sglang 0.4.0.post1__py3-none-any.whl → 0.4.0.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_offline_throughput.py +18 -6
- sglang/bench_one_batch.py +13 -0
- sglang/bench_serving.py +8 -1
- sglang/check_env.py +140 -48
- sglang/lang/backend/runtime_endpoint.py +1 -0
- sglang/lang/chat_template.py +32 -0
- sglang/llama3_eval.py +316 -0
- sglang/srt/constrained/xgrammar_backend.py +4 -1
- sglang/srt/layers/attention/flashinfer_backend.py +2 -0
- sglang/srt/layers/attention/triton_backend.py +16 -25
- sglang/srt/layers/attention/triton_ops/decode_attention.py +305 -350
- sglang/srt/layers/ep_moe/layer.py +4 -0
- sglang/srt/layers/fused_moe_triton/fused_moe.py +64 -21
- sglang/srt/layers/fused_moe_triton/layer.py +1 -1
- sglang/srt/layers/logits_processor.py +133 -95
- sglang/srt/layers/quantization/__init__.py +2 -47
- sglang/srt/layers/quantization/fp8.py +58 -10
- sglang/srt/layers/radix_attention.py +8 -1
- sglang/srt/layers/sampler.py +27 -5
- sglang/srt/layers/torchao_utils.py +35 -0
- sglang/srt/managers/detokenizer_manager.py +37 -17
- sglang/srt/managers/io_struct.py +39 -10
- sglang/srt/managers/schedule_batch.py +38 -24
- sglang/srt/managers/schedule_policy.py +64 -5
- sglang/srt/managers/scheduler.py +169 -134
- sglang/srt/managers/tokenizer_manager.py +99 -58
- sglang/srt/mem_cache/base_prefix_cache.py +2 -2
- sglang/srt/mem_cache/chunk_cache.py +2 -2
- sglang/srt/mem_cache/radix_cache.py +12 -2
- sglang/srt/model_executor/cuda_graph_runner.py +24 -10
- sglang/srt/model_executor/model_runner.py +22 -14
- sglang/srt/model_parallel.py +66 -5
- sglang/srt/models/gemma2.py +34 -0
- sglang/srt/models/gemma2_reward.py +0 -1
- sglang/srt/models/granite.py +517 -0
- sglang/srt/models/grok.py +72 -8
- sglang/srt/models/llama.py +22 -0
- sglang/srt/models/llama_classification.py +11 -23
- sglang/srt/models/llama_reward.py +0 -2
- sglang/srt/models/llava.py +37 -14
- sglang/srt/models/qwen2.py +20 -0
- sglang/srt/openai_api/adapter.py +4 -0
- sglang/srt/openai_api/protocol.py +9 -4
- sglang/srt/server.py +1 -1
- sglang/srt/server_args.py +19 -9
- sglang/srt/utils.py +7 -10
- sglang/test/test_utils.py +3 -2
- sglang/utils.py +10 -3
- sglang/version.py +1 -1
- {sglang-0.4.0.post1.dist-info → sglang-0.4.0.post2.dist-info}/METADATA +11 -6
- {sglang-0.4.0.post1.dist-info → sglang-0.4.0.post2.dist-info}/RECORD +54 -52
- {sglang-0.4.0.post1.dist-info → sglang-0.4.0.post2.dist-info}/LICENSE +0 -0
- {sglang-0.4.0.post1.dist-info → sglang-0.4.0.post2.dist-info}/WHEEL +0 -0
- {sglang-0.4.0.post1.dist-info → sglang-0.4.0.post2.dist-info}/top_level.txt +0 -0
sglang/llama3_eval.py
ADDED
@@ -0,0 +1,316 @@
|
|
1
|
+
# Adapt from https://github.com/fw-ai/llm_eval_meta
|
2
|
+
|
3
|
+
import argparse
|
4
|
+
import asyncio
|
5
|
+
import os
|
6
|
+
import pickle
|
7
|
+
import re
|
8
|
+
import shutil
|
9
|
+
from collections import defaultdict
|
10
|
+
from dataclasses import dataclass
|
11
|
+
|
12
|
+
import httpx
|
13
|
+
import numpy as np
|
14
|
+
import openai
|
15
|
+
import transformers
|
16
|
+
from datasets import load_dataset
|
17
|
+
from openai import AsyncOpenAI
|
18
|
+
from tqdm import tqdm
|
19
|
+
|
20
|
+
# Mapping providers to their clients and models
|
21
|
+
provider_to_models = {
|
22
|
+
"b10": {
|
23
|
+
"8b": "meta-llama/Llama-3.1-8B-Instruct",
|
24
|
+
"70b": "meta-llama/Llama-3.1-70B-Instruct",
|
25
|
+
"405b": "meta-llama/Llama-3.1-405B-Instruct",
|
26
|
+
},
|
27
|
+
"oai": {
|
28
|
+
"8b": "meta-llama/Llama-3.1-8B-Instruct",
|
29
|
+
"70b": "meta-llama/Llama-3.1-70B-Instruct",
|
30
|
+
"405b": "meta-llama/Llama-3.1-405B-Instruct",
|
31
|
+
},
|
32
|
+
"sgl": {
|
33
|
+
"8b": "meta-llama/Llama-3.1-8B-Instruct",
|
34
|
+
"70b": "meta-llama/Llama-3.1-70B-Instruct",
|
35
|
+
"405b": "meta-llama/Llama-3.1-405B-Instruct",
|
36
|
+
},
|
37
|
+
}
|
38
|
+
|
39
|
+
|
40
|
+
async def fetch_responses(
|
41
|
+
client, prompt, semaphore, index, provider, model_size, output_dir, max_tokens
|
42
|
+
):
|
43
|
+
output_file = os.path.join(output_dir, f"response_{index}.pkl")
|
44
|
+
if os.path.exists(output_file):
|
45
|
+
print(f"File {output_file} already exists, skipping.")
|
46
|
+
return
|
47
|
+
|
48
|
+
async with semaphore:
|
49
|
+
response = await client.completions.create(
|
50
|
+
model=provider_to_models[provider][model_size],
|
51
|
+
prompt=prompt,
|
52
|
+
temperature=0.0,
|
53
|
+
max_tokens=max_tokens,
|
54
|
+
)
|
55
|
+
if isinstance(response, openai.BadRequestError):
|
56
|
+
with open(output_file, "wb") as f:
|
57
|
+
pickle.dump("bad_response", f)
|
58
|
+
assert isinstance(response, openai.types.completion.Completion)
|
59
|
+
# Save response to a file
|
60
|
+
with open(output_file, "wb") as f:
|
61
|
+
pickle.dump(response, f)
|
62
|
+
|
63
|
+
|
64
|
+
TASK_TO_MAX_TOKENS = {
|
65
|
+
"evals__mmlu__details": 1,
|
66
|
+
"evals__mmlu__0_shot__cot__details": 1024,
|
67
|
+
# Official meta uses 1024, but a small % (.05) of questions are answered correctly after relaxing
|
68
|
+
"evals__mmlu_pro__details": 2048,
|
69
|
+
"evals__gsm8k__details": 1024,
|
70
|
+
}
|
71
|
+
|
72
|
+
TASK_TO_EVAL_SET = {
|
73
|
+
"mmlu": "evals__mmlu__details",
|
74
|
+
"mmlu_cot": "evals__mmlu__0_shot__cot__details",
|
75
|
+
"mmlu_pro": "evals__mmlu_pro__details",
|
76
|
+
"gsm8k": "evals__gsm8k__details",
|
77
|
+
}
|
78
|
+
|
79
|
+
|
80
|
+
class CustomAsyncHTTPXClient(httpx.AsyncClient):
|
81
|
+
async def send(self, request: httpx.Request, *args, **kwargs) -> httpx.Response:
|
82
|
+
request.url = httpx.URL(
|
83
|
+
f"https://model-{os.getenv('MODEL_ID')}.api.baseten.co/development/predict"
|
84
|
+
)
|
85
|
+
return await super().send(request, *args, **kwargs)
|
86
|
+
|
87
|
+
|
88
|
+
def get_client(provider):
|
89
|
+
if provider not in "b10":
|
90
|
+
if os.getenv("OPENAI_API_KEY") == None:
|
91
|
+
os.environ["OPENAI_API_KEY"] = "EMPTY"
|
92
|
+
return {
|
93
|
+
"oai": AsyncOpenAI(base_url="http://127.0.0.1:8000/v1/"),
|
94
|
+
"b10": AsyncOpenAI(
|
95
|
+
api_key=f"Api-Key {os.getenv('OPENAI_API_KEY')}",
|
96
|
+
base_url=f"https://model-{os.getenv('MODEL_ID')}.api.baseten.co/development/predict",
|
97
|
+
http_client=CustomAsyncHTTPXClient(),
|
98
|
+
),
|
99
|
+
"sgl": AsyncOpenAI(base_url="http://127.0.0.1:30000/v1/"),
|
100
|
+
}[provider]
|
101
|
+
|
102
|
+
|
103
|
+
# Define the benchmark function
|
104
|
+
async def benchmark(args):
|
105
|
+
ds = load_dataset(
|
106
|
+
"meta-llama/Llama-3.1-405B-Instruct-evals",
|
107
|
+
f"Llama-3.1-405B-Instruct-{TASK_TO_EVAL_SET[args.task]}",
|
108
|
+
)
|
109
|
+
semaphore = asyncio.Semaphore(args.concurrency) # Limit to 16 concurrent tasks
|
110
|
+
|
111
|
+
if args.num_examples is None:
|
112
|
+
args.num_examples = len(ds["latest"]["input_final_prompts"])
|
113
|
+
prompts = ds["latest"]["input_final_prompts"][: args.num_examples]
|
114
|
+
|
115
|
+
# Create the output directory if it does not exist
|
116
|
+
os.makedirs(args.output_dir, exist_ok=True)
|
117
|
+
|
118
|
+
tasks = []
|
119
|
+
# Create the tasks with tqdm progress bar
|
120
|
+
max_tokens = TASK_TO_MAX_TOKENS[TASK_TO_EVAL_SET[args.task]]
|
121
|
+
client = get_client(args.provider)
|
122
|
+
for idx, prompt in enumerate(tqdm(prompts, desc="Creating tasks")):
|
123
|
+
tasks.append(
|
124
|
+
asyncio.create_task(
|
125
|
+
fetch_responses(
|
126
|
+
client,
|
127
|
+
f"<|begin_of_text|>{prompt[0]}",
|
128
|
+
semaphore,
|
129
|
+
idx,
|
130
|
+
args.provider,
|
131
|
+
args.model_size,
|
132
|
+
args.output_dir,
|
133
|
+
max_tokens=max_tokens,
|
134
|
+
)
|
135
|
+
)
|
136
|
+
)
|
137
|
+
|
138
|
+
# Run the tasks with tqdm progress bar
|
139
|
+
for future in tqdm(
|
140
|
+
asyncio.as_completed(tasks), total=len(tasks), desc="Processing tasks"
|
141
|
+
):
|
142
|
+
await future
|
143
|
+
|
144
|
+
|
145
|
+
def get_mmlu_answer(response):
|
146
|
+
if response is not None:
|
147
|
+
return response.choices[0].text.lstrip().rstrip().upper().replace(".", "")
|
148
|
+
return None
|
149
|
+
|
150
|
+
|
151
|
+
def get_mmlu_cot_answer(response):
|
152
|
+
pattern = r"The best answer is (.+)\.?"
|
153
|
+
match = re.search(pattern, response.choices[0].text)
|
154
|
+
if match:
|
155
|
+
return match.group(1).replace(".", "").replace("*", "")
|
156
|
+
|
157
|
+
pattern = r"the best answer is (.+)\.?"
|
158
|
+
match = re.search(pattern, response.choices[0].text)
|
159
|
+
if match:
|
160
|
+
return match.group(1).replace(".", "")
|
161
|
+
|
162
|
+
pattern = r"The correct answer is (.+)\.?"
|
163
|
+
match = re.search(pattern, response.choices[0].text)
|
164
|
+
if match:
|
165
|
+
return match.group(1).replace(".", "")
|
166
|
+
|
167
|
+
pattern = r"the correct answer is (.+)\.?"
|
168
|
+
match = re.search(pattern, response.choices[0].text)
|
169
|
+
if match:
|
170
|
+
return match.group(1).replace(".", "")
|
171
|
+
|
172
|
+
|
173
|
+
def get_answer_gsm8k(response):
|
174
|
+
pattern = r"The final answer is (.+)\.?"
|
175
|
+
match = re.search(pattern, response.choices[0].text)
|
176
|
+
if match:
|
177
|
+
s = match.group(1)
|
178
|
+
for ok_symbol in ["%", "$"]:
|
179
|
+
s = s.replace(ok_symbol, "")
|
180
|
+
return s
|
181
|
+
|
182
|
+
|
183
|
+
TASK_TO_ANSWER_EXTRACTOR = {
|
184
|
+
"evals__mmlu__details": get_mmlu_answer,
|
185
|
+
"evals__mmlu__0_shot__cot__details": get_mmlu_cot_answer,
|
186
|
+
"evals__gsm8k__details": get_answer_gsm8k,
|
187
|
+
"evals__mmlu_pro__details": get_mmlu_cot_answer,
|
188
|
+
}
|
189
|
+
|
190
|
+
|
191
|
+
def get_dataset_from_task(task, response_path, model_size):
|
192
|
+
ds_405b = load_dataset(
|
193
|
+
f"meta-llama/Llama-3.1-405B-Instruct-evals",
|
194
|
+
f"Llama-3.1-405B-Instruct-{task}",
|
195
|
+
)
|
196
|
+
ds_405b_hash_order = [x[0] for x in ds_405b["latest"]["input_final_prompts_hash"]]
|
197
|
+
|
198
|
+
if "70b" in model_size or "8b" in model_size:
|
199
|
+
if "70" in model_size:
|
200
|
+
ref_model_ds = load_dataset(
|
201
|
+
f"meta-llama/Llama-3.1-70B-Instruct-evals",
|
202
|
+
f"Llama-3.1-70B-Instruct-{task}",
|
203
|
+
)
|
204
|
+
else:
|
205
|
+
ref_model_ds = load_dataset(
|
206
|
+
f"meta-llama/Llama-3.1-8B-Instruct-evals",
|
207
|
+
f"Llama-3.1-8B-Instruct-{task}",
|
208
|
+
)
|
209
|
+
|
210
|
+
hash_to_row = {}
|
211
|
+
for row in ref_model_ds["latest"]:
|
212
|
+
hash_to_row[row["input_final_prompts_hash"][0]] = row
|
213
|
+
reordered_rows = []
|
214
|
+
for prompt_hash in ds_405b_hash_order:
|
215
|
+
reordered_rows.append(hash_to_row[prompt_hash])
|
216
|
+
ref_model_ds["latest"] = reordered_rows
|
217
|
+
return ref_model_ds
|
218
|
+
|
219
|
+
return ds_405b
|
220
|
+
|
221
|
+
|
222
|
+
def analyze(task, response_path, model_size):
|
223
|
+
ds = get_dataset_from_task(task, response_path, model_size)
|
224
|
+
|
225
|
+
responses = []
|
226
|
+
total = len(ds["latest"])
|
227
|
+
|
228
|
+
for i in range(0, total):
|
229
|
+
response = pickle.load(
|
230
|
+
open(os.path.join(response_path, f"response_{i}.pkl"), "rb")
|
231
|
+
)
|
232
|
+
responses.append(response)
|
233
|
+
|
234
|
+
@dataclass
|
235
|
+
class Stats:
|
236
|
+
correct: int = 0
|
237
|
+
total: int = 0
|
238
|
+
meta_correct: int = 0
|
239
|
+
|
240
|
+
average: float = None
|
241
|
+
|
242
|
+
subtask_name_to_stats = defaultdict(lambda: Stats())
|
243
|
+
|
244
|
+
for response, ds_row in zip(responses, ds["latest"]):
|
245
|
+
model_answer = TASK_TO_ANSWER_EXTRACTOR[task](response)
|
246
|
+
|
247
|
+
subtask = ds_row["subtask_name"]
|
248
|
+
|
249
|
+
is_eval_correct = model_answer in ds_row["input_correct_responses"]
|
250
|
+
if is_eval_correct:
|
251
|
+
subtask_name_to_stats[subtask].correct += 1
|
252
|
+
|
253
|
+
if ds_row["is_correct"]:
|
254
|
+
subtask_name_to_stats[subtask].meta_correct += 1
|
255
|
+
|
256
|
+
subtask_name_to_stats[subtask].total += 1
|
257
|
+
|
258
|
+
micro_stats = Stats()
|
259
|
+
for subtask, stats in subtask_name_to_stats.items():
|
260
|
+
stats.average = stats.correct / stats.total
|
261
|
+
stats.meta_average = stats.meta_correct / stats.total
|
262
|
+
|
263
|
+
micro_stats.correct += stats.correct
|
264
|
+
micro_stats.total += stats.total
|
265
|
+
micro_stats.meta_correct += stats.meta_correct
|
266
|
+
|
267
|
+
micro_stats.average = micro_stats.correct / micro_stats.total
|
268
|
+
micro_stats.meta_average = micro_stats.meta_correct / micro_stats.total
|
269
|
+
|
270
|
+
print("Macro average", np.mean([x.average for x in subtask_name_to_stats.values()]))
|
271
|
+
print(
|
272
|
+
"Meta Macro average",
|
273
|
+
np.mean([x.meta_average for x in subtask_name_to_stats.values()]),
|
274
|
+
)
|
275
|
+
print("Micro average", micro_stats.average)
|
276
|
+
print("Meta Micro average", micro_stats.meta_average)
|
277
|
+
|
278
|
+
|
279
|
+
# Entry point for the script
|
280
|
+
if __name__ == "__main__":
|
281
|
+
parser = argparse.ArgumentParser(
|
282
|
+
description="Script to run model with specified parameters."
|
283
|
+
)
|
284
|
+
parser.add_argument(
|
285
|
+
"--model-size",
|
286
|
+
type=str,
|
287
|
+
default="8b",
|
288
|
+
help="Size of the model (e.g., 8b or 70b)",
|
289
|
+
)
|
290
|
+
parser.add_argument(
|
291
|
+
"--provider",
|
292
|
+
type=str,
|
293
|
+
default="sgl",
|
294
|
+
help="Provider name (e.g., sgl, oai, b10)",
|
295
|
+
)
|
296
|
+
parser.add_argument(
|
297
|
+
"--task",
|
298
|
+
type=str,
|
299
|
+
required=True,
|
300
|
+
help="Task (e.g., mmlu, mmlu_cot, mmlu_pro, gsm8k)",
|
301
|
+
)
|
302
|
+
parser.add_argument(
|
303
|
+
"--num-examples", type=int, default=None, help="Number of examples to process"
|
304
|
+
)
|
305
|
+
parser.add_argument("--concurrency", type=int, default=16)
|
306
|
+
parser.add_argument(
|
307
|
+
"--output-dir",
|
308
|
+
type=str,
|
309
|
+
default="tmp-output-dir",
|
310
|
+
help="Directory to save responses",
|
311
|
+
)
|
312
|
+
|
313
|
+
args = parser.parse_args()
|
314
|
+
asyncio.run(benchmark(args))
|
315
|
+
analyze(TASK_TO_EVAL_SET[args.task], args.output_dir, args.model_size)
|
316
|
+
shutil.rmtree("tmp-output-dir", ignore_errors=True)
|
@@ -117,7 +117,10 @@ class XGrammarGrammarBackend(BaseGrammarBackend):
|
|
117
117
|
key_type, key_string = key
|
118
118
|
if key_type == "json":
|
119
119
|
try:
|
120
|
-
|
120
|
+
if key_string == "$$ANY$$":
|
121
|
+
ctx = self.grammar_compiler.compile_builtin_json_grammar()
|
122
|
+
else:
|
123
|
+
ctx = self.grammar_compiler.compile_json_schema(schema=key_string)
|
121
124
|
except RuntimeError as e:
|
122
125
|
logging.warning(
|
123
126
|
f"Skip invalid json_schema: json_schema={key_string}, {e=}"
|
@@ -678,6 +678,7 @@ class FlashInferIndicesUpdaterPrefill:
|
|
678
678
|
self.num_qo_heads,
|
679
679
|
self.num_kv_heads,
|
680
680
|
self.head_dim,
|
681
|
+
q_data_type=self.q_data_type,
|
681
682
|
)
|
682
683
|
|
683
684
|
# cached part
|
@@ -691,6 +692,7 @@ class FlashInferIndicesUpdaterPrefill:
|
|
691
692
|
self.num_kv_heads,
|
692
693
|
self.head_dim,
|
693
694
|
1,
|
695
|
+
q_data_type=self.q_data_type,
|
694
696
|
)
|
695
697
|
|
696
698
|
|
@@ -5,7 +5,6 @@ from typing import TYPE_CHECKING
|
|
5
5
|
import torch
|
6
6
|
|
7
7
|
from sglang.srt.layers.attention import AttentionBackend
|
8
|
-
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
9
8
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
10
9
|
|
11
10
|
if TYPE_CHECKING:
|
@@ -35,10 +34,8 @@ class TritonAttnBackend(AttentionBackend):
|
|
35
34
|
model_runner.model_config.num_attention_heads // model_runner.tp_size
|
36
35
|
)
|
37
36
|
|
38
|
-
|
39
|
-
|
40
|
-
else:
|
41
|
-
self.reduce_dtype = torch.float16
|
37
|
+
self.num_kv_splits = model_runner.server_args.triton_attention_num_kv_splits
|
38
|
+
self.v_head_dim = model_runner.token_to_kv_pool.get_value_buffer(0).shape[-1]
|
42
39
|
|
43
40
|
self.forward_metadata = None
|
44
41
|
|
@@ -50,23 +47,23 @@ class TritonAttnBackend(AttentionBackend):
|
|
50
47
|
"""Init auxiliary variables for triton attention backend."""
|
51
48
|
|
52
49
|
if forward_batch.forward_mode.is_decode():
|
53
|
-
start_loc = torch.zeros_like(forward_batch.seq_lens, dtype=torch.int32)
|
54
|
-
start_loc[1:] = torch.cumsum(forward_batch.seq_lens[:-1], dim=0)
|
55
|
-
|
56
|
-
total_num_tokens = forward_batch.seq_lens_sum
|
57
50
|
attn_logits = torch.empty(
|
58
|
-
(
|
59
|
-
|
51
|
+
(
|
52
|
+
forward_batch.batch_size,
|
53
|
+
self.num_head,
|
54
|
+
self.num_kv_splits,
|
55
|
+
self.v_head_dim + 1,
|
56
|
+
),
|
57
|
+
dtype=torch.float32,
|
60
58
|
device=self.device,
|
61
59
|
)
|
62
60
|
|
63
|
-
max_seq_len = torch.max(forward_batch.seq_lens).item()
|
64
61
|
max_extend_len = None
|
65
62
|
else:
|
66
|
-
|
63
|
+
attn_logits = None
|
67
64
|
max_extend_len = torch.max(forward_batch.extend_seq_lens).item()
|
68
65
|
|
69
|
-
self.forward_metadata =
|
66
|
+
self.forward_metadata = attn_logits, max_extend_len
|
70
67
|
|
71
68
|
def init_cuda_graph_state(self, max_bs: int):
|
72
69
|
self.cuda_graph_max_total_num_tokens = max_bs * self.cuda_graph_max_seq_len
|
@@ -75,11 +72,8 @@ class TritonAttnBackend(AttentionBackend):
|
|
75
72
|
(max_bs,), dtype=torch.int32, device=self.device
|
76
73
|
)
|
77
74
|
self.cuda_graph_attn_logits = torch.empty(
|
78
|
-
(
|
79
|
-
|
80
|
-
self.cuda_graph_max_total_num_tokens,
|
81
|
-
),
|
82
|
-
dtype=self.reduce_dtype,
|
75
|
+
(max_bs, self.num_head, self.num_kv_splits, self.v_head_dim + 1),
|
76
|
+
dtype=torch.float32,
|
83
77
|
device="cuda",
|
84
78
|
)
|
85
79
|
|
@@ -92,9 +86,7 @@ class TritonAttnBackend(AttentionBackend):
|
|
92
86
|
):
|
93
87
|
# NOTE: encoder_lens expected to be zeros or None
|
94
88
|
self.forward_metadata = (
|
95
|
-
self.cuda_graph_start_loc,
|
96
89
|
self.cuda_graph_attn_logits,
|
97
|
-
self.cuda_graph_max_seq_len,
|
98
90
|
None,
|
99
91
|
)
|
100
92
|
|
@@ -133,7 +125,7 @@ class TritonAttnBackend(AttentionBackend):
|
|
133
125
|
layer, forward_batch.out_cache_loc, k, v
|
134
126
|
)
|
135
127
|
|
136
|
-
|
128
|
+
_, max_extend_len = self.forward_metadata
|
137
129
|
self.extend_attention_fwd(
|
138
130
|
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
|
139
131
|
k.contiguous(),
|
@@ -171,7 +163,7 @@ class TritonAttnBackend(AttentionBackend):
|
|
171
163
|
else:
|
172
164
|
o = torch.empty_like(q)
|
173
165
|
|
174
|
-
|
166
|
+
attn_logits, _ = self.forward_metadata
|
175
167
|
|
176
168
|
if save_kv_cache:
|
177
169
|
forward_batch.token_to_kv_pool.set_kv_buffer(
|
@@ -185,10 +177,9 @@ class TritonAttnBackend(AttentionBackend):
|
|
185
177
|
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
|
186
178
|
forward_batch.req_to_token_pool.req_to_token,
|
187
179
|
forward_batch.req_pool_indices,
|
188
|
-
start_loc,
|
189
180
|
forward_batch.seq_lens,
|
190
181
|
attn_logits,
|
191
|
-
|
182
|
+
self.num_kv_splits,
|
192
183
|
layer.scaling,
|
193
184
|
layer.logit_cap,
|
194
185
|
)
|