sglang 0.4.0.post1__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_offline_throughput.py +6 -6
- sglang/bench_one_batch.py +1 -0
- sglang/bench_serving.py +9 -1
- sglang/check_env.py +140 -48
- sglang/lang/backend/runtime_endpoint.py +1 -0
- sglang/lang/chat_template.py +32 -0
- sglang/llama3_eval.py +316 -0
- sglang/srt/aio_rwlock.py +100 -0
- sglang/srt/configs/model_config.py +8 -1
- sglang/srt/constrained/xgrammar_backend.py +4 -1
- sglang/srt/layers/attention/flashinfer_backend.py +51 -5
- sglang/srt/layers/attention/triton_backend.py +16 -25
- sglang/srt/layers/attention/triton_ops/decode_attention.py +305 -350
- sglang/srt/layers/linear.py +20 -2
- sglang/srt/layers/logits_processor.py +133 -95
- sglang/srt/layers/{ep_moe → moe/ep_moe}/layer.py +18 -39
- sglang/srt/layers/moe/fused_moe_native.py +46 -0
- sglang/srt/layers/{fused_moe_triton → moe/fused_moe_triton}/__init__.py +3 -7
- sglang/srt/layers/{fused_moe_triton → moe/fused_moe_triton}/fused_moe.py +174 -119
- sglang/srt/layers/{fused_moe_triton → moe/fused_moe_triton}/layer.py +17 -49
- sglang/srt/layers/moe/topk.py +191 -0
- sglang/srt/layers/quantization/__init__.py +5 -50
- sglang/srt/layers/quantization/fp8.py +221 -36
- sglang/srt/layers/quantization/fp8_kernel.py +278 -0
- sglang/srt/layers/quantization/fp8_utils.py +90 -1
- sglang/srt/layers/radix_attention.py +8 -1
- sglang/srt/layers/sampler.py +27 -5
- sglang/srt/layers/torchao_utils.py +31 -0
- sglang/srt/managers/detokenizer_manager.py +37 -17
- sglang/srt/managers/io_struct.py +39 -10
- sglang/srt/managers/schedule_batch.py +54 -34
- sglang/srt/managers/schedule_policy.py +64 -5
- sglang/srt/managers/scheduler.py +171 -136
- sglang/srt/managers/tokenizer_manager.py +184 -133
- sglang/srt/mem_cache/base_prefix_cache.py +2 -2
- sglang/srt/mem_cache/chunk_cache.py +2 -2
- sglang/srt/mem_cache/memory_pool.py +15 -8
- sglang/srt/mem_cache/radix_cache.py +12 -2
- sglang/srt/model_executor/cuda_graph_runner.py +25 -11
- sglang/srt/model_executor/model_runner.py +28 -14
- sglang/srt/model_parallel.py +66 -5
- sglang/srt/models/dbrx.py +1 -1
- sglang/srt/models/deepseek.py +1 -1
- sglang/srt/models/deepseek_v2.py +67 -18
- sglang/srt/models/gemma2.py +34 -0
- sglang/srt/models/gemma2_reward.py +0 -1
- sglang/srt/models/granite.py +517 -0
- sglang/srt/models/grok.py +73 -9
- sglang/srt/models/llama.py +22 -0
- sglang/srt/models/llama_classification.py +11 -23
- sglang/srt/models/llama_reward.py +0 -2
- sglang/srt/models/llava.py +37 -14
- sglang/srt/models/mixtral.py +2 -2
- sglang/srt/models/olmoe.py +1 -1
- sglang/srt/models/qwen2.py +20 -0
- sglang/srt/models/qwen2_moe.py +1 -1
- sglang/srt/models/xverse_moe.py +1 -1
- sglang/srt/openai_api/adapter.py +8 -0
- sglang/srt/openai_api/protocol.py +9 -4
- sglang/srt/server.py +2 -1
- sglang/srt/server_args.py +19 -9
- sglang/srt/utils.py +40 -54
- sglang/test/test_block_fp8.py +341 -0
- sglang/test/test_utils.py +3 -2
- sglang/utils.py +10 -3
- sglang/version.py +1 -1
- {sglang-0.4.0.post1.dist-info → sglang-0.4.1.dist-info}/METADATA +12 -7
- {sglang-0.4.0.post1.dist-info → sglang-0.4.1.dist-info}/RECORD +73 -67
- sglang/srt/layers/fused_moe_patch.py +0 -133
- /sglang/srt/layers/{ep_moe → moe/ep_moe}/__init__.py +0 -0
- /sglang/srt/layers/{ep_moe → moe/ep_moe}/kernels.py +0 -0
- {sglang-0.4.0.post1.dist-info → sglang-0.4.1.dist-info}/LICENSE +0 -0
- {sglang-0.4.0.post1.dist-info → sglang-0.4.1.dist-info}/WHEEL +0 -0
- {sglang-0.4.0.post1.dist-info → sglang-0.4.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,517 @@
|
|
1
|
+
# Copyright 2023-2024 SGLang Team
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
#
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
+
#
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
+
# See the License for the specific language governing permissions and
|
12
|
+
# limitations under the License.
|
13
|
+
# ==============================================================================
|
14
|
+
|
15
|
+
# Adapted from
|
16
|
+
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1
|
17
|
+
"""Inference-only Granite model compatible with HuggingFace weights."""
|
18
|
+
|
19
|
+
import logging
|
20
|
+
from typing import Any, Dict, Iterable, Optional, Tuple
|
21
|
+
|
22
|
+
import torch
|
23
|
+
from torch import nn
|
24
|
+
from transformers import GraniteConfig
|
25
|
+
from vllm.distributed import get_tensor_model_parallel_world_size
|
26
|
+
from vllm.model_executor.layers.rotary_embedding import get_rope
|
27
|
+
|
28
|
+
from sglang.srt.layers.activation import SiluAndMul
|
29
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
30
|
+
from sglang.srt.layers.linear import (
|
31
|
+
MergedColumnParallelLinear,
|
32
|
+
QKVParallelLinear,
|
33
|
+
RowParallelLinear,
|
34
|
+
)
|
35
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
|
36
|
+
from sglang.srt.layers.pooler import Pooler, PoolingType
|
37
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
38
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
39
|
+
from sglang.srt.layers.vocab_parallel_embedding import (
|
40
|
+
ParallelLMHead,
|
41
|
+
VocabParallelEmbedding,
|
42
|
+
)
|
43
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
44
|
+
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
45
|
+
from sglang.utils import get_exception_traceback
|
46
|
+
|
47
|
+
logger = logging.getLogger(__name__)
|
48
|
+
|
49
|
+
|
50
|
+
class GraniteMLP(nn.Module):
|
51
|
+
def __init__(
|
52
|
+
self,
|
53
|
+
hidden_size: int,
|
54
|
+
intermediate_size: int,
|
55
|
+
hidden_act: str,
|
56
|
+
quant_config: Optional[QuantizationConfig] = None,
|
57
|
+
prefix: str = "",
|
58
|
+
) -> None:
|
59
|
+
super().__init__()
|
60
|
+
self.gate_up_proj = MergedColumnParallelLinear(
|
61
|
+
hidden_size,
|
62
|
+
[intermediate_size] * 2,
|
63
|
+
bias=False,
|
64
|
+
quant_config=quant_config,
|
65
|
+
prefix=f"{prefix}.gate_up_proj",
|
66
|
+
)
|
67
|
+
self.down_proj = RowParallelLinear(
|
68
|
+
intermediate_size,
|
69
|
+
hidden_size,
|
70
|
+
bias=False,
|
71
|
+
quant_config=quant_config,
|
72
|
+
prefix=f"{prefix}.down_proj",
|
73
|
+
)
|
74
|
+
if hidden_act != "silu":
|
75
|
+
raise ValueError(
|
76
|
+
f"Unsupported activation: {hidden_act}. "
|
77
|
+
"Only silu is supported for now."
|
78
|
+
)
|
79
|
+
self.act_fn = SiluAndMul()
|
80
|
+
|
81
|
+
def forward(self, x):
|
82
|
+
gate_up, _ = self.gate_up_proj(x)
|
83
|
+
x = self.act_fn(gate_up)
|
84
|
+
x, _ = self.down_proj(x)
|
85
|
+
return x
|
86
|
+
|
87
|
+
|
88
|
+
class GraniteAttention(nn.Module):
|
89
|
+
def __init__(
|
90
|
+
self,
|
91
|
+
config: GraniteConfig,
|
92
|
+
hidden_size: int,
|
93
|
+
num_heads: int,
|
94
|
+
num_kv_heads: int,
|
95
|
+
layer_id: int = 0,
|
96
|
+
rope_theta: float = 10000,
|
97
|
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
98
|
+
rope_is_neox_style: bool = True,
|
99
|
+
max_position_embeddings: int = 8192,
|
100
|
+
quant_config: Optional[QuantizationConfig] = None,
|
101
|
+
prefix: str = "",
|
102
|
+
) -> None:
|
103
|
+
super().__init__()
|
104
|
+
self.hidden_size = hidden_size
|
105
|
+
tp_size = get_tensor_model_parallel_world_size()
|
106
|
+
self.total_num_heads = num_heads
|
107
|
+
assert self.total_num_heads % tp_size == 0
|
108
|
+
self.num_heads = self.total_num_heads // tp_size
|
109
|
+
self.total_num_kv_heads = num_kv_heads
|
110
|
+
if self.total_num_kv_heads >= tp_size:
|
111
|
+
# Number of KV heads is greater than TP size, so we partition
|
112
|
+
# the KV heads across multiple tensor parallel GPUs.
|
113
|
+
assert self.total_num_kv_heads % tp_size == 0
|
114
|
+
else:
|
115
|
+
# Number of KV heads is less than TP size, so we replicate
|
116
|
+
# the KV heads across multiple tensor parallel GPUs.
|
117
|
+
assert tp_size % self.total_num_kv_heads == 0
|
118
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
119
|
+
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
120
|
+
self.head_dim = getattr(
|
121
|
+
config, "head_dim", self.hidden_size // self.total_num_heads
|
122
|
+
)
|
123
|
+
self.q_size = self.num_heads * self.head_dim
|
124
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
125
|
+
self.scaling = config.attention_multiplier
|
126
|
+
self.rope_theta = rope_theta
|
127
|
+
self.max_position_embeddings = max_position_embeddings
|
128
|
+
|
129
|
+
self.qkv_proj = QKVParallelLinear(
|
130
|
+
hidden_size,
|
131
|
+
self.head_dim,
|
132
|
+
self.total_num_heads,
|
133
|
+
self.total_num_kv_heads,
|
134
|
+
bias=False,
|
135
|
+
quant_config=quant_config,
|
136
|
+
prefix=f"{prefix}.qkv_proj",
|
137
|
+
)
|
138
|
+
self.o_proj = RowParallelLinear(
|
139
|
+
self.total_num_heads * self.head_dim,
|
140
|
+
hidden_size,
|
141
|
+
bias=False,
|
142
|
+
quant_config=quant_config,
|
143
|
+
prefix=f"{prefix}.o_proj",
|
144
|
+
)
|
145
|
+
|
146
|
+
self.rotary_emb = get_rope(
|
147
|
+
self.head_dim,
|
148
|
+
rotary_dim=self.head_dim,
|
149
|
+
max_position=max_position_embeddings,
|
150
|
+
base=rope_theta,
|
151
|
+
rope_scaling=rope_scaling,
|
152
|
+
is_neox_style=rope_is_neox_style,
|
153
|
+
)
|
154
|
+
self.attn = RadixAttention(
|
155
|
+
self.num_heads,
|
156
|
+
self.head_dim,
|
157
|
+
self.scaling,
|
158
|
+
num_kv_heads=self.num_kv_heads,
|
159
|
+
layer_id=layer_id,
|
160
|
+
)
|
161
|
+
|
162
|
+
def forward(
|
163
|
+
self,
|
164
|
+
positions: torch.Tensor,
|
165
|
+
hidden_states: torch.Tensor,
|
166
|
+
forward_batch: ForwardBatch,
|
167
|
+
) -> torch.Tensor:
|
168
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
169
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
170
|
+
q, k = self.rotary_emb(positions, q, k)
|
171
|
+
attn_output = self.attn(q, k, v, forward_batch)
|
172
|
+
output, _ = self.o_proj(attn_output)
|
173
|
+
return output
|
174
|
+
|
175
|
+
|
176
|
+
class GraniteDecoderLayer(nn.Module):
|
177
|
+
def __init__(
|
178
|
+
self,
|
179
|
+
config: GraniteConfig,
|
180
|
+
layer_id: int = 0,
|
181
|
+
quant_config: Optional[QuantizationConfig] = None,
|
182
|
+
prefix: str = "",
|
183
|
+
) -> None:
|
184
|
+
super().__init__()
|
185
|
+
self.hidden_size = config.hidden_size
|
186
|
+
self.residual_multiplier = config.residual_multiplier
|
187
|
+
rope_theta = getattr(config, "rope_theta", 10000)
|
188
|
+
rope_scaling = getattr(config, "rope_scaling", None)
|
189
|
+
if rope_scaling is not None and getattr(
|
190
|
+
config, "original_max_position_embeddings", None
|
191
|
+
):
|
192
|
+
rope_scaling["original_max_position_embeddings"] = (
|
193
|
+
config.original_max_position_embeddings
|
194
|
+
)
|
195
|
+
rope_is_neox_style = getattr(config, "rope_is_neox_style", True)
|
196
|
+
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
197
|
+
self.self_attn = GraniteAttention(
|
198
|
+
config=config,
|
199
|
+
hidden_size=self.hidden_size,
|
200
|
+
num_heads=config.num_attention_heads,
|
201
|
+
num_kv_heads=config.num_key_value_heads,
|
202
|
+
layer_id=layer_id,
|
203
|
+
rope_theta=rope_theta,
|
204
|
+
rope_scaling=rope_scaling,
|
205
|
+
rope_is_neox_style=rope_is_neox_style,
|
206
|
+
max_position_embeddings=max_position_embeddings,
|
207
|
+
quant_config=quant_config,
|
208
|
+
prefix=f"{prefix}.self_attn",
|
209
|
+
)
|
210
|
+
self.mlp = GraniteMLP(
|
211
|
+
hidden_size=self.hidden_size,
|
212
|
+
intermediate_size=config.intermediate_size,
|
213
|
+
hidden_act=config.hidden_act,
|
214
|
+
quant_config=quant_config,
|
215
|
+
prefix=f"{prefix}.mlp",
|
216
|
+
)
|
217
|
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
218
|
+
self.post_attention_layernorm = RMSNorm(
|
219
|
+
config.hidden_size, eps=config.rms_norm_eps
|
220
|
+
)
|
221
|
+
|
222
|
+
def forward(
|
223
|
+
self,
|
224
|
+
positions: torch.Tensor,
|
225
|
+
hidden_states: torch.Tensor,
|
226
|
+
forward_batch: ForwardBatch,
|
227
|
+
residual: Optional[torch.Tensor],
|
228
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
229
|
+
# Self Attention
|
230
|
+
if residual is None:
|
231
|
+
residual = hidden_states
|
232
|
+
hidden_states = self.input_layernorm(hidden_states)
|
233
|
+
else:
|
234
|
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
235
|
+
hidden_states = (
|
236
|
+
self.self_attn(
|
237
|
+
positions=positions,
|
238
|
+
hidden_states=hidden_states,
|
239
|
+
forward_batch=forward_batch,
|
240
|
+
)
|
241
|
+
* self.residual_multiplier
|
242
|
+
) # multiplier for Maximal Update Parameterization
|
243
|
+
|
244
|
+
# Fully Connected
|
245
|
+
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
246
|
+
hidden_states = self.mlp(hidden_states) * self.residual_multiplier
|
247
|
+
return hidden_states, residual
|
248
|
+
|
249
|
+
|
250
|
+
class GraniteModel(nn.Module):
|
251
|
+
def __init__(
|
252
|
+
self,
|
253
|
+
config: GraniteConfig,
|
254
|
+
quant_config: Optional[QuantizationConfig] = None,
|
255
|
+
) -> None:
|
256
|
+
super().__init__()
|
257
|
+
self.config = config
|
258
|
+
self.padding_idx = config.pad_token_id
|
259
|
+
self.vocab_size = config.vocab_size
|
260
|
+
self.embed_tokens = VocabParallelEmbedding(
|
261
|
+
config.vocab_size, config.hidden_size
|
262
|
+
)
|
263
|
+
self.layers = nn.ModuleList(
|
264
|
+
[
|
265
|
+
GraniteDecoderLayer(
|
266
|
+
config, i, quant_config=quant_config, prefix=f"model.layers.{i}"
|
267
|
+
)
|
268
|
+
for i in range(config.num_hidden_layers)
|
269
|
+
]
|
270
|
+
)
|
271
|
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
272
|
+
|
273
|
+
def forward(
|
274
|
+
self,
|
275
|
+
input_ids: torch.Tensor,
|
276
|
+
positions: torch.Tensor,
|
277
|
+
forward_batch: ForwardBatch,
|
278
|
+
input_embeds: torch.Tensor = None,
|
279
|
+
) -> torch.Tensor:
|
280
|
+
if input_embeds is None:
|
281
|
+
hidden_states = self.embed_tokens(input_ids)
|
282
|
+
else:
|
283
|
+
hidden_states = input_embeds
|
284
|
+
residual = None
|
285
|
+
hidden_states *= self.config.embedding_multiplier
|
286
|
+
for i in range(len(self.layers)):
|
287
|
+
layer = self.layers[i]
|
288
|
+
hidden_states, residual = layer(
|
289
|
+
positions,
|
290
|
+
hidden_states,
|
291
|
+
forward_batch,
|
292
|
+
residual,
|
293
|
+
)
|
294
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
295
|
+
return hidden_states
|
296
|
+
|
297
|
+
|
298
|
+
class GraniteForCausalLM(nn.Module):
|
299
|
+
def __init__(
|
300
|
+
self,
|
301
|
+
config: GraniteConfig,
|
302
|
+
quant_config: Optional[QuantizationConfig] = None,
|
303
|
+
) -> None:
|
304
|
+
super().__init__()
|
305
|
+
self.config = config
|
306
|
+
self.quant_config = quant_config
|
307
|
+
self.model = GraniteModel(config, quant_config=quant_config)
|
308
|
+
# If tie_word_embeddings == True, then input and output embeddings are
|
309
|
+
# the same tensor. Enforce during object creation so that weights will
|
310
|
+
# load correctly even if the LM head weights don't have a separate entry
|
311
|
+
# in the state dict.
|
312
|
+
self.lm_head = ParallelLMHead(
|
313
|
+
config.vocab_size, config.hidden_size, quant_config=quant_config
|
314
|
+
)
|
315
|
+
if self.config.tie_word_embeddings:
|
316
|
+
self.lm_head.tie_weights(self.model.embed_tokens)
|
317
|
+
|
318
|
+
# Granite logit scaling factors are applied via division, but
|
319
|
+
# LogitsProcessor expects a multiplicative factor.
|
320
|
+
if hasattr(config, "logits_scaling"):
|
321
|
+
logit_scale = 1.0 / config.logits_scaling
|
322
|
+
else:
|
323
|
+
logit_scale = None
|
324
|
+
self.logits_processor = LogitsProcessor(config, logit_scale=logit_scale)
|
325
|
+
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
|
326
|
+
self.stacked_params_mapping = [
|
327
|
+
# (param_name, shard_name, shard_id)
|
328
|
+
(".qkv_proj", ".q_proj", "q"),
|
329
|
+
(".qkv_proj", ".k_proj", "k"),
|
330
|
+
(".qkv_proj", ".v_proj", "v"),
|
331
|
+
(".gate_up_proj", ".gate_proj", 0),
|
332
|
+
(".gate_up_proj", ".up_proj", 1),
|
333
|
+
]
|
334
|
+
|
335
|
+
@torch.no_grad()
|
336
|
+
def forward(
|
337
|
+
self,
|
338
|
+
input_ids: torch.Tensor,
|
339
|
+
positions: torch.Tensor,
|
340
|
+
forward_batch: ForwardBatch,
|
341
|
+
input_embeds: torch.Tensor = None,
|
342
|
+
get_embedding: bool = False,
|
343
|
+
) -> LogitsProcessorOutput:
|
344
|
+
hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
|
345
|
+
if not get_embedding:
|
346
|
+
logits_processor_output: LogitsProcessorOutput = self.logits_processor(
|
347
|
+
input_ids, hidden_states, self.lm_head, forward_batch
|
348
|
+
)
|
349
|
+
return logits_processor_output
|
350
|
+
else:
|
351
|
+
return self.pooler(hidden_states, forward_batch)
|
352
|
+
|
353
|
+
def get_hidden_dim(self, module_name):
|
354
|
+
# return input_dim, output_dim
|
355
|
+
if module_name in ["q_proj", "o_proj", "qkv_proj"]:
|
356
|
+
return self.config.hidden_size, self.config.hidden_size
|
357
|
+
elif module_name in ["kv_proj"]:
|
358
|
+
return self.config.hidden_size, self.config.hidden_size // (
|
359
|
+
self.config.num_attention_heads // self.config.num_key_value_heads
|
360
|
+
)
|
361
|
+
elif module_name == "gate_up_proj":
|
362
|
+
return self.config.hidden_size, self.config.intermediate_size
|
363
|
+
elif module_name == "down_proj":
|
364
|
+
return self.config.intermediate_size, self.config.hidden_size
|
365
|
+
else:
|
366
|
+
raise NotImplementedError()
|
367
|
+
|
368
|
+
def get_module_name(self, name):
|
369
|
+
params_mapping = {
|
370
|
+
"q_proj": "qkv_proj",
|
371
|
+
"k_proj": "qkv_proj",
|
372
|
+
"v_proj": "qkv_proj",
|
373
|
+
"gate_proj": "gate_up_proj",
|
374
|
+
"up_proj": "gate_up_proj",
|
375
|
+
}
|
376
|
+
return params_mapping.get(name, name)
|
377
|
+
|
378
|
+
def get_module_name_from_weight_name(self, name):
|
379
|
+
for param_name, weight_name, shard_id, num_shard in self.stacked_params_mapping:
|
380
|
+
if weight_name in name:
|
381
|
+
return (
|
382
|
+
name.replace(weight_name, param_name)[: -len(".weight")],
|
383
|
+
num_shard,
|
384
|
+
)
|
385
|
+
return name[: -len(".weight")], 1
|
386
|
+
|
387
|
+
def get_num_params(self):
|
388
|
+
params_dict = dict(self.named_parameters())
|
389
|
+
return len(params_dict)
|
390
|
+
|
391
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
392
|
+
stacked_params_mapping = [
|
393
|
+
# (param_name, shard_name, shard_id)
|
394
|
+
(".qkv_proj", ".q_proj", "q"),
|
395
|
+
(".qkv_proj", ".k_proj", "k"),
|
396
|
+
(".qkv_proj", ".v_proj", "v"),
|
397
|
+
(".gate_up_proj", ".gate_proj", 0),
|
398
|
+
(".gate_up_proj", ".up_proj", 1),
|
399
|
+
]
|
400
|
+
|
401
|
+
params_dict = dict(self.named_parameters())
|
402
|
+
|
403
|
+
for name, loaded_weight in weights:
|
404
|
+
if "rotary_emb.inv_freq" in name or "projector" in name:
|
405
|
+
continue
|
406
|
+
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
407
|
+
# Models trained using ColossalAI may include these tensors in
|
408
|
+
# the checkpoint. Skip them.
|
409
|
+
continue
|
410
|
+
if name.startswith("model.vision_tower") and name not in params_dict:
|
411
|
+
continue
|
412
|
+
if "lm_head.weight" in name and self.config.tie_word_embeddings:
|
413
|
+
# Input and output embeddings are tied, so the output embeddings
|
414
|
+
# may not be present in the checkpoint. We assume that the input
|
415
|
+
# embeddings are always present in the checkpoint.
|
416
|
+
continue
|
417
|
+
|
418
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
419
|
+
if weight_name not in name:
|
420
|
+
continue
|
421
|
+
name = name.replace(weight_name, param_name)
|
422
|
+
# Skip loading extra bias for GPTQ models.
|
423
|
+
if name.endswith(".bias") and name not in params_dict:
|
424
|
+
continue
|
425
|
+
param = params_dict[name]
|
426
|
+
weight_loader = param.weight_loader
|
427
|
+
weight_loader(param, loaded_weight, shard_id)
|
428
|
+
break
|
429
|
+
else:
|
430
|
+
# This block only runs if the preceding for loop doesn't find
|
431
|
+
# a match for `name` in `stacked_params_mapping`.
|
432
|
+
|
433
|
+
# Skip loading extra bias for GPTQ models.
|
434
|
+
if name.endswith(".bias") and name not in params_dict:
|
435
|
+
continue
|
436
|
+
# Skip loading kv_scale from ckpts towards new design.
|
437
|
+
if name.endswith(".kv_scale") and name not in params_dict:
|
438
|
+
continue
|
439
|
+
param = params_dict[name]
|
440
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
441
|
+
weight_loader(param, loaded_weight)
|
442
|
+
|
443
|
+
def get_weights_by_name(
|
444
|
+
self, name: str, truncate_size: int = 100, tp_size: int = 1
|
445
|
+
) -> Optional[torch.Tensor]:
|
446
|
+
"""Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face.
|
447
|
+
|
448
|
+
Only used for unit test with an unoptimized performance.
|
449
|
+
For optimized performance, please use torch.save and torch.load.
|
450
|
+
"""
|
451
|
+
try:
|
452
|
+
if name == "lm_head.weight" and self.config.tie_word_embeddings:
|
453
|
+
logger.info(
|
454
|
+
"word embedding is tied for this model, return embed_tokens.weight as lm_head.weight."
|
455
|
+
)
|
456
|
+
return (
|
457
|
+
self.model.embed_tokens.weight.cpu()
|
458
|
+
.to(torch.float32)
|
459
|
+
.numpy()
|
460
|
+
.tolist()[:truncate_size]
|
461
|
+
)
|
462
|
+
|
463
|
+
mapped_name = name
|
464
|
+
mapped_shard_id = None
|
465
|
+
for param_name, weight_name, shard_id in self.stacked_params_mapping:
|
466
|
+
if weight_name in name:
|
467
|
+
mapped_name = name.replace(weight_name, param_name)
|
468
|
+
mapped_shard_id = shard_id
|
469
|
+
break
|
470
|
+
params_dict = dict(self.named_parameters())
|
471
|
+
param = params_dict[mapped_name]
|
472
|
+
if mapped_shard_id is not None:
|
473
|
+
if mapped_shard_id in ["q", "k", "v"]:
|
474
|
+
num_heads = self.config.num_attention_heads // tp_size
|
475
|
+
num_kv_heads = self.config.num_key_value_heads // tp_size
|
476
|
+
head_dim = (
|
477
|
+
self.config.hidden_size // self.config.num_attention_heads
|
478
|
+
)
|
479
|
+
if mapped_shard_id == "q":
|
480
|
+
offset = 0
|
481
|
+
size = num_heads * head_dim
|
482
|
+
elif mapped_shard_id == "k":
|
483
|
+
offset = num_heads * head_dim
|
484
|
+
size = num_kv_heads * head_dim
|
485
|
+
elif mapped_shard_id == "v":
|
486
|
+
offset = (num_heads + num_kv_heads) * head_dim
|
487
|
+
size = num_kv_heads * head_dim
|
488
|
+
weight = param.data.narrow(0, offset, size)
|
489
|
+
elif mapped_shard_id in [0, 1]:
|
490
|
+
intermediate_size = self.config.intermediate_size
|
491
|
+
slice_size = intermediate_size // tp_size
|
492
|
+
if mapped_shard_id == 0: # gate_proj
|
493
|
+
offset = 0
|
494
|
+
size = slice_size
|
495
|
+
elif mapped_shard_id == 1: # up_proj
|
496
|
+
offset = slice_size
|
497
|
+
size = slice_size
|
498
|
+
|
499
|
+
weight = param.data.narrow(0, offset, size)
|
500
|
+
else:
|
501
|
+
weight = param.data
|
502
|
+
else:
|
503
|
+
weight = param.data
|
504
|
+
if tp_size > 1 and ("o_proj" in name or "down_proj" in name):
|
505
|
+
gathered_weights = [torch.zeros_like(weight) for _ in range(tp_size)]
|
506
|
+
torch.distributed.all_gather(gathered_weights, weight)
|
507
|
+
weight = torch.cat(gathered_weights, dim=1)
|
508
|
+
return weight.cpu().to(torch.float32).numpy().tolist()[:truncate_size]
|
509
|
+
|
510
|
+
except Exception:
|
511
|
+
logger.error(
|
512
|
+
f"Error getting weights by name {name} in GraniteForCausalLM: {get_exception_traceback()}"
|
513
|
+
)
|
514
|
+
return None
|
515
|
+
|
516
|
+
|
517
|
+
EntryClass = [GraniteForCausalLM]
|