sglang 0.3.6.post2__py3-none-any.whl → 0.3.6.post3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,692 +0,0 @@
1
- # Adapted from
2
- # https://github.com/vllm-project/vllm/tree/v0.5.4/vllm/model_executor/layers/fused_moe
3
- """Fused MoE kernel."""
4
- import functools
5
- import json
6
- import os
7
- from typing import Any, Dict, Optional, Tuple
8
-
9
- import torch
10
- import triton
11
- import triton.language as tl
12
- import vllm.envs as envs
13
- from vllm import _custom_ops as ops
14
- from vllm.logger import init_logger
15
-
16
- logger = init_logger(__name__)
17
- padding_size = 128 if bool(int(os.getenv("MOE_PADDING", "0"))) else 0
18
-
19
-
20
- @triton.jit
21
- def fused_moe_kernel(
22
- # Pointers to matrices
23
- a_ptr,
24
- b_ptr,
25
- c_ptr,
26
- a_scale_ptr,
27
- b_scale_ptr,
28
- topk_weights_ptr,
29
- sorted_token_ids_ptr,
30
- expert_ids_ptr,
31
- num_tokens_post_padded_ptr,
32
- # Matrix dimensions
33
- N,
34
- K,
35
- EM,
36
- num_valid_tokens,
37
- # The stride variables represent how much to increase the ptr by when
38
- # moving by 1 element in a particular dimension. E.g. `stride_am` is
39
- # how much to increase `a_ptr` by to get the element one row down
40
- # (A has M rows).
41
- stride_am,
42
- stride_ak,
43
- stride_be,
44
- stride_bk,
45
- stride_bn,
46
- stride_cm,
47
- stride_cn,
48
- # Meta-parameters
49
- BLOCK_SIZE_M: tl.constexpr,
50
- BLOCK_SIZE_N: tl.constexpr,
51
- BLOCK_SIZE_K: tl.constexpr,
52
- GROUP_SIZE_M: tl.constexpr,
53
- MUL_ROUTED_WEIGHT: tl.constexpr,
54
- top_k: tl.constexpr,
55
- compute_type: tl.constexpr,
56
- use_fp8: tl.constexpr,
57
- even_Ks: tl.constexpr,
58
- ):
59
- """
60
- Implements the fused computation for a Mixture of Experts (MOE) using
61
- token and expert matrices.
62
-
63
- Key Parameters:
64
- - A: The input tensor representing tokens with shape (*, K), where '*' can
65
- be any shape representing batches and K is the feature dimension of
66
- each token.
67
- - B: The stacked MOE weight tensor with shape (E, N, K), where E is
68
- the number of experts, K is the input feature dimension, and N is
69
- the output feature dimension.
70
- - C: The output cache tensor with shape (M, topk, N), where M is the
71
- total number of tokens post padding, topk is the number of times
72
- each token is repeated, and N is the output feature dimension.
73
- - sorted_token_ids: A tensor containing the sorted indices of tokens,
74
- repeated topk times and arranged by the expert index they are
75
- assigned to.
76
- - expert_ids: A tensor containing the indices of the expert for each
77
- block. It determines which expert matrix from B should be used for
78
- each block in A.
79
- This kernel performs the multiplication of a token by its corresponding
80
- expert matrix as determined by `expert_ids`. The sorting of
81
- `sorted_token_ids` by expert index and padding ensures divisibility by
82
- BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
83
- multiplication across different blocks processed by the same expert.
84
- """
85
- # -----------------------------------------------------------
86
- # Map program ids `pid` to the block of C it should compute.
87
- # This is done in a grouped ordering to promote L2 data reuse.
88
- pid = tl.program_id(axis=0)
89
- num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
90
- num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
91
- num_pid_in_group = GROUP_SIZE_M * num_pid_n
92
- group_id = pid // num_pid_in_group
93
- first_pid_m = group_id * GROUP_SIZE_M
94
- group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
95
- pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
96
- pid_n = (pid % num_pid_in_group) // group_size_m
97
-
98
- # ----------------------------------------------------------
99
- # Create pointers for the first blocks of A and B.
100
- # We will advance this pointer as we move in the K direction
101
- # and accumulate
102
- # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
103
- # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
104
- num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
105
- if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
106
- return
107
- offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
108
- offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
109
- token_mask = offs_token < num_valid_tokens
110
-
111
- offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
112
- offs_k = tl.arange(0, BLOCK_SIZE_K)
113
- a_ptrs = a_ptr + (
114
- offs_token[:, None] // top_k * stride_am + offs_k[None, :] * stride_ak
115
- )
116
-
117
- off_experts = tl.load(expert_ids_ptr + pid_m)
118
- b_ptrs = (
119
- b_ptr
120
- + off_experts * stride_be
121
- + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
122
- )
123
-
124
- if use_fp8:
125
- a_scale = tl.load(a_scale_ptr)
126
- b_scale = tl.load(b_scale_ptr + off_experts)
127
-
128
- # -----------------------------------------------------------
129
- # Iterate to compute a block of the C matrix.
130
- # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
131
- # of fp32 values for higher accuracy.
132
- # `accumulator` will be converted back to fp16 after the loop.
133
- accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
134
- for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
135
- # Load the next block of A and B, generate a mask by checking the
136
- # K dimension.
137
- if even_Ks:
138
- a = tl.load(
139
- a_ptrs,
140
- mask=token_mask[:, None],
141
- other=0.0,
142
- )
143
- b = tl.load(b_ptrs)
144
- else:
145
- a = tl.load(
146
- a_ptrs,
147
- mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K),
148
- other=0.0,
149
- )
150
- b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
151
-
152
- # We accumulate along the K dimension.
153
- if use_fp8:
154
- accumulator = tl.dot(a, b, acc=accumulator)
155
- else:
156
- accumulator += tl.dot(a, b)
157
- # Advance the ptrs to the next K block.
158
- a_ptrs += BLOCK_SIZE_K * stride_ak
159
- b_ptrs += BLOCK_SIZE_K * stride_bk
160
-
161
- if MUL_ROUTED_WEIGHT:
162
- moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0)
163
- accumulator = accumulator * moe_weight[:, None]
164
-
165
- if use_fp8:
166
- accumulator = (accumulator * a_scale * b_scale).to(compute_type)
167
- else:
168
- accumulator = accumulator.to(compute_type)
169
- # -----------------------------------------------------------
170
- # Write back the block of the output
171
- offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
172
- c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
173
- c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
174
- tl.store(c_ptrs, accumulator, mask=c_mask)
175
-
176
-
177
- def moe_align_block_size(
178
- topk_ids: torch.Tensor, block_size: int, num_experts: int
179
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
180
- """
181
- Aligns the token distribution across experts to be compatible with block
182
- size for matrix multiplication.
183
-
184
- Parameters:
185
- - topk_ids: A tensor of shape [total_tokens, top_k] representing the
186
- top-k expert indices for each token.
187
- - block_size: The block size used in block matrix multiplication.
188
- - num_experts: The total number of experts.
189
-
190
- Returns:
191
- - sorted_token_ids: A tensor containing the sorted token indices according
192
- to their allocated expert.
193
- - expert_ids: A tensor indicating the assigned expert index for each block.
194
- - num_tokens_post_padded: The total number of tokens after padding,
195
- ensuring divisibility by block_size.
196
-
197
- This function pads the number of tokens that each expert needs to process
198
- so that it is divisible by block_size.
199
- Padding ensures that during block matrix multiplication, the dimensions
200
- align correctly.
201
-
202
- Example:
203
- Given topk_ids = [[2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 2, 3]],
204
- block_size = 4, and num_experts = 4:
205
- - We initially have 12 tokens (after repeating 'top_k' times) and 4 experts,
206
- with each expert needing to process 3 tokens.
207
- - As block_size is 4, we pad 1 token for each expert.
208
- - First, flatten topk_ids to [2, 3, 4, 1, 2, 4, 1, 3, 4, 1, 2, 3].
209
- - Then append padding tokens [12, 12, 12, 12] for each block.
210
- - After sorting by expert index, we obtain token_ids
211
- [3, 6, 9, 12, 0, 4, 10, 12, 1, 7, 11, 12, 2, 5, 8, 12].
212
- Tokens 12 are non-existent (padding) and are ignored in
213
- the subsequent matrix multiplication.
214
- - The padding ensures that the total number of tokens is now divisible
215
- by block_size for proper block matrix operations.
216
- """
217
- max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
218
- sorted_ids = torch.empty(
219
- (max_num_tokens_padded,), dtype=torch.int32, device=topk_ids.device
220
- )
221
- sorted_ids.fill_(topk_ids.numel())
222
- max_num_m_blocks = triton.cdiv(max_num_tokens_padded, block_size)
223
- expert_ids = torch.empty(
224
- (max_num_m_blocks,), dtype=torch.int32, device=topk_ids.device
225
- )
226
- num_tokens_post_pad = torch.empty((1), dtype=torch.int32, device=topk_ids.device)
227
- ops.moe_align_block_size(
228
- topk_ids, num_experts, block_size, sorted_ids, expert_ids, num_tokens_post_pad
229
- )
230
- return sorted_ids, expert_ids, num_tokens_post_pad
231
-
232
-
233
- def invoke_fused_moe_kernel(
234
- A: torch.Tensor,
235
- B: torch.Tensor,
236
- C: torch.Tensor,
237
- A_scale: Optional[torch.Tensor],
238
- B_scale: Optional[torch.Tensor],
239
- topk_weights: torch.Tensor,
240
- topk_ids: torch.Tensor,
241
- sorted_token_ids: torch.Tensor,
242
- expert_ids: torch.Tensor,
243
- num_tokens_post_padded: torch.Tensor,
244
- mul_routed_weight: bool,
245
- top_k: int,
246
- config: Dict[str, Any],
247
- compute_type: tl.dtype,
248
- use_fp8: bool,
249
- ) -> None:
250
- assert topk_weights.stride(1) == 1
251
- assert sorted_token_ids.stride(0) == 1
252
-
253
- padded_size = padding_size
254
- if not use_fp8:
255
- assert A_scale is None
256
- assert B_scale is None
257
- # MOE_PADDING FP8 only
258
- padded_size = 0
259
- else:
260
- A, A_scale = ops.scaled_fp8_quant(A, A_scale)
261
- assert B_scale is not None
262
-
263
- grid = lambda META: (
264
- triton.cdiv(sorted_token_ids.shape[0], META["BLOCK_SIZE_M"])
265
- * triton.cdiv(B.shape[1], META["BLOCK_SIZE_N"]),
266
- )
267
-
268
- K = B.shape[2] - padded_size
269
- if K % config["BLOCK_SIZE_K"] == 0:
270
- even_ks = True
271
- else:
272
- even_ks = False
273
-
274
- fused_moe_kernel[grid](
275
- A,
276
- B,
277
- C,
278
- A_scale,
279
- B_scale,
280
- topk_weights,
281
- sorted_token_ids,
282
- expert_ids,
283
- num_tokens_post_padded,
284
- B.shape[1],
285
- B.shape[2] - padded_size,
286
- sorted_token_ids.shape[0],
287
- topk_ids.numel(),
288
- A.stride(0),
289
- A.stride(1),
290
- B.stride(0),
291
- B.stride(2),
292
- B.stride(1),
293
- C.stride(1),
294
- C.stride(2),
295
- MUL_ROUTED_WEIGHT=mul_routed_weight,
296
- top_k=top_k,
297
- compute_type=compute_type,
298
- use_fp8=use_fp8,
299
- even_Ks=even_ks,
300
- **config,
301
- )
302
-
303
-
304
- def get_config_file_name(E: int, N: int, dtype: Optional[str]) -> str:
305
- device_name = torch.cuda.get_device_name().replace(" ", "_")
306
- dtype_selector = "" if not dtype else f",dtype={dtype}"
307
- return f"E={E},N={N},device_name={device_name}{dtype_selector}.json"
308
-
309
-
310
- @functools.lru_cache
311
- def get_moe_configs(E: int, N: int, dtype: Optional[str]) -> Optional[Dict[int, Any]]:
312
- """
313
- Return optimized configurations for the fused MoE kernel.
314
-
315
- The return value will be a dictionary that maps an irregular grid of
316
- batch sizes to configurations of the fused_moe kernel. To evaluate the
317
- kernel on a given batch size bs, the closest batch size in the grid should
318
- be picked and the associated configuration chosen to invoke the kernel.
319
- """
320
-
321
- # First look up if an optimized configuration is available in the configs
322
- # directory
323
- json_file_name = get_config_file_name(E, N, dtype)
324
-
325
- config_file_path = os.path.join(
326
- os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name
327
- )
328
- if os.path.exists(config_file_path):
329
- with open(config_file_path) as f:
330
- logger.info("Using configuration from %s for MoE layer.", config_file_path)
331
- # If a configuration has been found, return it
332
- return {int(key): val for key, val in json.load(f).items()}
333
-
334
- # If no optimized configuration is available, we will use the default
335
- # configuration
336
- return None
337
-
338
-
339
- def get_default_config(
340
- M: int,
341
- E: int,
342
- N: int,
343
- K: int,
344
- topk: int,
345
- dtype: Optional[str],
346
- ) -> Dict[str, int]:
347
- if dtype == "float8":
348
- config = {
349
- "BLOCK_SIZE_M": 128,
350
- "BLOCK_SIZE_N": 256,
351
- "BLOCK_SIZE_K": 128,
352
- "GROUP_SIZE_M": 32,
353
- "num_warps": 8,
354
- "num_stages": 4,
355
- }
356
- if M <= E:
357
- config = {
358
- "BLOCK_SIZE_M": 64,
359
- "BLOCK_SIZE_N": 128,
360
- "BLOCK_SIZE_K": 128,
361
- "GROUP_SIZE_M": 1,
362
- "num_warps": 4,
363
- "num_stages": 4,
364
- }
365
- else:
366
- config = {
367
- "BLOCK_SIZE_M": 64,
368
- "BLOCK_SIZE_N": 64,
369
- "BLOCK_SIZE_K": 32,
370
- "GROUP_SIZE_M": 8,
371
- }
372
- if M <= E:
373
- config = {
374
- "BLOCK_SIZE_M": 16,
375
- "BLOCK_SIZE_N": 32,
376
- "BLOCK_SIZE_K": 64,
377
- "GROUP_SIZE_M": 1,
378
- }
379
- return config
380
-
381
-
382
- def try_get_optimal_moe_config(
383
- w1_shape: Tuple[int, ...],
384
- w2_shape: Tuple[int, ...],
385
- top_k: int,
386
- dtype: Optional[str],
387
- M: int,
388
- override_config: Optional[Dict[str, Any]] = None,
389
- ):
390
- if override_config:
391
- config = override_config
392
- else:
393
- # First try to load optimal config from the file
394
- E, _, N = w2_shape
395
- configs = get_moe_configs(E, N, dtype)
396
-
397
- if configs:
398
- # If an optimal configuration map has been found, look up the
399
- # optimal config
400
- config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
401
- else:
402
- # Else use the default config
403
- config = get_default_config(M, E, N, w1_shape[2], top_k, dtype)
404
- return config
405
-
406
-
407
- def fused_topk(
408
- hidden_states: torch.Tensor,
409
- gating_output: torch.Tensor,
410
- topk: int,
411
- renormalize: bool,
412
- ):
413
- assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch"
414
-
415
- M, _ = hidden_states.shape
416
-
417
- topk_weights = torch.empty(
418
- M, topk, dtype=torch.float32, device=hidden_states.device
419
- )
420
- topk_ids = torch.empty(M, topk, dtype=torch.int32, device=hidden_states.device)
421
- token_expert_indicies = torch.empty(
422
- M, topk, dtype=torch.int32, device=hidden_states.device
423
- )
424
- ops.topk_softmax(
425
- topk_weights,
426
- topk_ids,
427
- token_expert_indicies,
428
- gating_output.float(), # TODO(woosuk): Optimize this.
429
- )
430
- del token_expert_indicies # Not used. Will be used in the future.
431
-
432
- if renormalize:
433
- topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
434
- return topk_weights, topk_ids
435
-
436
-
437
- # This is used by the Deepseek-V2 model
438
- def grouped_topk(
439
- hidden_states: torch.Tensor,
440
- gating_output: torch.Tensor,
441
- topk: int,
442
- renormalize: bool,
443
- num_expert_group: int = 0,
444
- topk_group: int = 0,
445
- ):
446
-
447
- assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch"
448
-
449
- scores = torch.softmax(gating_output, dim=-1)
450
- num_token = scores.shape[0]
451
- group_scores = (
452
- scores.view(num_token, num_expert_group, -1).max(dim=-1).values
453
- ) # [n, n_group]
454
- group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
455
- 1
456
- ] # [n, top_k_group]
457
- group_mask = torch.zeros_like(group_scores) # [n, n_group]
458
- group_mask.scatter_(1, group_idx, 1) # [n, n_group]
459
- score_mask = (
460
- group_mask.unsqueeze(-1)
461
- .expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
462
- .reshape(num_token, -1)
463
- ) # [n, e]
464
- tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
465
- topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)
466
-
467
- if renormalize:
468
- topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
469
- return topk_weights, topk_ids
470
-
471
-
472
- def fused_experts(
473
- hidden_states: torch.Tensor,
474
- w1: torch.Tensor,
475
- w2: torch.Tensor,
476
- topk_weights: torch.Tensor,
477
- topk_ids: torch.Tensor,
478
- inplace: bool = False,
479
- override_config: Optional[Dict[str, Any]] = None,
480
- use_fp8: bool = False,
481
- w1_scale: Optional[torch.Tensor] = None,
482
- w2_scale: Optional[torch.Tensor] = None,
483
- a1_scale: Optional[torch.Tensor] = None,
484
- a2_scale: Optional[torch.Tensor] = None,
485
- ):
486
- padded_size = padding_size
487
- if not use_fp8:
488
- # MOE_PADDING FP8 only
489
- padded_size = 0
490
- # Check constraints.
491
- assert hidden_states.shape[1] == w1.shape[2] - padded_size, "Hidden size mismatch"
492
- assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
493
- assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
494
- assert w1.is_contiguous(), "Expert weights1 must be contiguous"
495
- assert w2.is_contiguous(), "Expert weights2 must be contiguous"
496
- assert hidden_states.dtype in [torch.float32, torch.float16, torch.bfloat16]
497
-
498
- num_tokens, _ = hidden_states.shape
499
- E, N, _ = w1.shape
500
- # We execute the fused_moe kernel in chunks to circumvent this issue:
501
- # https://github.com/vllm-project/vllm/issues/5938
502
- CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
503
- M = min(num_tokens, CHUNK_SIZE)
504
-
505
- get_config_func = functools.partial(
506
- try_get_optimal_moe_config,
507
- w1.shape,
508
- (w2.shape[0], w2.shape[1], w2.shape[2] - padded_size),
509
- topk_ids.shape[1],
510
- "float8" if use_fp8 else None,
511
- override_config=override_config,
512
- )
513
-
514
- config = get_config_func(M)
515
-
516
- intermediate_cache1 = torch.empty(
517
- (M, topk_ids.shape[1], N),
518
- device=hidden_states.device,
519
- dtype=hidden_states.dtype,
520
- )
521
- intermediate_cache2 = torch.empty(
522
- (M * topk_ids.shape[1], N // 2),
523
- device=hidden_states.device,
524
- dtype=hidden_states.dtype,
525
- )
526
- intermediate_cache3 = torch.empty(
527
- (M, topk_ids.shape[1], w2.shape[1]),
528
- device=hidden_states.device,
529
- dtype=hidden_states.dtype,
530
- )
531
-
532
- compute_type = tl.bfloat16 if hidden_states.dtype == torch.bfloat16 else tl.float16
533
-
534
- if inplace:
535
- out_hidden_states = hidden_states
536
- else:
537
- out_hidden_states = torch.empty_like(hidden_states)
538
-
539
- for chunk in range((num_tokens // CHUNK_SIZE) + 1):
540
- begin_chunk_idx, end_chunk_idx = (
541
- chunk * CHUNK_SIZE,
542
- min((chunk + 1) * CHUNK_SIZE, num_tokens),
543
- )
544
- curr_hidden_states = hidden_states[begin_chunk_idx:end_chunk_idx]
545
- tokens_in_chunk, _ = curr_hidden_states.shape
546
-
547
- if tokens_in_chunk == 0:
548
- break
549
-
550
- if tokens_in_chunk < CHUNK_SIZE and chunk > 0:
551
- # Adjust the intermediate cache size and config for the last
552
- # chunk. Note that in most cases we only have one chunk
553
- # so the cache size and config are already set correctly and
554
- # do not need to be adjusted.
555
- intermediate_cache1 = intermediate_cache1[:tokens_in_chunk]
556
- intermediate_cache2 = intermediate_cache2[:tokens_in_chunk]
557
- intermediate_cache3 = intermediate_cache3[:tokens_in_chunk]
558
- config = get_config_func(tokens_in_chunk)
559
-
560
- curr_topk_ids = topk_ids[begin_chunk_idx:end_chunk_idx]
561
- curr_topk_weights = topk_weights[begin_chunk_idx:end_chunk_idx]
562
-
563
- sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
564
- curr_topk_ids, config["BLOCK_SIZE_M"], E
565
- )
566
-
567
- invoke_fused_moe_kernel(
568
- curr_hidden_states,
569
- w1,
570
- intermediate_cache1,
571
- a1_scale,
572
- w1_scale,
573
- curr_topk_weights,
574
- curr_topk_ids,
575
- sorted_token_ids,
576
- expert_ids,
577
- num_tokens_post_padded,
578
- False,
579
- topk_ids.shape[1],
580
- config,
581
- compute_type=compute_type,
582
- use_fp8=use_fp8,
583
- )
584
-
585
- ops.gelu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, N))
586
-
587
- invoke_fused_moe_kernel(
588
- intermediate_cache2,
589
- w2,
590
- intermediate_cache3,
591
- a2_scale,
592
- w2_scale,
593
- curr_topk_weights,
594
- curr_topk_ids,
595
- sorted_token_ids,
596
- expert_ids,
597
- num_tokens_post_padded,
598
- True,
599
- 1,
600
- config,
601
- compute_type=compute_type,
602
- use_fp8=use_fp8,
603
- )
604
-
605
- torch.sum(
606
- intermediate_cache3.view(*intermediate_cache3.shape),
607
- dim=1,
608
- out=out_hidden_states[begin_chunk_idx:end_chunk_idx],
609
- )
610
- return out_hidden_states
611
-
612
-
613
- def fused_moe(
614
- hidden_states: torch.Tensor,
615
- w1: torch.Tensor,
616
- w2: torch.Tensor,
617
- gating_output: torch.Tensor,
618
- topk: int,
619
- renormalize: bool,
620
- inplace: bool = False,
621
- override_config: Optional[Dict[str, Any]] = None,
622
- use_grouped_topk: bool = False,
623
- num_expert_group: Optional[int] = None,
624
- topk_group: Optional[int] = None,
625
- use_fp8: bool = False,
626
- w1_scale: Optional[torch.Tensor] = None,
627
- w2_scale: Optional[torch.Tensor] = None,
628
- a1_scale: Optional[torch.Tensor] = None,
629
- a2_scale: Optional[torch.Tensor] = None,
630
- ) -> torch.Tensor:
631
- """
632
- This function computes a Mixture of Experts (MoE) layer using two sets of
633
- weights, w1 and w2, and top-k gating mechanism.
634
-
635
- Parameters:
636
- - hidden_states (torch.Tensor): The input tensor to the MoE layer.
637
- - w1 (torch.Tensor): The first set of expert weights.
638
- - w2 (torch.Tensor): The second set of expert weights.
639
- - gating_output (torch.Tensor): The output of the gating operation
640
- (before softmax).
641
- - topk (int): The number of top-k experts to select.
642
- - renormalize (bool): If True, renormalize the top-k weights to sum to 1.
643
- - inplace (bool): If True, perform the operation in-place.
644
- Defaults to False.
645
- - override_config (Optional[Dict[str, Any]]): Optional override
646
- for the kernel configuration.
647
- - num_expert_group: Optional[int]: additional parameter for grouped_topk
648
- - topk_group: Optional[int]: additional parameter for grouped_topk
649
- - use_grouped_topk: If True, use grouped_topk instead of fused_topk
650
- note: Deepseekv2 model uses grouped_topk
651
- - use_fp8 (bool): If True, use fp8 arithmetic to compute the inner
652
- products for w1 and w2. Defaults to False.
653
- - w1_scale (Optional[torch.Tensor]): Optional scale to be used for
654
- w1.
655
- - w2_scale (Optional[torch.Tensor]): Optional scale to be used for
656
- w2.
657
-
658
- Returns:
659
- - torch.Tensor: The output tensor after applying the MoE layer.
660
- """
661
- # Check constraints.
662
- assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch"
663
-
664
- if use_grouped_topk:
665
- assert num_expert_group is not None and topk_group is not None
666
- topk_weights, topk_ids = grouped_topk(
667
- hidden_states,
668
- gating_output,
669
- topk,
670
- renormalize,
671
- num_expert_group,
672
- topk_group,
673
- )
674
- else:
675
- topk_weights, topk_ids = fused_topk(
676
- hidden_states, gating_output, topk, renormalize
677
- )
678
-
679
- return fused_experts(
680
- hidden_states,
681
- w1,
682
- w2,
683
- topk_weights,
684
- topk_ids,
685
- inplace=inplace,
686
- override_config=override_config,
687
- use_fp8=use_fp8,
688
- w1_scale=w1_scale,
689
- w2_scale=w2_scale,
690
- a1_scale=a1_scale,
691
- a2_scale=a2_scale,
692
- )