@
|
|
1
|
+
"""
|
2
|
+
Torch-native implementation for FusedMoE. This is used for torch.compile.
|
3
|
+
It is based on https://github.com/pytorch-labs/gpt-fast/blob/32971d3129541c5bfb4f715abc33d1c5f408d204/mixtral-moe/model.py#L204
|
4
|
+
"""
|
5
|
+
|
6
|
+
from typing import Callable, Optional
|
7
|
+
|
8
|
+
import torch
|
9
|
+
from torch.nn import functional as F
|
10
|
+
|
11
|
+
from sglang.srt.layers.moe.topk import select_experts
|
12
|
+
|
13
|
+
|
14
|
+
def fused_moe_forward_native(
|
15
|
+
layer: torch.nn.Module,
|
16
|
+
x: torch.Tensor,
|
17
|
+
use_grouped_topk: bool,
|
18
|
+
top_k: int,
|
19
|
+
router_logits: torch.Tensor,
|
20
|
+
renormalize: bool,
|
21
|
+
topk_group: Optional[int] = None,
|
22
|
+
num_expert_group: Optional[int] = None,
|
23
|
+
custom_routing_function: Optional[Callable] = None,
|
24
|
+
correction_bias: Optional[torch.Tensor] = None,
|
25
|
+
) -> torch.Tensor:
|
26
|
+
topk_weights, topk_ids = select_experts(
|
27
|
+
hidden_states=x,
|
28
|
+
router_logits=router_logits,
|
29
|
+
use_grouped_topk=use_grouped_topk,
|
30
|
+
top_k=top_k,
|
31
|
+
renormalize=renormalize,
|
32
|
+
topk_group=topk_group,
|
33
|
+
num_expert_group=num_expert_group,
|
34
|
+
custom_routing_function=custom_routing_function,
|
35
|
+
correction_bias=correction_bias,
|
36
|
+
torch_native=True,
|
37
|
+
)
|
38
|
+
|
39
|
+
w13_weights = layer.w13_weight[topk_ids]
|
40
|
+
w1_weights, w3_weights = torch.chunk(w13_weights, 2, dim=2)
|
41
|
+
w2_weights = layer.w2_weight[topk_ids]
|
42
|
+
x1 = torch.einsum("ti,taoi -> tao", x, w1_weights)
|
43
|
+
x1 = F.silu(x1)
|
44
|
+
x3 = torch.einsum("ti, taoi -> tao", x, w3_weights)
|
45
|
+
expert_outs = torch.einsum("tao, taio -> tai", (x1 * x3), w2_weights)
|
46
|
+
return torch.einsum("tai,ta -> ti", expert_outs, topk_weights.to(expert_outs.dtype))
|
@@ -1,14 +1,12 @@
|
|
1
1
|
from contextlib import contextmanager
|
2
2
|
from typing import Any, Dict, Optional
|
3
3
|
|
4
|
-
import sglang.srt.layers.fused_moe_triton.fused_moe # noqa
|
5
|
-
from sglang.srt.layers.fused_moe_triton.fused_moe import (
|
4
|
+
import sglang.srt.layers.moe.fused_moe_triton.fused_moe # noqa
|
5
|
+
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import (
|
6
6
|
fused_experts,
|
7
|
-
fused_topk,
|
8
7
|
get_config_file_name,
|
9
|
-
grouped_topk,
|
10
8
|
)
|
11
|
-
from sglang.srt.layers.fused_moe_triton.layer import (
|
9
|
+
from sglang.srt.layers.moe.fused_moe_triton.layer import (
|
12
10
|
FusedMoE,
|
13
11
|
FusedMoEMethodBase,
|
14
12
|
FusedMoeWeightScaleSupported,
|
@@ -37,8 +35,6 @@ __all__ = [
|
|
37
35
|
"override_config",
|
38
36
|
"get_config",
|
39
37
|
"fused_moe",
|
40
|
-
"fused_topk",
|
41
38
|
"fused_experts",
|
42
39
|
"get_config_file_name",
|
43
|
-
"grouped_topk",
|
44
40
|
]
|