sglang 0.3.6.post3__py3-none-any.whl → 0.4.0.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +1 -1
- sglang/bench_one_batch.py +4 -0
- sglang/bench_serving.py +13 -0
- sglang/check_env.py +1 -1
- sglang/srt/_custom_ops.py +118 -0
- sglang/srt/configs/device_config.py +17 -0
- sglang/srt/configs/load_config.py +84 -0
- sglang/srt/configs/model_config.py +161 -4
- sglang/srt/configs/qwen2vl.py +5 -8
- sglang/srt/constrained/outlines_backend.py +11 -1
- sglang/srt/constrained/outlines_jump_forward.py +8 -1
- sglang/srt/constrained/xgrammar_backend.py +5 -5
- sglang/srt/distributed/__init__.py +3 -0
- sglang/srt/distributed/communication_op.py +34 -0
- sglang/srt/distributed/device_communicators/__init__.py +0 -0
- sglang/srt/distributed/device_communicators/cuda_wrapper.py +182 -0
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +352 -0
- sglang/srt/distributed/device_communicators/custom_all_reduce_utils.py +291 -0
- sglang/srt/distributed/device_communicators/hpu_communicator.py +48 -0
- sglang/srt/distributed/device_communicators/pynccl.py +204 -0
- sglang/srt/distributed/device_communicators/pynccl_wrapper.py +362 -0
- sglang/srt/distributed/device_communicators/shm_broadcast.py +568 -0
- sglang/srt/distributed/device_communicators/xpu_communicator.py +47 -0
- sglang/srt/distributed/parallel_state.py +1275 -0
- sglang/srt/distributed/utils.py +223 -0
- sglang/srt/hf_transformers_utils.py +37 -1
- sglang/srt/layers/attention/__init__.py +5 -2
- sglang/srt/layers/attention/double_sparsity_backend.py +22 -8
- sglang/srt/layers/attention/flashinfer_backend.py +33 -20
- sglang/srt/layers/attention/torch_native_backend.py +299 -0
- sglang/srt/layers/attention/triton_backend.py +22 -8
- sglang/srt/layers/attention/triton_ops/extend_attention.py +3 -0
- sglang/srt/layers/ep_moe/__init__.py +0 -0
- sglang/srt/layers/ep_moe/kernels.py +349 -0
- sglang/srt/layers/ep_moe/layer.py +661 -0
- sglang/srt/layers/fused_moe_patch.py +20 -11
- sglang/srt/layers/linear.py +1 -0
- sglang/srt/layers/logits_processor.py +17 -3
- sglang/srt/layers/quantization/__init__.py +36 -2
- sglang/srt/layers/quantization/fp8.py +559 -0
- sglang/srt/layers/quantization/fp8_utils.py +27 -0
- sglang/srt/layers/radix_attention.py +4 -2
- sglang/srt/layers/sampler.py +2 -0
- sglang/srt/layers/torchao_utils.py +23 -45
- sglang/srt/layers/vocab_parallel_embedding.py +1 -0
- sglang/srt/lora/lora.py +1 -1
- sglang/srt/managers/io_struct.py +48 -2
- sglang/srt/managers/schedule_batch.py +19 -14
- sglang/srt/managers/schedule_policy.py +7 -4
- sglang/srt/managers/scheduler.py +145 -85
- sglang/srt/managers/tokenizer_manager.py +166 -68
- sglang/srt/managers/tp_worker.py +36 -3
- sglang/srt/managers/tp_worker_overlap_thread.py +28 -8
- sglang/srt/mem_cache/memory_pool.py +5 -1
- sglang/srt/model_executor/cuda_graph_runner.py +30 -7
- sglang/srt/model_executor/forward_batch_info.py +9 -4
- sglang/srt/model_executor/model_runner.py +146 -153
- sglang/srt/model_loader/__init__.py +34 -0
- sglang/srt/model_loader/loader.py +1139 -0
- sglang/srt/model_loader/utils.py +41 -0
- sglang/srt/model_loader/weight_utils.py +640 -0
- sglang/srt/model_parallel.py +1 -5
- sglang/srt/models/baichuan.py +9 -10
- sglang/srt/models/chatglm.py +6 -15
- sglang/srt/models/commandr.py +4 -5
- sglang/srt/models/dbrx.py +2 -3
- sglang/srt/models/deepseek.py +4 -11
- sglang/srt/models/deepseek_v2.py +90 -18
- sglang/srt/models/exaone.py +2 -3
- sglang/srt/models/gemma.py +2 -6
- sglang/srt/models/gemma2.py +3 -14
- sglang/srt/models/gemma2_reward.py +0 -1
- sglang/srt/models/gpt2.py +5 -12
- sglang/srt/models/gpt_bigcode.py +6 -22
- sglang/srt/models/grok.py +3 -8
- sglang/srt/models/internlm2.py +2 -3
- sglang/srt/models/internlm2_reward.py +0 -1
- sglang/srt/models/llama.py +96 -31
- sglang/srt/models/llama_classification.py +1 -2
- sglang/srt/models/llama_embedding.py +1 -2
- sglang/srt/models/llama_reward.py +2 -3
- sglang/srt/models/llava.py +1 -4
- sglang/srt/models/llavavid.py +1 -2
- sglang/srt/models/minicpm.py +4 -7
- sglang/srt/models/minicpm3.py +6 -19
- sglang/srt/models/mixtral.py +24 -14
- sglang/srt/models/mixtral_quant.py +2 -3
- sglang/srt/models/mllama.py +3 -7
- sglang/srt/models/olmo.py +2 -8
- sglang/srt/models/olmo2.py +0 -1
- sglang/srt/models/olmoe.py +3 -5
- sglang/srt/models/phi3_small.py +8 -13
- sglang/srt/models/qwen.py +2 -3
- sglang/srt/models/qwen2.py +10 -9
- sglang/srt/models/qwen2_moe.py +4 -16
- sglang/srt/models/qwen2_vl.py +2 -6
- sglang/srt/models/registry.py +99 -0
- sglang/srt/models/stablelm.py +2 -3
- sglang/srt/models/torch_native_llama.py +6 -17
- sglang/srt/models/xverse.py +2 -4
- sglang/srt/models/xverse_moe.py +4 -11
- sglang/srt/models/yivl.py +2 -3
- sglang/srt/openai_api/adapter.py +9 -5
- sglang/srt/openai_api/protocol.py +1 -0
- sglang/srt/sampling/sampling_batch_info.py +9 -8
- sglang/srt/server.py +270 -173
- sglang/srt/server_args.py +102 -29
- sglang/srt/utils.py +295 -28
- sglang/test/test_utils.py +7 -0
- sglang/version.py +1 -1
- {sglang-0.3.6.post3.dist-info → sglang-0.4.0.post1.dist-info}/METADATA +5 -4
- sglang-0.4.0.post1.dist-info/RECORD +189 -0
- sglang-0.3.6.post3.dist-info/RECORD +0 -162
- {sglang-0.3.6.post3.dist-info → sglang-0.4.0.post1.dist-info}/LICENSE +0 -0
- {sglang-0.3.6.post3.dist-info → sglang-0.4.0.post1.dist-info}/WHEEL +0 -0
- {sglang-0.3.6.post3.dist-info → sglang-0.4.0.post1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1139 @@
|
|
1
|
+
# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.3.post1/vllm/model_executor/model_loader/loader.py
|
2
|
+
|
3
|
+
# ruff: noqa: SIM117
|
4
|
+
import collections
|
5
|
+
import dataclasses
|
6
|
+
import fnmatch
|
7
|
+
import glob
|
8
|
+
import json
|
9
|
+
import logging
|
10
|
+
import math
|
11
|
+
import os
|
12
|
+
from abc import ABC, abstractmethod
|
13
|
+
from contextlib import contextmanager
|
14
|
+
from typing import Any, Dict, Generator, Iterable, List, Optional, Tuple, Type, cast
|
15
|
+
|
16
|
+
import gguf
|
17
|
+
import huggingface_hub
|
18
|
+
import numpy as np
|
19
|
+
import torch
|
20
|
+
from huggingface_hub import HfApi, hf_hub_download
|
21
|
+
from torch import nn
|
22
|
+
from transformers import AutoModelForCausalLM, PretrainedConfig
|
23
|
+
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME
|
24
|
+
from vllm.distributed import (
|
25
|
+
get_tensor_model_parallel_rank,
|
26
|
+
get_tensor_model_parallel_world_size,
|
27
|
+
)
|
28
|
+
|
29
|
+
from sglang.srt.configs.device_config import DeviceConfig
|
30
|
+
from sglang.srt.configs.load_config import LoadConfig, LoadFormat
|
31
|
+
from sglang.srt.configs.model_config import ModelConfig
|
32
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
33
|
+
from sglang.srt.model_loader.utils import (
|
34
|
+
get_model_architecture,
|
35
|
+
set_default_torch_dtype,
|
36
|
+
)
|
37
|
+
from sglang.srt.model_loader.weight_utils import (
|
38
|
+
download_safetensors_index_file_from_hf,
|
39
|
+
download_weights_from_hf,
|
40
|
+
filter_duplicate_safetensors_files,
|
41
|
+
filter_files_not_needed_for_inference,
|
42
|
+
get_gguf_extra_tensor_names,
|
43
|
+
get_quant_config,
|
44
|
+
gguf_quant_weights_iterator,
|
45
|
+
initialize_dummy_weights,
|
46
|
+
np_cache_weights_iterator,
|
47
|
+
pt_weights_iterator,
|
48
|
+
safetensors_weights_iterator,
|
49
|
+
)
|
50
|
+
from sglang.srt.utils import (
|
51
|
+
get_device_capability,
|
52
|
+
is_pin_memory_available,
|
53
|
+
set_weight_attrs,
|
54
|
+
)
|
55
|
+
|
56
|
+
|
57
|
+
@contextmanager
|
58
|
+
def device_loading_context(module: torch.nn.Module, target_device: torch.device):
|
59
|
+
if target_device.type == "cpu":
|
60
|
+
# If target is CPU, no need to move anything
|
61
|
+
yield module
|
62
|
+
return
|
63
|
+
|
64
|
+
original_device_states: Dict[str, torch.device] = {}
|
65
|
+
|
66
|
+
# Store original device states and move parameters to GPU if they're on CPU
|
67
|
+
for name, p in module.named_parameters():
|
68
|
+
if p.device.type == "cpu":
|
69
|
+
original_device_states[name] = p.device
|
70
|
+
p.data = p.data.to(target_device)
|
71
|
+
# Parameters already on target device are not touched
|
72
|
+
|
73
|
+
try:
|
74
|
+
yield module
|
75
|
+
|
76
|
+
finally:
|
77
|
+
# Restore parameters to their original devices, ignoring new parameters
|
78
|
+
pin_memory = is_pin_memory_available()
|
79
|
+
for name, p in module.named_parameters():
|
80
|
+
if name in original_device_states:
|
81
|
+
original_device: torch.device = original_device_states[name]
|
82
|
+
if original_device.type == "cpu":
|
83
|
+
# `torch.empty_like` does not support `pin_memory` argument
|
84
|
+
cpu_data = torch.empty_strided(
|
85
|
+
size=p.data.size(),
|
86
|
+
stride=p.data.stride(),
|
87
|
+
dtype=p.data.dtype,
|
88
|
+
layout=p.data.layout,
|
89
|
+
device="cpu",
|
90
|
+
pin_memory=pin_memory,
|
91
|
+
)
|
92
|
+
cpu_data.copy_(p.data)
|
93
|
+
p.data = cpu_data
|
94
|
+
else:
|
95
|
+
p.data = p.data.to(original_device)
|
96
|
+
# New parameters or parameters already on target device are untouched
|
97
|
+
|
98
|
+
|
99
|
+
logger = logging.getLogger(__name__)
|
100
|
+
|
101
|
+
|
102
|
+
def _get_quantization_config(
|
103
|
+
model_config: ModelConfig, load_config: LoadConfig
|
104
|
+
) -> Optional[QuantizationConfig]:
|
105
|
+
"""Get the quantization config."""
|
106
|
+
if model_config.quantization is not None:
|
107
|
+
quant_config = get_quant_config(model_config, load_config)
|
108
|
+
major, minor = get_device_capability()
|
109
|
+
|
110
|
+
if major is not None and minor is not None:
|
111
|
+
assert 0 <= minor < 10
|
112
|
+
capability = major * 10 + minor
|
113
|
+
if capability < quant_config.get_min_capability():
|
114
|
+
raise ValueError(
|
115
|
+
f"The quantization method {model_config.quantization} "
|
116
|
+
"is not supported for the current GPU. "
|
117
|
+
f"Minimum capability: {quant_config.get_min_capability()}. "
|
118
|
+
f"Current capability: {capability}."
|
119
|
+
)
|
120
|
+
supported_dtypes = quant_config.get_supported_act_dtypes()
|
121
|
+
if model_config.dtype not in supported_dtypes:
|
122
|
+
raise ValueError(
|
123
|
+
f"{model_config.dtype} is not supported for quantization "
|
124
|
+
f"method {model_config.quantization}. Supported dtypes: "
|
125
|
+
f"{supported_dtypes}"
|
126
|
+
)
|
127
|
+
return quant_config
|
128
|
+
return None
|
129
|
+
|
130
|
+
|
131
|
+
def _initialize_model(
|
132
|
+
model_config: ModelConfig,
|
133
|
+
load_config: LoadConfig,
|
134
|
+
) -> nn.Module:
|
135
|
+
"""Initialize a model with the given configurations."""
|
136
|
+
model_class, _ = get_model_architecture(model_config)
|
137
|
+
quant_config = _get_quantization_config(model_config, load_config)
|
138
|
+
return model_class(
|
139
|
+
config=model_config.hf_config,
|
140
|
+
quant_config=quant_config,
|
141
|
+
)
|
142
|
+
|
143
|
+
|
144
|
+
class BaseModelLoader(ABC):
|
145
|
+
"""Base class for model loaders."""
|
146
|
+
|
147
|
+
def __init__(self, load_config: LoadConfig):
|
148
|
+
self.load_config = load_config
|
149
|
+
|
150
|
+
@abstractmethod
|
151
|
+
def download_model(self, model_config: ModelConfig) -> None:
|
152
|
+
"""Download a model so that it can be immediately loaded."""
|
153
|
+
raise NotImplementedError
|
154
|
+
|
155
|
+
@abstractmethod
|
156
|
+
def load_model(
|
157
|
+
self,
|
158
|
+
*,
|
159
|
+
model_config: ModelConfig,
|
160
|
+
device_config: DeviceConfig,
|
161
|
+
) -> nn.Module:
|
162
|
+
"""Load a model with the given configurations."""
|
163
|
+
raise NotImplementedError
|
164
|
+
|
165
|
+
|
166
|
+
class DefaultModelLoader(BaseModelLoader):
|
167
|
+
"""Model loader that can load different file types from disk."""
|
168
|
+
|
169
|
+
@dataclasses.dataclass
|
170
|
+
class Source:
|
171
|
+
"""A source for weights."""
|
172
|
+
|
173
|
+
model_or_path: str
|
174
|
+
"""The model ID or path."""
|
175
|
+
|
176
|
+
revision: Optional[str]
|
177
|
+
"""The optional model revision."""
|
178
|
+
|
179
|
+
prefix: str = ""
|
180
|
+
"""A prefix to prepend to all weights."""
|
181
|
+
|
182
|
+
fall_back_to_pt: bool = True
|
183
|
+
"""Whether .pt weights can be used."""
|
184
|
+
|
185
|
+
def __init__(self, load_config: LoadConfig):
|
186
|
+
super().__init__(load_config)
|
187
|
+
if load_config.model_loader_extra_config:
|
188
|
+
raise ValueError(
|
189
|
+
f"Model loader extra config is not supported for "
|
190
|
+
f"load format {load_config.load_format}"
|
191
|
+
)
|
192
|
+
|
193
|
+
def _maybe_download_from_modelscope(
|
194
|
+
self, model: str, revision: Optional[str]
|
195
|
+
) -> Optional[str]:
|
196
|
+
"""Download model from ModelScope hub if VLLM_USE_MODELSCOPE is True.
|
197
|
+
|
198
|
+
Returns the path to the downloaded model, or None if the model is not
|
199
|
+
downloaded from ModelScope."""
|
200
|
+
if "SGLANG_USE_MODELSCOPE" in os.environ:
|
201
|
+
# download model from ModelScope hub,
|
202
|
+
# lazy import so that modelscope is not required for normal use.
|
203
|
+
# pylint: disable=C.
|
204
|
+
from modelscope.hub.snapshot_download import snapshot_download
|
205
|
+
|
206
|
+
if not os.path.exists(model):
|
207
|
+
model_path = snapshot_download(
|
208
|
+
model_id=model,
|
209
|
+
cache_dir=self.load_config.download_dir,
|
210
|
+
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
211
|
+
revision=revision,
|
212
|
+
ignore_file_pattern=self.load_config.ignore_patterns,
|
213
|
+
)
|
214
|
+
else:
|
215
|
+
model_path = model
|
216
|
+
return model_path
|
217
|
+
return None
|
218
|
+
|
219
|
+
def _prepare_weights(
|
220
|
+
self, model_name_or_path: str, revision: Optional[str], fall_back_to_pt: bool
|
221
|
+
) -> Tuple[str, List[str], bool]:
|
222
|
+
"""Prepare weights for the model.
|
223
|
+
|
224
|
+
If the model is not local, it will be downloaded."""
|
225
|
+
model_name_or_path = (
|
226
|
+
self._maybe_download_from_modelscope(model_name_or_path, revision)
|
227
|
+
or model_name_or_path
|
228
|
+
)
|
229
|
+
|
230
|
+
is_local = os.path.isdir(model_name_or_path)
|
231
|
+
load_format = self.load_config.load_format
|
232
|
+
use_safetensors = False
|
233
|
+
index_file = SAFE_WEIGHTS_INDEX_NAME
|
234
|
+
# Some quantized models use .pt files for storing the weights.
|
235
|
+
if load_format == LoadFormat.AUTO:
|
236
|
+
allow_patterns = ["*.safetensors", "*.bin"]
|
237
|
+
elif load_format == LoadFormat.SAFETENSORS:
|
238
|
+
use_safetensors = True
|
239
|
+
allow_patterns = ["*.safetensors"]
|
240
|
+
elif load_format == LoadFormat.MISTRAL:
|
241
|
+
use_safetensors = True
|
242
|
+
allow_patterns = ["consolidated*.safetensors"]
|
243
|
+
index_file = "consolidated.safetensors.index.json"
|
244
|
+
elif load_format == LoadFormat.PT:
|
245
|
+
allow_patterns = ["*.pt"]
|
246
|
+
elif load_format == LoadFormat.NPCACHE:
|
247
|
+
allow_patterns = ["*.bin"]
|
248
|
+
else:
|
249
|
+
raise ValueError(f"Unknown load_format: {load_format}")
|
250
|
+
|
251
|
+
if fall_back_to_pt:
|
252
|
+
allow_patterns += ["*.pt"]
|
253
|
+
|
254
|
+
if not is_local:
|
255
|
+
hf_folder = download_weights_from_hf(
|
256
|
+
model_name_or_path,
|
257
|
+
self.load_config.download_dir,
|
258
|
+
allow_patterns,
|
259
|
+
revision,
|
260
|
+
ignore_patterns=self.load_config.ignore_patterns,
|
261
|
+
)
|
262
|
+
else:
|
263
|
+
hf_folder = model_name_or_path
|
264
|
+
|
265
|
+
hf_weights_files: List[str] = []
|
266
|
+
for pattern in allow_patterns:
|
267
|
+
hf_weights_files += glob.glob(os.path.join(hf_folder, pattern))
|
268
|
+
if len(hf_weights_files) > 0:
|
269
|
+
if pattern == "*.safetensors":
|
270
|
+
use_safetensors = True
|
271
|
+
break
|
272
|
+
|
273
|
+
if use_safetensors:
|
274
|
+
# For models like Mistral-7B-Instruct-v0.3
|
275
|
+
# there are both sharded safetensors files and a consolidated
|
276
|
+
# safetensors file. Using both breaks.
|
277
|
+
# Here, we download the `model.safetensors.index.json` and filter
|
278
|
+
# any files not found in the index.
|
279
|
+
if not is_local:
|
280
|
+
download_safetensors_index_file_from_hf(
|
281
|
+
model_name_or_path,
|
282
|
+
index_file,
|
283
|
+
self.load_config.download_dir,
|
284
|
+
revision,
|
285
|
+
)
|
286
|
+
hf_weights_files = filter_duplicate_safetensors_files(
|
287
|
+
hf_weights_files, hf_folder, index_file
|
288
|
+
)
|
289
|
+
else:
|
290
|
+
hf_weights_files = filter_files_not_needed_for_inference(hf_weights_files)
|
291
|
+
|
292
|
+
if len(hf_weights_files) == 0:
|
293
|
+
raise RuntimeError(
|
294
|
+
f"Cannot find any model weights with `{model_name_or_path}`"
|
295
|
+
)
|
296
|
+
|
297
|
+
return hf_folder, hf_weights_files, use_safetensors
|
298
|
+
|
299
|
+
def _get_weights_iterator(
|
300
|
+
self, source: "Source"
|
301
|
+
) -> Generator[Tuple[str, torch.Tensor], None, None]:
|
302
|
+
"""Get an iterator for the model weights based on the load format."""
|
303
|
+
hf_folder, hf_weights_files, use_safetensors = self._prepare_weights(
|
304
|
+
source.model_or_path, source.revision, source.fall_back_to_pt
|
305
|
+
)
|
306
|
+
if self.load_config.load_format == LoadFormat.NPCACHE:
|
307
|
+
# Currently np_cache only support *.bin checkpoints
|
308
|
+
assert use_safetensors is False
|
309
|
+
weights_iterator = np_cache_weights_iterator(
|
310
|
+
source.model_or_path,
|
311
|
+
self.load_config.download_dir,
|
312
|
+
hf_folder,
|
313
|
+
hf_weights_files,
|
314
|
+
)
|
315
|
+
elif use_safetensors:
|
316
|
+
weights_iterator = safetensors_weights_iterator(hf_weights_files)
|
317
|
+
else:
|
318
|
+
weights_iterator = pt_weights_iterator(hf_weights_files)
|
319
|
+
|
320
|
+
# Apply the prefix.
|
321
|
+
return ((source.prefix + name, tensor) for (name, tensor) in weights_iterator)
|
322
|
+
|
323
|
+
def _get_all_weights(
|
324
|
+
self,
|
325
|
+
model_config: ModelConfig,
|
326
|
+
model: nn.Module,
|
327
|
+
) -> Generator[Tuple[str, torch.Tensor], None, None]:
|
328
|
+
|
329
|
+
primary_weights = DefaultModelLoader.Source(
|
330
|
+
model_config.model_path,
|
331
|
+
model_config.revision,
|
332
|
+
prefix="",
|
333
|
+
fall_back_to_pt=getattr(model, "fall_back_to_pt_during_load", True),
|
334
|
+
)
|
335
|
+
yield from self._get_weights_iterator(primary_weights)
|
336
|
+
|
337
|
+
secondary_weights = cast(
|
338
|
+
Iterable[DefaultModelLoader.Source], getattr(model, "secondary_weights", ())
|
339
|
+
)
|
340
|
+
for source in secondary_weights:
|
341
|
+
yield from self._get_weights_iterator(source)
|
342
|
+
|
343
|
+
def download_model(self, model_config: ModelConfig) -> None:
|
344
|
+
self._prepare_weights(
|
345
|
+
model_config.model_path, model_config.revision, fall_back_to_pt=True
|
346
|
+
)
|
347
|
+
|
348
|
+
def load_model(
|
349
|
+
self,
|
350
|
+
*,
|
351
|
+
model_config: ModelConfig,
|
352
|
+
device_config: DeviceConfig,
|
353
|
+
) -> nn.Module:
|
354
|
+
target_device = torch.device(device_config.device)
|
355
|
+
with set_default_torch_dtype(model_config.dtype):
|
356
|
+
with target_device:
|
357
|
+
model = _initialize_model(
|
358
|
+
model_config,
|
359
|
+
self.load_config,
|
360
|
+
)
|
361
|
+
|
362
|
+
model.load_weights(self._get_all_weights(model_config, model))
|
363
|
+
|
364
|
+
for _, module in model.named_modules():
|
365
|
+
quant_method = getattr(module, "quant_method", None)
|
366
|
+
if quant_method is not None:
|
367
|
+
# When quant methods need to process weights after loading
|
368
|
+
# (for repacking, quantizing, etc), they expect parameters
|
369
|
+
# to be on the global target device. This scope is for the
|
370
|
+
# case where cpu offloading is used, where we will move the
|
371
|
+
# parameters onto device for processing and back off after.
|
372
|
+
with device_loading_context(module, target_device):
|
373
|
+
quant_method.process_weights_after_loading(module)
|
374
|
+
return model.eval()
|
375
|
+
|
376
|
+
|
377
|
+
class DummyModelLoader(BaseModelLoader):
|
378
|
+
"""Model loader that will set model weights to random values."""
|
379
|
+
|
380
|
+
def __init__(self, load_config: LoadConfig):
|
381
|
+
super().__init__(load_config)
|
382
|
+
if load_config.model_loader_extra_config:
|
383
|
+
raise ValueError(
|
384
|
+
f"Model loader extra config is not supported for "
|
385
|
+
f"load format {load_config.load_format}"
|
386
|
+
)
|
387
|
+
|
388
|
+
def download_model(self, model_config: ModelConfig) -> None:
|
389
|
+
pass # Nothing to download
|
390
|
+
|
391
|
+
def load_model(
|
392
|
+
self,
|
393
|
+
*,
|
394
|
+
model_config: ModelConfig,
|
395
|
+
device_config: DeviceConfig,
|
396
|
+
) -> nn.Module:
|
397
|
+
with set_default_torch_dtype(model_config.dtype):
|
398
|
+
with torch.device(device_config.device):
|
399
|
+
model = _initialize_model(
|
400
|
+
model_config,
|
401
|
+
self.load_config,
|
402
|
+
)
|
403
|
+
|
404
|
+
for _, module in model.named_modules():
|
405
|
+
quant_method = getattr(module, "quant_method", None)
|
406
|
+
if quant_method is not None:
|
407
|
+
quant_method.process_weights_after_loading(module)
|
408
|
+
|
409
|
+
# NOTE(woosuk): For accurate performance evaluation, we assign
|
410
|
+
# random values to the weights.
|
411
|
+
initialize_dummy_weights(model)
|
412
|
+
return model.eval()
|
413
|
+
|
414
|
+
|
415
|
+
class ShardedStateLoader(BaseModelLoader):
|
416
|
+
"""
|
417
|
+
Model loader that directly loads each worker's model state dict, which
|
418
|
+
enables a fast load path for large tensor-parallel models where each worker
|
419
|
+
only needs to read its own shard rather than the entire checkpoint. See
|
420
|
+
`examples/save_sharded_state.py` for creating a sharded checkpoint.
|
421
|
+
"""
|
422
|
+
|
423
|
+
DEFAULT_PATTERN = "model-rank-{rank}-part-{part}.safetensors"
|
424
|
+
|
425
|
+
def __init__(self, load_config: LoadConfig):
|
426
|
+
super().__init__(load_config)
|
427
|
+
extra_config = (
|
428
|
+
{}
|
429
|
+
if load_config.model_loader_extra_config is None
|
430
|
+
else load_config.model_loader_extra_config.copy()
|
431
|
+
)
|
432
|
+
self.pattern = extra_config.pop("pattern", self.DEFAULT_PATTERN)
|
433
|
+
if extra_config:
|
434
|
+
raise ValueError(
|
435
|
+
f"Unexpected extra config keys for load format "
|
436
|
+
f"{load_config.load_format}: "
|
437
|
+
f"{load_config.model_loader_extra_config.keys()}"
|
438
|
+
)
|
439
|
+
|
440
|
+
@staticmethod
|
441
|
+
def _filter_subtensors(tensors: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
442
|
+
"""
|
443
|
+
Filter out all tensors that share the same memory or a subset of the
|
444
|
+
memory of another tensor.
|
445
|
+
"""
|
446
|
+
same_storage_groups: Dict[Any, List[Tuple[str, torch.Tensor]]] = (
|
447
|
+
collections.defaultdict(list)
|
448
|
+
)
|
449
|
+
for key, tensor in tensors.items():
|
450
|
+
if tensor.numel():
|
451
|
+
ptr = tensor.untyped_storage().data_ptr()
|
452
|
+
same_storage_groups[tensor.device, ptr].append((key, tensor))
|
453
|
+
|
454
|
+
def get_end_ptr(tensor: torch.Tensor) -> int:
|
455
|
+
return tensor.view(-1)[-1].data_ptr() + tensor.element_size()
|
456
|
+
|
457
|
+
result: Dict[str, torch.Tensor] = {}
|
458
|
+
for group in same_storage_groups.values():
|
459
|
+
for k, t in group:
|
460
|
+
a, b = t.data_ptr(), get_end_ptr(t)
|
461
|
+
for k2, t2 in group:
|
462
|
+
if not t2.is_contiguous():
|
463
|
+
continue
|
464
|
+
a2, b2 = t2.data_ptr(), get_end_ptr(t2)
|
465
|
+
if a < a2 or b2 < b:
|
466
|
+
continue
|
467
|
+
if a2 < a or b < b2 or not t.is_contiguous():
|
468
|
+
break # t2 covers strictly more memory than t.
|
469
|
+
if k2 < k:
|
470
|
+
# Same tensors, keep the one with the smaller key.
|
471
|
+
break
|
472
|
+
else:
|
473
|
+
result[k] = t
|
474
|
+
return result
|
475
|
+
|
476
|
+
def _prepare_weights(self, model_name_or_path: str, revision: Optional[str]):
|
477
|
+
if os.path.isdir(model_name_or_path):
|
478
|
+
return model_name_or_path
|
479
|
+
else:
|
480
|
+
allow_patterns = ["*.safetensors"]
|
481
|
+
return download_weights_from_hf(
|
482
|
+
model_name_or_path,
|
483
|
+
self.load_config.download_dir,
|
484
|
+
allow_patterns,
|
485
|
+
revision,
|
486
|
+
ignore_patterns=self.load_config.ignore_patterns,
|
487
|
+
)
|
488
|
+
|
489
|
+
def download_model(self, model_config: ModelConfig) -> None:
|
490
|
+
self._prepare_weights(model_config.model_path, model_config.revision)
|
491
|
+
|
492
|
+
def load_model(
|
493
|
+
self,
|
494
|
+
*,
|
495
|
+
model_config: ModelConfig,
|
496
|
+
device_config: DeviceConfig,
|
497
|
+
) -> nn.Module:
|
498
|
+
from safetensors.torch import safe_open
|
499
|
+
from vllm.distributed import get_tensor_model_parallel_rank
|
500
|
+
|
501
|
+
local_model_path = self._prepare_weights(
|
502
|
+
model_config.model_path, model_config.revision
|
503
|
+
)
|
504
|
+
|
505
|
+
with set_default_torch_dtype(model_config.dtype):
|
506
|
+
with torch.device(device_config.device):
|
507
|
+
model = _initialize_model(model_config, self.load_config)
|
508
|
+
for _, module in model.named_modules():
|
509
|
+
quant_method = getattr(module, "quant_method", None)
|
510
|
+
if quant_method is not None:
|
511
|
+
quant_method.process_weights_after_loading(module)
|
512
|
+
rank = get_tensor_model_parallel_rank()
|
513
|
+
pattern = os.path.join(
|
514
|
+
local_model_path,
|
515
|
+
self.pattern.format(rank=rank, part="*"),
|
516
|
+
)
|
517
|
+
filepaths = glob.glob(pattern)
|
518
|
+
if not filepaths:
|
519
|
+
# TODO: support un-sharded checkpoints too
|
520
|
+
raise ValueError(
|
521
|
+
f"Could not find checkpoint files '{pattern}', only "
|
522
|
+
f"pre-sharded checkpoints are currently supported!"
|
523
|
+
)
|
524
|
+
state_dict = self._filter_subtensors(model.state_dict())
|
525
|
+
for path in filepaths:
|
526
|
+
with safe_open(path, framework="pt") as f:
|
527
|
+
for key in f.keys(): # noqa: SIM118
|
528
|
+
tensor = f.get_tensor(key)
|
529
|
+
# If loading with LoRA enabled, additional padding may
|
530
|
+
# be added to certain parameters. We only load into a
|
531
|
+
# narrowed view of the parameter data.
|
532
|
+
param_data = state_dict[key].data
|
533
|
+
param_shape = state_dict[key].shape
|
534
|
+
for dim, size in enumerate(tensor.shape):
|
535
|
+
if size < param_shape[dim]:
|
536
|
+
param_data = param_data.narrow(dim, 0, size)
|
537
|
+
if tensor.shape != param_shape:
|
538
|
+
logger.warning(
|
539
|
+
"loading tensor of shape %s into "
|
540
|
+
"parameter '%s' of shape %s",
|
541
|
+
tensor.shape,
|
542
|
+
key,
|
543
|
+
param_shape,
|
544
|
+
)
|
545
|
+
param_data.copy_(tensor)
|
546
|
+
state_dict.pop(key)
|
547
|
+
if state_dict:
|
548
|
+
raise ValueError(f"Missing keys {tuple(state_dict)} in loaded state!")
|
549
|
+
return model.eval()
|
550
|
+
|
551
|
+
@staticmethod
|
552
|
+
def save_model(
|
553
|
+
model: torch.nn.Module,
|
554
|
+
path: str,
|
555
|
+
pattern: Optional[str] = None,
|
556
|
+
max_size: Optional[int] = None,
|
557
|
+
) -> None:
|
558
|
+
from safetensors.torch import save_file
|
559
|
+
from vllm.distributed import get_tensor_model_parallel_rank
|
560
|
+
|
561
|
+
if pattern is None:
|
562
|
+
pattern = ShardedStateLoader.DEFAULT_PATTERN
|
563
|
+
rank = get_tensor_model_parallel_rank()
|
564
|
+
part_idx = 0
|
565
|
+
total_size = 0
|
566
|
+
state_dict = ShardedStateLoader._filter_subtensors(model.state_dict())
|
567
|
+
state_dict_part: Dict[str, torch.Tensor] = {}
|
568
|
+
for key, tensor in state_dict.items():
|
569
|
+
param_size = tensor.nelement() * tensor.element_size()
|
570
|
+
if max_size is not None and total_size + param_size > max_size:
|
571
|
+
filename = pattern.format(rank=rank, part=part_idx)
|
572
|
+
save_file(
|
573
|
+
state_dict_part,
|
574
|
+
os.path.join(path, filename),
|
575
|
+
)
|
576
|
+
part_idx += 1
|
577
|
+
total_size = 0
|
578
|
+
state_dict_part = {}
|
579
|
+
state_dict_part[key] = tensor
|
580
|
+
total_size += param_size
|
581
|
+
if len(state_dict_part) > 0:
|
582
|
+
filename = pattern.format(rank=rank, part=part_idx)
|
583
|
+
save_file(
|
584
|
+
state_dict_part,
|
585
|
+
os.path.join(path, filename),
|
586
|
+
)
|
587
|
+
|
588
|
+
|
589
|
+
class BitsAndBytesModelLoader(BaseModelLoader):
|
590
|
+
"""Model loader to load model weights with BitAndBytes quantization."""
|
591
|
+
|
592
|
+
possible_config_file_names = ["adapter_config.json"]
|
593
|
+
|
594
|
+
default_target_modules = [
|
595
|
+
".gate_proj.",
|
596
|
+
".down_proj.",
|
597
|
+
".up_proj.",
|
598
|
+
".q_proj.",
|
599
|
+
".k_proj.",
|
600
|
+
".v_proj.",
|
601
|
+
".o_proj.",
|
602
|
+
".fc1.",
|
603
|
+
".fc2.",
|
604
|
+
".dense.",
|
605
|
+
".query_key_value.",
|
606
|
+
".qkv_proj.",
|
607
|
+
".dense_h_to_4h.",
|
608
|
+
".dense_4h_to_h.",
|
609
|
+
".out_proj.",
|
610
|
+
]
|
611
|
+
|
612
|
+
def __init__(self, load_config: LoadConfig):
|
613
|
+
super().__init__(load_config)
|
614
|
+
|
615
|
+
# we don't need to quantize the whole model, only the target modules
|
616
|
+
# that are specified in the adapter config file. If the adapter config
|
617
|
+
# file is not provided, we will quantize the default modules.
|
618
|
+
if (
|
619
|
+
not load_config.model_loader_extra_config
|
620
|
+
or "qlora_adapter_name_or_path" not in load_config.model_loader_extra_config
|
621
|
+
):
|
622
|
+
self.target_modules = []
|
623
|
+
return
|
624
|
+
|
625
|
+
qlora_adapter = load_config.model_loader_extra_config[
|
626
|
+
"qlora_adapter_name_or_path"
|
627
|
+
]
|
628
|
+
|
629
|
+
config_file_path = self._get_config_file(qlora_adapter)
|
630
|
+
|
631
|
+
with open(config_file_path, "r") as f:
|
632
|
+
config = json.load(f)
|
633
|
+
self.target_modules = config["target_modules"]
|
634
|
+
|
635
|
+
def _get_config_file(self, qlora_adapter: str) -> str:
|
636
|
+
is_local = os.path.isdir(qlora_adapter)
|
637
|
+
config_file_path = None
|
638
|
+
if is_local:
|
639
|
+
for file in self.possible_config_file_names:
|
640
|
+
config_file_path = os.path.join(qlora_adapter, file)
|
641
|
+
if os.path.exists(config_file_path):
|
642
|
+
break
|
643
|
+
else:
|
644
|
+
hf_api = HfApi()
|
645
|
+
repo_files = hf_api.list_repo_files(repo_id=qlora_adapter)
|
646
|
+
for file in self.possible_config_file_names:
|
647
|
+
if file in repo_files:
|
648
|
+
config_file_path = hf_hub_download(
|
649
|
+
repo_id=qlora_adapter, filename=file
|
650
|
+
)
|
651
|
+
break
|
652
|
+
|
653
|
+
if not config_file_path:
|
654
|
+
raise ValueError(f"Cannot find adapter config file in {qlora_adapter}")
|
655
|
+
|
656
|
+
return config_file_path
|
657
|
+
|
658
|
+
def _get_weight_files(
|
659
|
+
self,
|
660
|
+
model_name_or_path: str,
|
661
|
+
allowed_patterns: List[str],
|
662
|
+
revision: Optional[str] = None,
|
663
|
+
) -> Tuple[List[str], str]:
|
664
|
+
"""Retrieve weight files. Download the files if necessary.
|
665
|
+
|
666
|
+
Return the weight files and the file pattern."""
|
667
|
+
is_local = os.path.isdir(model_name_or_path)
|
668
|
+
|
669
|
+
if is_local:
|
670
|
+
for pattern in allowed_patterns:
|
671
|
+
weight_files = glob.glob(os.path.join(model_name_or_path, pattern))
|
672
|
+
if weight_files:
|
673
|
+
return weight_files, pattern
|
674
|
+
else:
|
675
|
+
hf_api = HfApi()
|
676
|
+
repo_files = hf_api.list_repo_files(repo_id=model_name_or_path)
|
677
|
+
for pattern in allowed_patterns:
|
678
|
+
matching_files = fnmatch.filter(repo_files, pattern)
|
679
|
+
if matching_files:
|
680
|
+
hf_folder = download_weights_from_hf(
|
681
|
+
model_name_or_path,
|
682
|
+
self.load_config.download_dir,
|
683
|
+
[pattern],
|
684
|
+
revision,
|
685
|
+
ignore_patterns=self.load_config.ignore_patterns,
|
686
|
+
)
|
687
|
+
return glob.glob(os.path.join(hf_folder, pattern)), pattern
|
688
|
+
|
689
|
+
raise RuntimeError(f"No model weights found in: `{model_name_or_path}`")
|
690
|
+
|
691
|
+
def _prepare_weights(
|
692
|
+
self, model_name_or_path: str, revision: Optional[str]
|
693
|
+
) -> Tuple[List[str], bool]:
|
694
|
+
"""Prepare weight files for the model."""
|
695
|
+
|
696
|
+
allowed_patterns = ["*.safetensors", "*.bin", "*.pt"]
|
697
|
+
|
698
|
+
hf_weights_files, matched_pattern = self._get_weight_files(
|
699
|
+
model_name_or_path, allowed_patterns, revision
|
700
|
+
)
|
701
|
+
|
702
|
+
if matched_pattern != "*.safetensors":
|
703
|
+
hf_weights_files = filter_files_not_needed_for_inference(hf_weights_files)
|
704
|
+
|
705
|
+
if len(hf_weights_files) == 0:
|
706
|
+
raise RuntimeError(
|
707
|
+
f"Cannot find any model weights with `{model_name_or_path}`"
|
708
|
+
)
|
709
|
+
|
710
|
+
return hf_weights_files, matched_pattern == "*.safetensors"
|
711
|
+
|
712
|
+
def _hf_weight_iter(self, hf_weights_files, use_safetensors: bool):
|
713
|
+
if use_safetensors:
|
714
|
+
return safetensors_weights_iterator(hf_weights_files)
|
715
|
+
else:
|
716
|
+
return pt_weights_iterator(hf_weights_files)
|
717
|
+
|
718
|
+
def _get_quantized_weights_iterator(
|
719
|
+
self,
|
720
|
+
model_name_or_path: str,
|
721
|
+
revision: Optional[str],
|
722
|
+
pre_quant: bool,
|
723
|
+
load_8bit: bool,
|
724
|
+
) -> Tuple[Generator[Tuple[str, torch.Tensor], None, None], Dict[str, Any]]:
|
725
|
+
"""Get an iterator to the model weights with bitsandbytes quantization,
|
726
|
+
as well as the quantization state dictionary."""
|
727
|
+
|
728
|
+
# only load the bitsandbytes module when needed
|
729
|
+
try:
|
730
|
+
import bitsandbytes
|
731
|
+
|
732
|
+
if bitsandbytes.__version__ < "0.44.0":
|
733
|
+
raise ImportError(
|
734
|
+
"bitsandbytes version is wrong. Please "
|
735
|
+
"install bitsandbytes>=0.44.0."
|
736
|
+
)
|
737
|
+
except ImportError as err:
|
738
|
+
raise ImportError(
|
739
|
+
"Please install bitsandbytes>=0.44.0 via "
|
740
|
+
"`pip install bitsandbytes>=0.44.0` to use "
|
741
|
+
"bitsandbytes quantizer."
|
742
|
+
) from err
|
743
|
+
|
744
|
+
hf_weights_files, use_safetensors = self._prepare_weights(
|
745
|
+
model_name_or_path, revision
|
746
|
+
)
|
747
|
+
|
748
|
+
quant_state_dict: Dict[str, Any] = {}
|
749
|
+
|
750
|
+
if pre_quant:
|
751
|
+
if load_8bit:
|
752
|
+
return (
|
753
|
+
self._quantized_8bit_generator(
|
754
|
+
hf_weights_files, use_safetensors, quant_state_dict
|
755
|
+
),
|
756
|
+
quant_state_dict,
|
757
|
+
)
|
758
|
+
else:
|
759
|
+
return (
|
760
|
+
self._quantized_4bit_generator(
|
761
|
+
hf_weights_files, use_safetensors, quant_state_dict
|
762
|
+
),
|
763
|
+
quant_state_dict,
|
764
|
+
)
|
765
|
+
|
766
|
+
return (
|
767
|
+
self._unquantized_generator(
|
768
|
+
hf_weights_files, use_safetensors, quant_state_dict
|
769
|
+
),
|
770
|
+
quant_state_dict,
|
771
|
+
)
|
772
|
+
|
773
|
+
def _quantized_8bit_generator(
|
774
|
+
self, hf_weights_files, use_safetensors, quant_state_dict
|
775
|
+
) -> Generator:
|
776
|
+
for weight_name, weight_tensor in self._hf_weight_iter(
|
777
|
+
hf_weights_files, use_safetensors
|
778
|
+
):
|
779
|
+
if not weight_name.lower().endswith(".scb"):
|
780
|
+
continue
|
781
|
+
|
782
|
+
weight_key = weight_name.lower().replace(".scb", ".qweight")
|
783
|
+
quant_state_dict[weight_key] = weight_tensor
|
784
|
+
|
785
|
+
for weight_name, weight_tensor in self._hf_weight_iter(
|
786
|
+
hf_weights_files, use_safetensors
|
787
|
+
):
|
788
|
+
|
789
|
+
if not weight_name.endswith((".weight", ".bias")):
|
790
|
+
continue
|
791
|
+
|
792
|
+
qweight_name = weight_name.replace(".weight", ".qweight")
|
793
|
+
|
794
|
+
if qweight_name in quant_state_dict:
|
795
|
+
set_weight_attrs(weight_tensor, {"load_in_8bit": True})
|
796
|
+
yield qweight_name, weight_tensor
|
797
|
+
else:
|
798
|
+
yield weight_name, weight_tensor
|
799
|
+
|
800
|
+
def _quantized_4bit_generator(
|
801
|
+
self, hf_weights_files, use_safetensors, quant_state_dict
|
802
|
+
) -> Generator:
|
803
|
+
from bitsandbytes.functional import QuantState
|
804
|
+
|
805
|
+
# First iterate over all quant state weights
|
806
|
+
weight_iterator = self._hf_weight_iter(hf_weights_files, use_safetensors)
|
807
|
+
temp_state_dict = {}
|
808
|
+
for weight_name, weight_tensor in weight_iterator:
|
809
|
+
if weight_name.endswith((".weight", ".bias")):
|
810
|
+
continue
|
811
|
+
# bitsandbytes library requires
|
812
|
+
# weight.quant_state.bitsandbytes__* in CPU
|
813
|
+
if "quant_state.bitsandbytes" in weight_name:
|
814
|
+
temp_state_dict[weight_name] = weight_tensor.cpu().data
|
815
|
+
else:
|
816
|
+
temp_state_dict[weight_name] = weight_tensor
|
817
|
+
|
818
|
+
# Closure to parse quant_state for each prequant weight
|
819
|
+
def _parse_quant_state(param_name: str, temp_state_dict: Dict) -> QuantState:
|
820
|
+
quant_state = {}
|
821
|
+
for k in temp_state_dict:
|
822
|
+
if param_name + "." in k:
|
823
|
+
quant_state[k] = temp_state_dict[k]
|
824
|
+
|
825
|
+
return QuantState.from_dict(quant_state, device="cuda")
|
826
|
+
|
827
|
+
# Second iterate over all prequant and normal weights
|
828
|
+
# pre quantized weights would have a quant_state
|
829
|
+
for weight_name, weight_tensor in self._hf_weight_iter(
|
830
|
+
hf_weights_files, use_safetensors
|
831
|
+
):
|
832
|
+
|
833
|
+
if not weight_name.endswith((".weight", ".bias")):
|
834
|
+
continue
|
835
|
+
|
836
|
+
if (f"{weight_name}.quant_state.bitsandbytes__nf4" in temp_state_dict) or (
|
837
|
+
f"{weight_name}.quant_state.bitsandbytes__fp4" in temp_state_dict
|
838
|
+
):
|
839
|
+
quant_state = _parse_quant_state(weight_name, temp_state_dict)
|
840
|
+
weight_name = weight_name.replace(".weight", ".qweight")
|
841
|
+
quant_state_dict[weight_name] = quant_state
|
842
|
+
yield weight_name.replace(".weight", ".qweight"), weight_tensor
|
843
|
+
else:
|
844
|
+
yield weight_name, weight_tensor
|
845
|
+
|
846
|
+
def _unquantized_generator(
|
847
|
+
self, hf_weights_files, use_safetensors, quant_state_dict
|
848
|
+
) -> Generator:
|
849
|
+
from bitsandbytes.functional import quantize_4bit
|
850
|
+
|
851
|
+
tp_size = get_tensor_model_parallel_world_size()
|
852
|
+
tp_rank = get_tensor_model_parallel_rank()
|
853
|
+
|
854
|
+
for weight_name, weight_tensor in self._hf_weight_iter(
|
855
|
+
hf_weights_files, use_safetensors
|
856
|
+
):
|
857
|
+
|
858
|
+
if any(
|
859
|
+
target_module in weight_name for target_module in self.target_modules
|
860
|
+
) and weight_name.endswith(".weight"):
|
861
|
+
weight_name = weight_name.replace(".weight", ".qweight")
|
862
|
+
|
863
|
+
if any(
|
864
|
+
module in weight_name
|
865
|
+
for module in self.column_parallel_weights_modules
|
866
|
+
):
|
867
|
+
|
868
|
+
total_size = weight_tensor.size(-1)
|
869
|
+
start_index = total_size // tp_size * tp_rank
|
870
|
+
end_index = total_size // tp_size * (tp_rank + 1)
|
871
|
+
weight_sub_tensor = weight_tensor[..., start_index:end_index]
|
872
|
+
|
873
|
+
else:
|
874
|
+
total_size = weight_tensor.size(0)
|
875
|
+
start_index = total_size // tp_size * tp_rank
|
876
|
+
end_index = total_size // tp_size * (tp_rank + 1)
|
877
|
+
weight_sub_tensor = weight_tensor[start_index:end_index, ...]
|
878
|
+
|
879
|
+
# bitsandbytes requires data in GPU
|
880
|
+
if weight_sub_tensor.is_cuda:
|
881
|
+
loaded_weight = weight_sub_tensor
|
882
|
+
else:
|
883
|
+
loaded_weight = weight_sub_tensor.cuda()
|
884
|
+
|
885
|
+
# remove the following after the issue is fixed:
|
886
|
+
# https://github.com/bitsandbytes-foundation/bitsandbytes/issues/1342
|
887
|
+
if loaded_weight.is_contiguous() is False:
|
888
|
+
loaded_weight = loaded_weight.contiguous()
|
889
|
+
|
890
|
+
with set_default_torch_dtype(torch.float32):
|
891
|
+
processed_weight, quant_state = quantize_4bit(
|
892
|
+
loaded_weight, compress_statistics=True, quant_type="nf4"
|
893
|
+
)
|
894
|
+
|
895
|
+
quant_state_dict[weight_name] = quant_state
|
896
|
+
else:
|
897
|
+
processed_weight = weight_tensor
|
898
|
+
|
899
|
+
yield weight_name, processed_weight
|
900
|
+
|
901
|
+
def _load_weights(self, model_config: ModelConfig, model: nn.Module) -> None:
|
902
|
+
if not hasattr(model, "load_weights"):
|
903
|
+
raise AttributeError(
|
904
|
+
"The required method 'load_weights' is not defined in class"
|
905
|
+
f" {type(model).__name__}."
|
906
|
+
)
|
907
|
+
|
908
|
+
if not hasattr(model, "bitsandbytes_stacked_params_mapping"):
|
909
|
+
raise AttributeError(
|
910
|
+
f"Model {type(model).__name__} does not support BitsAndBytes "
|
911
|
+
"quantization yet."
|
912
|
+
)
|
913
|
+
|
914
|
+
if len(self.target_modules) == 0:
|
915
|
+
if hasattr(model, "default_bitsandbytes_target_modules"):
|
916
|
+
self.target_modules = model.default_bitsandbytes_target_modules
|
917
|
+
else:
|
918
|
+
self.target_modules = self.default_target_modules
|
919
|
+
|
920
|
+
if hasattr(model, "column_parallel_weights_modules"):
|
921
|
+
self.column_parallel_weights_modules = model.column_parallel_weights_modules
|
922
|
+
else:
|
923
|
+
self.column_parallel_weights_modules = []
|
924
|
+
|
925
|
+
self.model_type = type(model).__name__
|
926
|
+
|
927
|
+
logger.info(
|
928
|
+
"Loading weights with BitsAndBytes quantization. " " May take a while ..."
|
929
|
+
)
|
930
|
+
|
931
|
+
quant_config = getattr(model_config.hf_config, "quantization_config", None)
|
932
|
+
|
933
|
+
pre_quant = False
|
934
|
+
if quant_config is not None:
|
935
|
+
quant_method = quant_config.get("quant_method")
|
936
|
+
if quant_method == "bitsandbytes":
|
937
|
+
pre_quant = True
|
938
|
+
else:
|
939
|
+
raise ValueError(
|
940
|
+
f"BitsAndBytes loader does not support {quant_method} "
|
941
|
+
"quantization"
|
942
|
+
)
|
943
|
+
|
944
|
+
# The quant_states in pre_quantized models cannot work with a split
|
945
|
+
# weight tensor. So TP does not work with pre_quantized bnb models.
|
946
|
+
if pre_quant and get_tensor_model_parallel_world_size() > 1:
|
947
|
+
raise ValueError(
|
948
|
+
"Prequant BitsAndBytes models with TP is not supported."
|
949
|
+
"Please try with PP."
|
950
|
+
)
|
951
|
+
|
952
|
+
load_8bit = False
|
953
|
+
if pre_quant:
|
954
|
+
load_8bit = quant_config.get("load_in_8bit", False)
|
955
|
+
|
956
|
+
qweight_iterator, quant_state_dict = self._get_quantized_weights_iterator(
|
957
|
+
model_config.model_path, model_config.revision, pre_quant, load_8bit
|
958
|
+
)
|
959
|
+
|
960
|
+
model.load_weights(qweight_iterator)
|
961
|
+
|
962
|
+
torch.cuda.empty_cache()
|
963
|
+
|
964
|
+
param_dict = dict(model.named_parameters())
|
965
|
+
stacked_quant_state_dict: Dict[str, Dict[int, Any]] = {}
|
966
|
+
for quant_param_name in quant_state_dict:
|
967
|
+
non_stacked_param_name = quant_param_name
|
968
|
+
|
969
|
+
shard_index = 0
|
970
|
+
for shard_name, (
|
971
|
+
weight_name,
|
972
|
+
index,
|
973
|
+
) in model.bitsandbytes_stacked_params_mapping.items():
|
974
|
+
if shard_name in quant_param_name:
|
975
|
+
shard_index = index
|
976
|
+
quant_param_name = quant_param_name.replace(shard_name, weight_name)
|
977
|
+
break
|
978
|
+
|
979
|
+
if quant_param_name not in param_dict:
|
980
|
+
raise ValueError(
|
981
|
+
f"Parameter {quant_param_name} not found in the model."
|
982
|
+
)
|
983
|
+
|
984
|
+
if quant_param_name not in stacked_quant_state_dict:
|
985
|
+
stacked_quant_state_dict[quant_param_name] = {}
|
986
|
+
|
987
|
+
stacked_quant_state_dict[quant_param_name][shard_index] = quant_state_dict[
|
988
|
+
non_stacked_param_name
|
989
|
+
]
|
990
|
+
|
991
|
+
# save quant_states and offsets as the attributes of the parameters
|
992
|
+
for param_name, param in param_dict.items():
|
993
|
+
if param_name in stacked_quant_state_dict:
|
994
|
+
quant_states = stacked_quant_state_dict[param_name]
|
995
|
+
set_weight_attrs(param, {"bnb_quant_state": quant_states})
|
996
|
+
|
997
|
+
pack_ratio = getattr(param, "pack_factor", -1)
|
998
|
+
if pack_ratio == -1:
|
999
|
+
raise ValueError(f"pack_factor not set for parameter {param_name}.")
|
1000
|
+
|
1001
|
+
num_elements = [0] * len(quant_states)
|
1002
|
+
for seq, quant_state in quant_states.items():
|
1003
|
+
num_elements[seq] = math.prod(quant_state.shape) // pack_ratio
|
1004
|
+
|
1005
|
+
offsets = np.concatenate(([0], np.cumsum(num_elements)))
|
1006
|
+
set_weight_attrs(param, {"bnb_shard_offsets": offsets})
|
1007
|
+
|
1008
|
+
if load_8bit:
|
1009
|
+
set_weight_attrs(
|
1010
|
+
param, {"matmul_state": [None] * len(quant_states)}
|
1011
|
+
)
|
1012
|
+
|
1013
|
+
def download_model(self, model_config: ModelConfig) -> None:
|
1014
|
+
self._prepare_weights(model_config.model_path, model_config.revision)
|
1015
|
+
|
1016
|
+
def load_model(
|
1017
|
+
self,
|
1018
|
+
*,
|
1019
|
+
model_config: ModelConfig,
|
1020
|
+
device_config: DeviceConfig,
|
1021
|
+
) -> nn.Module:
|
1022
|
+
with set_default_torch_dtype(model_config.dtype):
|
1023
|
+
with torch.device(device_config.device):
|
1024
|
+
model = _initialize_model(
|
1025
|
+
model_config,
|
1026
|
+
self.load_config,
|
1027
|
+
)
|
1028
|
+
|
1029
|
+
self._load_weights(model_config, model)
|
1030
|
+
|
1031
|
+
return model.eval()
|
1032
|
+
|
1033
|
+
|
1034
|
+
class GGUFModelLoader(BaseModelLoader):
|
1035
|
+
"""
|
1036
|
+
Model loader that can load GGUF files. This is useful for loading models
|
1037
|
+
that are quantized with GGUF and saved in the GGUF format. This loader
|
1038
|
+
supports loading both full models and sharded models.
|
1039
|
+
"""
|
1040
|
+
|
1041
|
+
def __init__(self, load_config: LoadConfig):
|
1042
|
+
super().__init__(load_config)
|
1043
|
+
if load_config.model_loader_extra_config:
|
1044
|
+
raise ValueError(
|
1045
|
+
f"Model loader extra config is not supported for "
|
1046
|
+
f"load format {load_config.load_format}"
|
1047
|
+
)
|
1048
|
+
|
1049
|
+
def _prepare_weights(self, model_name_or_path: str):
|
1050
|
+
if os.path.isfile(model_name_or_path):
|
1051
|
+
return model_name_or_path
|
1052
|
+
else:
|
1053
|
+
raise ValueError(f"{model_name_or_path} is not a file.")
|
1054
|
+
|
1055
|
+
def _get_gguf_weights_map(self, model_config: ModelConfig):
|
1056
|
+
"""
|
1057
|
+
GGUF uses this naming convention for their tensors from HF checkpoint:
|
1058
|
+
`blk.N.BB.weight` and `blk.N.BB.bias`
|
1059
|
+
where N signifies the block number of a layer, and BB signifies the
|
1060
|
+
attention/mlp layer components.
|
1061
|
+
See "Standardized tensor names" in
|
1062
|
+
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md for details.
|
1063
|
+
"""
|
1064
|
+
config = model_config.hf_config
|
1065
|
+
model_type = config.model_type
|
1066
|
+
# hack: ggufs have a different name than transformers
|
1067
|
+
if model_type == "cohere":
|
1068
|
+
model_type = "command-r"
|
1069
|
+
arch = None
|
1070
|
+
for key, value in gguf.MODEL_ARCH_NAMES.items():
|
1071
|
+
if value == model_type:
|
1072
|
+
arch = key
|
1073
|
+
break
|
1074
|
+
if arch is None:
|
1075
|
+
raise RuntimeError(f"Unknown gguf model_type: {model_type}")
|
1076
|
+
num_layers = config.num_hidden_layers
|
1077
|
+
name_map = gguf.get_tensor_name_map(arch, num_layers)
|
1078
|
+
with torch.device("meta"):
|
1079
|
+
dummy_model = AutoModelForCausalLM.from_config(config)
|
1080
|
+
state_dict = dummy_model.state_dict()
|
1081
|
+
|
1082
|
+
gguf_to_hf_name_map = {}
|
1083
|
+
for hf_name in state_dict:
|
1084
|
+
name, suffix = hf_name.rsplit(".", 1)
|
1085
|
+
gguf_name = name_map.get_name(name)
|
1086
|
+
gguf_to_hf_name_map[f"{gguf_name}.{suffix}"] = hf_name
|
1087
|
+
return gguf_to_hf_name_map
|
1088
|
+
|
1089
|
+
def _get_weights_iterator(
|
1090
|
+
self, model_name_or_path: str, gguf_to_hf_name_map: Dict[str, str]
|
1091
|
+
) -> Generator[Tuple[str, torch.Tensor], None, None]:
|
1092
|
+
return gguf_quant_weights_iterator(model_name_or_path, gguf_to_hf_name_map)
|
1093
|
+
|
1094
|
+
def download_model(self, model_config: ModelConfig) -> None:
|
1095
|
+
self._prepare_weights(model_config.model_path)
|
1096
|
+
|
1097
|
+
def load_model(
|
1098
|
+
self,
|
1099
|
+
*,
|
1100
|
+
model_config: ModelConfig,
|
1101
|
+
device_config: DeviceConfig,
|
1102
|
+
) -> nn.Module:
|
1103
|
+
|
1104
|
+
local_model_path = self._prepare_weights(model_config.model_path)
|
1105
|
+
gguf_weights_map = self._get_gguf_weights_map(model_config)
|
1106
|
+
# we can only know if tie word embeddings after mapping weights
|
1107
|
+
if "lm_head.weight" in get_gguf_extra_tensor_names(
|
1108
|
+
local_model_path, gguf_weights_map
|
1109
|
+
):
|
1110
|
+
model_config.hf_config.update({"tie_word_embeddings": True})
|
1111
|
+
|
1112
|
+
with set_default_torch_dtype(model_config.dtype):
|
1113
|
+
with torch.device(device_config.device):
|
1114
|
+
model = _initialize_model(model_config, self.load_config)
|
1115
|
+
model.load_weights(
|
1116
|
+
self._get_weights_iterator(local_model_path, gguf_weights_map)
|
1117
|
+
)
|
1118
|
+
return model
|
1119
|
+
|
1120
|
+
|
1121
|
+
def get_model_loader(load_config: LoadConfig) -> BaseModelLoader:
|
1122
|
+
"""Get a model loader based on the load format."""
|
1123
|
+
|
1124
|
+
if isinstance(load_config.load_format, type):
|
1125
|
+
return load_config.load_format(load_config)
|
1126
|
+
|
1127
|
+
if load_config.load_format == LoadFormat.DUMMY:
|
1128
|
+
return DummyModelLoader(load_config)
|
1129
|
+
|
1130
|
+
if load_config.load_format == LoadFormat.SHARDED_STATE:
|
1131
|
+
return ShardedStateLoader(load_config)
|
1132
|
+
|
1133
|
+
if load_config.load_format == LoadFormat.BITSANDBYTES:
|
1134
|
+
return BitsAndBytesModelLoader(load_config)
|
1135
|
+
|
1136
|
+
if load_config.load_format == LoadFormat.GGUF:
|
1137
|
+
return GGUFModelLoader(load_config)
|
1138
|
+
|
1139
|
+
return DefaultModelLoader(load_config)
|