sglang 0.3.4.post1__py3-none-any.whl → 0.3.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (91) hide show
  1. sglang/api.py +1 -1
  2. sglang/bench_latency.py +3 -3
  3. sglang/bench_server_latency.py +2 -3
  4. sglang/bench_serving.py +92 -0
  5. sglang/global_config.py +9 -3
  6. sglang/lang/chat_template.py +50 -25
  7. sglang/lang/interpreter.py +9 -1
  8. sglang/lang/ir.py +11 -2
  9. sglang/launch_server.py +1 -1
  10. sglang/srt/configs/model_config.py +76 -15
  11. sglang/srt/constrained/__init__.py +18 -0
  12. sglang/srt/constrained/bnf_cache.py +61 -0
  13. sglang/srt/constrained/fsm_cache.py +10 -3
  14. sglang/srt/constrained/grammar.py +190 -0
  15. sglang/srt/hf_transformers_utils.py +20 -5
  16. sglang/srt/layers/attention/flashinfer_backend.py +5 -5
  17. sglang/srt/layers/attention/triton_ops/decode_attention.py +110 -30
  18. sglang/srt/layers/attention/triton_ops/prefill_attention.py +1 -1
  19. sglang/srt/layers/fused_moe/fused_moe.py +4 -3
  20. sglang/srt/layers/fused_moe/layer.py +28 -0
  21. sglang/srt/layers/logits_processor.py +5 -5
  22. sglang/srt/layers/quantization/base_config.py +16 -1
  23. sglang/srt/layers/rotary_embedding.py +15 -48
  24. sglang/srt/layers/sampler.py +51 -39
  25. sglang/srt/layers/vocab_parallel_embedding.py +486 -0
  26. sglang/srt/managers/data_parallel_controller.py +8 -7
  27. sglang/srt/managers/detokenizer_manager.py +11 -9
  28. sglang/srt/managers/image_processor.py +4 -3
  29. sglang/srt/managers/io_struct.py +80 -78
  30. sglang/srt/managers/schedule_batch.py +46 -52
  31. sglang/srt/managers/schedule_policy.py +24 -13
  32. sglang/srt/managers/scheduler.py +145 -82
  33. sglang/srt/managers/tokenizer_manager.py +236 -334
  34. sglang/srt/managers/tp_worker.py +5 -5
  35. sglang/srt/managers/tp_worker_overlap_thread.py +58 -21
  36. sglang/srt/mem_cache/flush_cache.py +1 -1
  37. sglang/srt/mem_cache/memory_pool.py +10 -3
  38. sglang/srt/model_executor/cuda_graph_runner.py +34 -23
  39. sglang/srt/model_executor/forward_batch_info.py +6 -9
  40. sglang/srt/model_executor/model_runner.py +10 -19
  41. sglang/srt/models/baichuan.py +4 -4
  42. sglang/srt/models/chatglm.py +4 -4
  43. sglang/srt/models/commandr.py +1 -1
  44. sglang/srt/models/dbrx.py +5 -5
  45. sglang/srt/models/deepseek.py +4 -4
  46. sglang/srt/models/deepseek_v2.py +4 -4
  47. sglang/srt/models/exaone.py +4 -4
  48. sglang/srt/models/gemma.py +1 -1
  49. sglang/srt/models/gemma2.py +1 -1
  50. sglang/srt/models/gpt2.py +287 -0
  51. sglang/srt/models/gpt_bigcode.py +1 -1
  52. sglang/srt/models/grok.py +4 -4
  53. sglang/srt/models/internlm2.py +4 -4
  54. sglang/srt/models/llama.py +15 -7
  55. sglang/srt/models/llama_embedding.py +2 -10
  56. sglang/srt/models/llama_reward.py +5 -0
  57. sglang/srt/models/minicpm.py +4 -4
  58. sglang/srt/models/minicpm3.py +4 -4
  59. sglang/srt/models/mixtral.py +7 -5
  60. sglang/srt/models/mixtral_quant.py +4 -4
  61. sglang/srt/models/mllama.py +5 -5
  62. sglang/srt/models/olmo.py +4 -4
  63. sglang/srt/models/olmoe.py +4 -4
  64. sglang/srt/models/qwen.py +4 -4
  65. sglang/srt/models/qwen2.py +4 -4
  66. sglang/srt/models/qwen2_moe.py +4 -4
  67. sglang/srt/models/qwen2_vl.py +4 -8
  68. sglang/srt/models/stablelm.py +4 -4
  69. sglang/srt/models/torch_native_llama.py +4 -4
  70. sglang/srt/models/xverse.py +4 -4
  71. sglang/srt/models/xverse_moe.py +4 -4
  72. sglang/srt/openai_api/adapter.py +52 -66
  73. sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py +6 -3
  74. sglang/srt/sampling/sampling_batch_info.py +7 -13
  75. sglang/srt/sampling/sampling_params.py +5 -7
  76. sglang/srt/server.py +41 -33
  77. sglang/srt/server_args.py +34 -5
  78. sglang/srt/utils.py +40 -56
  79. sglang/test/run_eval.py +2 -0
  80. sglang/test/runners.py +2 -1
  81. sglang/test/srt/sampling/penaltylib/utils.py +1 -0
  82. sglang/test/test_utils.py +151 -6
  83. sglang/utils.py +62 -1
  84. sglang/version.py +1 -1
  85. sglang-0.3.5.dist-info/METADATA +344 -0
  86. sglang-0.3.5.dist-info/RECORD +152 -0
  87. {sglang-0.3.4.post1.dist-info → sglang-0.3.5.dist-info}/WHEEL +1 -1
  88. sglang-0.3.4.post1.dist-info/METADATA +0 -900
  89. sglang-0.3.4.post1.dist-info/RECORD +0 -148
  90. {sglang-0.3.4.post1.dist-info → sglang-0.3.5.dist-info}/LICENSE +0 -0
  91. {sglang-0.3.4.post1.dist-info → sglang-0.3.5.dist-info}/top_level.txt +0 -0
@@ -1,900 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: sglang
3
- Version: 0.3.4.post1
4
- Summary: SGLang is yet another fast serving framework for large language models and vision language models.
5
- License: Apache License
6
- Version 2.0, January 2004
7
- http://www.apache.org/licenses/
8
-
9
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
10
-
11
- 1. Definitions.
12
-
13
- "License" shall mean the terms and conditions for use, reproduction,
14
- and distribution as defined by Sections 1 through 9 of this document.
15
-
16
- "Licensor" shall mean the copyright owner or entity authorized by
17
- the copyright owner that is granting the License.
18
-
19
- "Legal Entity" shall mean the union of the acting entity and all
20
- other entities that control, are controlled by, or are under common
21
- control with that entity. For the purposes of this definition,
22
- "control" means (i) the power, direct or indirect, to cause the
23
- direction or management of such entity, whether by contract or
24
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
25
- outstanding shares, or (iii) beneficial ownership of such entity.
26
-
27
- "You" (or "Your") shall mean an individual or Legal Entity
28
- exercising permissions granted by this License.
29
-
30
- "Source" form shall mean the preferred form for making modifications,
31
- including but not limited to software source code, documentation
32
- source, and configuration files.
33
-
34
- "Object" form shall mean any form resulting from mechanical
35
- transformation or translation of a Source form, including but
36
- not limited to compiled object code, generated documentation,
37
- and conversions to other media types.
38
-
39
- "Work" shall mean the work of authorship, whether in Source or
40
- Object form, made available under the License, as indicated by a
41
- copyright notice that is included in or attached to the work
42
- (an example is provided in the Appendix below).
43
-
44
- "Derivative Works" shall mean any work, whether in Source or Object
45
- form, that is based on (or derived from) the Work and for which the
46
- editorial revisions, annotations, elaborations, or other modifications
47
- represent, as a whole, an original work of authorship. For the purposes
48
- of this License, Derivative Works shall not include works that remain
49
- separable from, or merely link (or bind by name) to the interfaces of,
50
- the Work and Derivative Works thereof.
51
-
52
- "Contribution" shall mean any work of authorship, including
53
- the original version of the Work and any modifications or additions
54
- to that Work or Derivative Works thereof, that is intentionally
55
- submitted to Licensor for inclusion in the Work by the copyright owner
56
- or by an individual or Legal Entity authorized to submit on behalf of
57
- the copyright owner. For the purposes of this definition, "submitted"
58
- means any form of electronic, verbal, or written communication sent
59
- to the Licensor or its representatives, including but not limited to
60
- communication on electronic mailing lists, source code control systems,
61
- and issue tracking systems that are managed by, or on behalf of, the
62
- Licensor for the purpose of discussing and improving the Work, but
63
- excluding communication that is conspicuously marked or otherwise
64
- designated in writing by the copyright owner as "Not a Contribution."
65
-
66
- "Contributor" shall mean Licensor and any individual or Legal Entity
67
- on behalf of whom a Contribution has been received by Licensor and
68
- subsequently incorporated within the Work.
69
-
70
- 2. Grant of Copyright License. Subject to the terms and conditions of
71
- this License, each Contributor hereby grants to You a perpetual,
72
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
73
- copyright license to reproduce, prepare Derivative Works of,
74
- publicly display, publicly perform, sublicense, and distribute the
75
- Work and such Derivative Works in Source or Object form.
76
-
77
- 3. Grant of Patent License. Subject to the terms and conditions of
78
- this License, each Contributor hereby grants to You a perpetual,
79
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
80
- (except as stated in this section) patent license to make, have made,
81
- use, offer to sell, sell, import, and otherwise transfer the Work,
82
- where such license applies only to those patent claims licensable
83
- by such Contributor that are necessarily infringed by their
84
- Contribution(s) alone or by combination of their Contribution(s)
85
- with the Work to which such Contribution(s) was submitted. If You
86
- institute patent litigation against any entity (including a
87
- cross-claim or counterclaim in a lawsuit) alleging that the Work
88
- or a Contribution incorporated within the Work constitutes direct
89
- or contributory patent infringement, then any patent licenses
90
- granted to You under this License for that Work shall terminate
91
- as of the date such litigation is filed.
92
-
93
- 4. Redistribution. You may reproduce and distribute copies of the
94
- Work or Derivative Works thereof in any medium, with or without
95
- modifications, and in Source or Object form, provided that You
96
- meet the following conditions:
97
-
98
- (a) You must give any other recipients of the Work or
99
- Derivative Works a copy of this License; and
100
-
101
- (b) You must cause any modified files to carry prominent notices
102
- stating that You changed the files; and
103
-
104
- (c) You must retain, in the Source form of any Derivative Works
105
- that You distribute, all copyright, patent, trademark, and
106
- attribution notices from the Source form of the Work,
107
- excluding those notices that do not pertain to any part of
108
- the Derivative Works; and
109
-
110
- (d) If the Work includes a "NOTICE" text file as part of its
111
- distribution, then any Derivative Works that You distribute must
112
- include a readable copy of the attribution notices contained
113
- within such NOTICE file, excluding those notices that do not
114
- pertain to any part of the Derivative Works, in at least one
115
- of the following places: within a NOTICE text file distributed
116
- as part of the Derivative Works; within the Source form or
117
- documentation, if provided along with the Derivative Works; or,
118
- within a display generated by the Derivative Works, if and
119
- wherever such third-party notices normally appear. The contents
120
- of the NOTICE file are for informational purposes only and
121
- do not modify the License. You may add Your own attribution
122
- notices within Derivative Works that You distribute, alongside
123
- or as an addendum to the NOTICE text from the Work, provided
124
- that such additional attribution notices cannot be construed
125
- as modifying the License.
126
-
127
- You may add Your own copyright statement to Your modifications and
128
- may provide additional or different license terms and conditions
129
- for use, reproduction, or distribution of Your modifications, or
130
- for any such Derivative Works as a whole, provided Your use,
131
- reproduction, and distribution of the Work otherwise complies with
132
- the conditions stated in this License.
133
-
134
- 5. Submission of Contributions. Unless You explicitly state otherwise,
135
- any Contribution intentionally submitted for inclusion in the Work
136
- by You to the Licensor shall be under the terms and conditions of
137
- this License, without any additional terms or conditions.
138
- Notwithstanding the above, nothing herein shall supersede or modify
139
- the terms of any separate license agreement you may have executed
140
- with Licensor regarding such Contributions.
141
-
142
- 6. Trademarks. This License does not grant permission to use the trade
143
- names, trademarks, service marks, or product names of the Licensor,
144
- except as required for reasonable and customary use in describing the
145
- origin of the Work and reproducing the content of the NOTICE file.
146
-
147
- 7. Disclaimer of Warranty. Unless required by applicable law or
148
- agreed to in writing, Licensor provides the Work (and each
149
- Contributor provides its Contributions) on an "AS IS" BASIS,
150
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
151
- implied, including, without limitation, any warranties or conditions
152
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
153
- PARTICULAR PURPOSE. You are solely responsible for determining the
154
- appropriateness of using or redistributing the Work and assume any
155
- risks associated with Your exercise of permissions under this License.
156
-
157
- 8. Limitation of Liability. In no event and under no legal theory,
158
- whether in tort (including negligence), contract, or otherwise,
159
- unless required by applicable law (such as deliberate and grossly
160
- negligent acts) or agreed to in writing, shall any Contributor be
161
- liable to You for damages, including any direct, indirect, special,
162
- incidental, or consequential damages of any character arising as a
163
- result of this License or out of the use or inability to use the
164
- Work (including but not limited to damages for loss of goodwill,
165
- work stoppage, computer failure or malfunction, or any and all
166
- other commercial damages or losses), even if such Contributor
167
- has been advised of the possibility of such damages.
168
-
169
- 9. Accepting Warranty or Additional Liability. While redistributing
170
- the Work or Derivative Works thereof, You may choose to offer,
171
- and charge a fee for, acceptance of support, warranty, indemnity,
172
- or other liability obligations and/or rights consistent with this
173
- License. However, in accepting such obligations, You may act only
174
- on Your own behalf and on Your sole responsibility, not on behalf
175
- of any other Contributor, and only if You agree to indemnify,
176
- defend, and hold each Contributor harmless for any liability
177
- incurred by, or claims asserted against, such Contributor by reason
178
- of your accepting any such warranty or additional liability.
179
-
180
- END OF TERMS AND CONDITIONS
181
-
182
- APPENDIX: How to apply the Apache License to your work.
183
-
184
- To apply the Apache License to your work, attach the following
185
- boilerplate notice, with the fields enclosed by brackets "[]"
186
- replaced with your own identifying information. (Don't include
187
- the brackets!) The text should be enclosed in the appropriate
188
- comment syntax for the file format. We also recommend that a
189
- file or class name and description of purpose be included on the
190
- same "printed page" as the copyright notice for easier
191
- identification within third-party archives.
192
-
193
- Copyright [yyyy] [name of copyright owner]
194
-
195
- Licensed under the Apache License, Version 2.0 (the "License");
196
- you may not use this file except in compliance with the License.
197
- You may obtain a copy of the License at
198
-
199
- http://www.apache.org/licenses/LICENSE-2.0
200
-
201
- Unless required by applicable law or agreed to in writing, software
202
- distributed under the License is distributed on an "AS IS" BASIS,
203
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
204
- See the License for the specific language governing permissions and
205
- limitations under the License.
206
-
207
- Project-URL: Homepage, https://github.com/sgl-project/sglang
208
- Project-URL: Bug Tracker, https://github.com/sgl-project/sglang/issues
209
- Classifier: Programming Language :: Python :: 3
210
- Classifier: License :: OSI Approved :: Apache Software License
211
- Requires-Python: >=3.8
212
- Description-Content-Type: text/markdown
213
- License-File: LICENSE
214
- Requires-Dist: requests
215
- Requires-Dist: tqdm
216
- Requires-Dist: numpy
217
- Provides-Extra: all
218
- Requires-Dist: sglang[srt]; extra == "all"
219
- Requires-Dist: sglang[openai]; extra == "all"
220
- Requires-Dist: sglang[anthropic]; extra == "all"
221
- Requires-Dist: sglang[litellm]; extra == "all"
222
- Provides-Extra: all_xpu
223
- Requires-Dist: sglang[srt_xpu]; extra == "all-xpu"
224
- Requires-Dist: sglang[openai]; extra == "all-xpu"
225
- Requires-Dist: sglang[anthropic]; extra == "all-xpu"
226
- Requires-Dist: sglang[litellm]; extra == "all-xpu"
227
- Provides-Extra: anthropic
228
- Requires-Dist: anthropic>=0.20.0; extra == "anthropic"
229
- Provides-Extra: dev
230
- Requires-Dist: sglang[all]; extra == "dev"
231
- Requires-Dist: sglang[test]; extra == "dev"
232
- Provides-Extra: dev_xpu
233
- Requires-Dist: sglang[all_xpu]; extra == "dev-xpu"
234
- Requires-Dist: sglang[test]; extra == "dev-xpu"
235
- Provides-Extra: litellm
236
- Requires-Dist: litellm>=1.0.0; extra == "litellm"
237
- Provides-Extra: openai
238
- Requires-Dist: openai>=1.0; extra == "openai"
239
- Requires-Dist: tiktoken; extra == "openai"
240
- Provides-Extra: runtime_common
241
- Requires-Dist: aiohttp; extra == "runtime-common"
242
- Requires-Dist: decord; extra == "runtime-common"
243
- Requires-Dist: fastapi; extra == "runtime-common"
244
- Requires-Dist: hf-transfer; extra == "runtime-common"
245
- Requires-Dist: huggingface-hub; extra == "runtime-common"
246
- Requires-Dist: interegular; extra == "runtime-common"
247
- Requires-Dist: orjson; extra == "runtime-common"
248
- Requires-Dist: packaging; extra == "runtime-common"
249
- Requires-Dist: pillow; extra == "runtime-common"
250
- Requires-Dist: psutil; extra == "runtime-common"
251
- Requires-Dist: pydantic; extra == "runtime-common"
252
- Requires-Dist: python-multipart; extra == "runtime-common"
253
- Requires-Dist: torchao; extra == "runtime-common"
254
- Requires-Dist: uvicorn; extra == "runtime-common"
255
- Requires-Dist: uvloop; extra == "runtime-common"
256
- Requires-Dist: zmq; extra == "runtime-common"
257
- Requires-Dist: outlines>=0.0.44; extra == "runtime-common"
258
- Requires-Dist: modelscope; extra == "runtime-common"
259
- Provides-Extra: srt
260
- Requires-Dist: sglang[runtime_common]; extra == "srt"
261
- Requires-Dist: torch; extra == "srt"
262
- Requires-Dist: vllm==0.6.3.post1; extra == "srt"
263
- Provides-Extra: srt_xpu
264
- Requires-Dist: sglang[runtime_common]; extra == "srt-xpu"
265
- Provides-Extra: test
266
- Requires-Dist: jsonlines; extra == "test"
267
- Requires-Dist: matplotlib; extra == "test"
268
- Requires-Dist: pandas; extra == "test"
269
- Requires-Dist: sentence-transformers; extra == "test"
270
- Requires-Dist: accelerate; extra == "test"
271
- Requires-Dist: peft; extra == "test"
272
-
273
- <div align="center" id="sglangtop">
274
- <img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400" margin="10px"></img>
275
-
276
- [![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
277
- ![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
278
- [![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
279
- [![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
280
- [![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
281
-
282
- </div>
283
-
284
- --------------------------------------------------------------------------------
285
-
286
- | [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slides**](https://github.com/sgl-project/sgl-learning-materials/blob/main/slides/amd_dev_day_v2.pdf) | [**Learn More**](https://github.com/sgl-project/sgl-learning-materials) | [**Join Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) |
287
- [**Join Bi-Weekly Development Meeting**](https://docs.google.com/document/d/1xEow4eIM152xNcRxqZz9VEcOiTQo8-CEuuQ5qTmkt-E/edit?usp=sharing) |
288
-
289
- ## News
290
- - [2024/10] 🔥 The First SGLang Online Meetup ([slides](https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#the-first-sglang-online-meetup)).
291
- - [2024/09] SGLang v0.3 Release: 7x Faster DeepSeek MLA, 1.5x Faster torch.compile, Multi-Image/Video LLaVA-OneVision ([blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/)).
292
- - [2024/07] Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
293
-
294
- <details>
295
- <summary>More</summary>
296
-
297
- - [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
298
- - [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
299
- - [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
300
- - [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
301
-
302
- </details>
303
-
304
- ## About
305
- SGLang is a fast serving framework for large language models and vision language models.
306
- It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
307
- The core features include:
308
-
309
- - **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, chunked prefill, and quantization (INT4/FP8/AWQ/GPTQ).
310
- - **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
311
- - **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, QWen, DeepSeek, LLaVA, etc.) and embedding models (e5-mistral), with easy extensibility for integrating new models.
312
- - **Active Community**: SGLang is open-source and backed by an active community with industry adoption.
313
-
314
- ## Contents
315
- - [Install](#install)
316
- - [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
317
- - [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
318
- - [Benchmark And Performance](#benchmark-and-performance)
319
- - [Roadmap](#roadmap)
320
- - [Citation And Acknowledgment](#citation-and-acknowledgment)
321
-
322
- ## Install
323
-
324
- You can install SGLang using any of the methods below.
325
-
326
- ### Method 1: With pip
327
- ```
328
- pip install --upgrade pip
329
- pip install "sglang[all]"
330
-
331
- # Install FlashInfer CUDA kernels
332
- pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
333
- ```
334
-
335
- ### Method 2: From source
336
- ```
337
- # Use the last release branch
338
- git clone -b v0.3.4.post1 https://github.com/sgl-project/sglang.git
339
- cd sglang
340
-
341
- pip install --upgrade pip
342
- pip install -e "python[all]"
343
-
344
- # Install FlashInfer CUDA kernels
345
- pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
346
- ```
347
-
348
- ### Method 3: Using docker
349
- The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
350
- Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
351
-
352
- ```bash
353
- docker run --gpus all \
354
- -p 30000:30000 \
355
- -v ~/.cache/huggingface:/root/.cache/huggingface \
356
- --env "HF_TOKEN=<secret>" \
357
- --ipc=host \
358
- lmsysorg/sglang:latest \
359
- python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
360
- ```
361
-
362
- ### Method 4: Using docker compose
363
-
364
- <details>
365
- <summary>More</summary>
366
-
367
- > This method is recommended if you plan to serve it as a service.
368
- > A better approach is to use the [k8s-sglang-service.yaml](docker/k8s-sglang-service.yaml).
369
-
370
- 1. Copy the [compose.yml](docker/compose.yaml) to your local machine
371
- 2. Execute the command `docker compose up -d` in your terminal.
372
- </details>
373
-
374
- ### Method 5: Run on Kubernetes or Clouds with SkyPilot
375
-
376
- <details>
377
- <summary>More</summary>
378
-
379
- To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).
380
-
381
- 1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
382
- 2. Deploy on your own infra with a single command and get the HTTP API endpoint:
383
- <details>
384
- <summary>SkyPilot YAML: <code>sglang.yaml</code></summary>
385
-
386
- ```yaml
387
- # sglang.yaml
388
- envs:
389
- HF_TOKEN: null
390
-
391
- resources:
392
- image_id: docker:lmsysorg/sglang:latest
393
- accelerators: A100
394
- ports: 30000
395
-
396
- run: |
397
- conda deactivate
398
- python3 -m sglang.launch_server \
399
- --model-path meta-llama/Llama-3.1-8B-Instruct \
400
- --host 0.0.0.0 \
401
- --port 30000
402
- ```
403
- </details>
404
-
405
- ```bash
406
- # Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
407
- HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml
408
-
409
- # Get the HTTP API endpoint
410
- sky status --endpoint 30000 sglang
411
- ```
412
- 3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
413
- </details>
414
-
415
-
416
- ### Common Notes
417
- - [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
418
- - If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
419
-
420
- ## Backend: SGLang Runtime (SRT)
421
- The SGLang Runtime (SRT) is an efficient serving engine.
422
-
423
- ### Quick Start
424
- Launch a server
425
- ```
426
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
427
- ```
428
-
429
- Send a request
430
- ```
431
- curl http://localhost:30000/generate \
432
- -H "Content-Type: application/json" \
433
- -d '{
434
- "text": "Once upon a time,",
435
- "sampling_params": {
436
- "max_new_tokens": 16,
437
- "temperature": 0
438
- }
439
- }'
440
- ```
441
-
442
- Learn more about the argument specification, streaming, and multi-modal support [here](docs/en/sampling_params.md).
443
-
444
- ### OpenAI Compatible API
445
- In addition, the server supports OpenAI-compatible APIs.
446
-
447
- ```python
448
- import openai
449
- client = openai.Client(
450
- base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")
451
-
452
- # Text completion
453
- response = client.completions.create(
454
- model="default",
455
- prompt="The capital of France is",
456
- temperature=0,
457
- max_tokens=32,
458
- )
459
- print(response)
460
-
461
- # Chat completion
462
- response = client.chat.completions.create(
463
- model="default",
464
- messages=[
465
- {"role": "system", "content": "You are a helpful AI assistant"},
466
- {"role": "user", "content": "List 3 countries and their capitals."},
467
- ],
468
- temperature=0,
469
- max_tokens=64,
470
- )
471
- print(response)
472
-
473
- # Text embedding
474
- response = client.embeddings.create(
475
- model="default",
476
- input="How are you today",
477
- )
478
- print(response)
479
- ```
480
-
481
- It supports streaming, vision, and almost all features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
482
-
483
- ### Additional Server Arguments
484
- - To enable multi-GPU tensor parallelism, add `--tp 2`. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
485
- ```
486
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 2
487
- ```
488
- - To enable multi-GPU data parallelism, add `--dp 2`. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
489
- ```
490
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --dp 2 --tp 2
491
- ```
492
- - If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
493
- ```
494
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --mem-fraction-static 0.7
495
- ```
496
- - See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
497
- - If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
498
- ```
499
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --chunked-prefill-size 4096
500
- ```
501
- - To enable torch.compile acceleration, add `--enable-torch-compile`. It accelerates small models on small batch sizes.
502
- - To enable torchao quantization, add `--torchao-config int4wo-128`. It supports various quantization strategies.
503
- - To enable fp8 weight quantization, add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
504
- - To enable fp8 kv cache quantization, add `--kv-cache-dtype fp8_e5m2`.
505
- - If the model does not have a chat template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
506
- - To run tensor parallelism on multiple nodes, add `--nnodes 2`. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port, you can use the following commands. If you meet deadlock, please try to add `--disable-cuda-graph`
507
- ```
508
- # Node 0
509
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
510
-
511
- # Node 1
512
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
513
- ```
514
-
515
- ### Engine Without HTTP Server
516
-
517
- We also provide an inference engine **without a HTTP server**. For example,
518
-
519
- ```python
520
- import sglang as sgl
521
-
522
-
523
- def main():
524
- prompts = [
525
- "Hello, my name is",
526
- "The president of the United States is",
527
- "The capital of France is",
528
- "The future of AI is",
529
- ]
530
- sampling_params = {"temperature": 0.8, "top_p": 0.95}
531
- llm = sgl.Engine(model_path="meta-llama/Meta-Llama-3.1-8B-Instruct")
532
-
533
- outputs = llm.generate(prompts, sampling_params)
534
- for prompt, output in zip(prompts, outputs):
535
- print("===============================")
536
- print(f"Prompt: {prompt}\nGenerated text: {output['text']}")
537
-
538
- if __name__ == "__main__":
539
- main()
540
- ```
541
-
542
- This can be used for:
543
-
544
- 1. **Offline Batch Inference**
545
- 2. **Building Custom Servers**
546
-
547
- You can view the full example [here](https://github.com/sgl-project/sglang/tree/main/examples/runtime/engine)
548
-
549
- ### Supported Models
550
-
551
- **Generative Models**
552
- - Llama / Llama 2 / Llama 3 / Llama 3.1
553
- - Mistral / Mixtral / Mistral NeMo
554
- - Gemma / Gemma 2
555
- - Qwen / Qwen 2 / Qwen 2 MoE
556
- - DeepSeek / DeepSeek 2
557
- - OLMoE
558
- - [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
559
- - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --port=30000 --chat-template=chatml-llava`
560
- - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
561
- - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
562
- - LLaVA 1.5 / 1.6 / NeXT
563
- - `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
564
- - `python -m sglang.launch_server --model-path lmms-lab/llava-next-72b --port=30000 --tp-size=8 --chat-template=chatml-llava`
565
- - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
566
- - Yi-VL
567
- - StableLM
568
- - Command-R
569
- - DBRX
570
- - Grok
571
- - ChatGLM
572
- - InternLM 2
573
- - Exaone 3
574
- - BaiChuan2
575
- - MiniCPM / MiniCPM 3
576
- - XVERSE / XVERSE MoE
577
- - SmolLM
578
- - GLM-4
579
-
580
- **Embedding Models**
581
-
582
- - e5-mistral
583
- - gte-Qwen2
584
- - `python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --is-embedding`
585
-
586
- Instructions for supporting a new model are [here](docs/en/model_support.md).
587
-
588
- #### Use Models From ModelScope
589
- <details>
590
- <summary>More</summary>
591
-
592
- To use a model from [ModelScope](https://www.modelscope.cn), set the environment variable SGLANG_USE_MODELSCOPE.
593
- ```
594
- export SGLANG_USE_MODELSCOPE=true
595
- ```
596
- Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
597
- ```
598
- SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
599
- ```
600
-
601
- Or start it by docker.
602
- ```bash
603
- docker run --gpus all \
604
- -p 30000:30000 \
605
- -v ~/.cache/modelscope:/root/.cache/modelscope \
606
- --env "SGLANG_USE_MODELSCOPE=true" \
607
- --ipc=host \
608
- lmsysorg/sglang:latest \
609
- python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-7B-Instruct --host 0.0.0.0 --port 30000
610
- ```
611
-
612
- </details>
613
-
614
- #### Run Llama 3.1 405B
615
- <details>
616
- <summary>More</summary>
617
-
618
- ```bash
619
- # Run 405B (fp8) on a single node
620
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8
621
-
622
- # Run 405B (fp16) on two nodes
623
- ## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
624
- GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph
625
-
626
- ## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
627
- GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph
628
- ```
629
-
630
- </details>
631
-
632
- ### Benchmark Performance
633
-
634
- - Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`.
635
- Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle.
636
- A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, please use `sglang.bench_serving` instead.
637
- ```
638
- python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
639
- ```
640
- - Benchmark online serving. Launch a server first and run the following command.
641
- ```
642
- python3 -m sglang.bench_serving --backend sglang --num-prompt 10
643
- ```
644
-
645
- ## Frontend: Structured Generation Language (SGLang)
646
- The frontend language can be used with local models or API models. It is an alternative to the OpenAI API. You may found it easier to use for complex prompting workflow.
647
-
648
- ### Quick Start
649
- The example below shows how to use sglang to answer a multi-turn question.
650
-
651
- #### Using Local Models
652
- First, launch a server with
653
- ```
654
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
655
- ```
656
-
657
- Then, connect to the server and answer a multi-turn question.
658
-
659
- ```python
660
- from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
661
-
662
- @function
663
- def multi_turn_question(s, question_1, question_2):
664
- s += system("You are a helpful assistant.")
665
- s += user(question_1)
666
- s += assistant(gen("answer_1", max_tokens=256))
667
- s += user(question_2)
668
- s += assistant(gen("answer_2", max_tokens=256))
669
-
670
- set_default_backend(RuntimeEndpoint("http://localhost:30000"))
671
-
672
- state = multi_turn_question.run(
673
- question_1="What is the capital of the United States?",
674
- question_2="List two local attractions.",
675
- )
676
-
677
- for m in state.messages():
678
- print(m["role"], ":", m["content"])
679
-
680
- print(state["answer_1"])
681
- ```
682
-
683
- #### Using OpenAI Models
684
- Set the OpenAI API Key
685
- ```
686
- export OPENAI_API_KEY=sk-******
687
- ```
688
-
689
- Then, answer a multi-turn question.
690
- ```python
691
- from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
692
-
693
- @function
694
- def multi_turn_question(s, question_1, question_2):
695
- s += system("You are a helpful assistant.")
696
- s += user(question_1)
697
- s += assistant(gen("answer_1", max_tokens=256))
698
- s += user(question_2)
699
- s += assistant(gen("answer_2", max_tokens=256))
700
-
701
- set_default_backend(OpenAI("gpt-3.5-turbo"))
702
-
703
- state = multi_turn_question.run(
704
- question_1="What is the capital of the United States?",
705
- question_2="List two local attractions.",
706
- )
707
-
708
- for m in state.messages():
709
- print(m["role"], ":", m["content"])
710
-
711
- print(state["answer_1"])
712
- ```
713
-
714
- #### More Examples
715
-
716
- Anthropic and VertexAI (Gemini) models are also supported.
717
- You can find more examples at [examples/quick_start](examples/frontend_language/quick_start).
718
-
719
- ### Language Feature
720
- To begin with, import sglang.
721
- ```python
722
- import sglang as sgl
723
- ```
724
-
725
- `sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
726
- You can implement your prompt flow in a function decorated by `sgl.function`.
727
- You can then invoke the function with `run` or `run_batch`.
728
- The system will manage the state, chat template, parallelism and batching for you.
729
-
730
- The complete code for the examples below can be found at [readme_examples.py](examples/frontend_language/usage/readme_examples.py)
731
-
732
- #### Control Flow
733
- You can use any Python code within the function body, including control flow, nested function calls, and external libraries.
734
-
735
- ```python
736
- @sgl.function
737
- def tool_use(s, question):
738
- s += "To answer this question: " + question + ". "
739
- s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
740
-
741
- if s["tool"] == "calculator":
742
- s += "The math expression is" + sgl.gen("expression")
743
- elif s["tool"] == "search engine":
744
- s += "The key word to search is" + sgl.gen("word")
745
- ```
746
-
747
- #### Parallelism
748
- Use `fork` to launch parallel prompts.
749
- Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.
750
-
751
- ```python
752
- @sgl.function
753
- def tip_suggestion(s):
754
- s += (
755
- "Here are two tips for staying healthy: "
756
- "1. Balanced Diet. 2. Regular Exercise.\n\n"
757
- )
758
-
759
- forks = s.fork(2)
760
- for i, f in enumerate(forks):
761
- f += f"Now, expand tip {i+1} into a paragraph:\n"
762
- f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")
763
-
764
- s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
765
- s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
766
- s += "In summary" + sgl.gen("summary")
767
- ```
768
-
769
- #### Multi-Modality
770
- Use `sgl.image` to pass an image as input.
771
-
772
- ```python
773
- @sgl.function
774
- def image_qa(s, image_file, question):
775
- s += sgl.user(sgl.image(image_file) + question)
776
- s += sgl.assistant(sgl.gen("answer", max_tokens=256)
777
- ```
778
-
779
- See also [srt_example_llava.py](examples/frontend_language/quick_start/local_example_llava_next.py).
780
-
781
- #### Constrained Decoding
782
- Use `regex` to specify a regular expression as a decoding constraint.
783
- This is only supported for local models.
784
-
785
- ```python
786
- @sgl.function
787
- def regular_expression_gen(s):
788
- s += "Q: What is the IP address of the Google DNS servers?\n"
789
- s += "A: " + sgl.gen(
790
- "answer",
791
- temperature=0,
792
- regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
793
- )
794
- ```
795
-
796
- #### JSON Decoding
797
- Use `regex` to specify a JSON schema with a regular expression.
798
-
799
- ```python
800
- character_regex = (
801
- r"""\{\n"""
802
- + r""" "name": "[\w\d\s]{1,16}",\n"""
803
- + r""" "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
804
- + r""" "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
805
- + r""" "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
806
- + r""" "wand": \{\n"""
807
- + r""" "wood": "[\w\d\s]{1,16}",\n"""
808
- + r""" "core": "[\w\d\s]{1,16}",\n"""
809
- + r""" "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
810
- + r""" \},\n"""
811
- + r""" "alive": "(Alive|Deceased)",\n"""
812
- + r""" "patronus": "[\w\d\s]{1,16}",\n"""
813
- + r""" "bogart": "[\w\d\s]{1,16}"\n"""
814
- + r"""\}"""
815
- )
816
-
817
- @sgl.function
818
- def character_gen(s, name):
819
- s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
820
- s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
821
- ```
822
-
823
- See also [json_decode.py](examples/frontend_language/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
824
-
825
- #### Batching
826
- Use `run_batch` to run a batch of requests with continuous batching.
827
-
828
- ```python
829
- @sgl.function
830
- def text_qa(s, question):
831
- s += "Q: " + question + "\n"
832
- s += "A:" + sgl.gen("answer", stop="\n")
833
-
834
- states = text_qa.run_batch(
835
- [
836
- {"question": "What is the capital of the United Kingdom?"},
837
- {"question": "What is the capital of France?"},
838
- {"question": "What is the capital of Japan?"},
839
- ],
840
- progress_bar=True
841
- )
842
- ```
843
-
844
- #### Streaming
845
- Add `stream=True` to enable streaming.
846
-
847
- ```python
848
- @sgl.function
849
- def text_qa(s, question):
850
- s += "Q: " + question + "\n"
851
- s += "A:" + sgl.gen("answer", stop="\n")
852
-
853
- state = text_qa.run(
854
- question="What is the capital of France?",
855
- temperature=0.1,
856
- stream=True
857
- )
858
-
859
- for out in state.text_iter():
860
- print(out, end="", flush=True)
861
- ```
862
-
863
- #### Roles
864
-
865
- Use `sgl.system`, `sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.
866
-
867
- ```python
868
- @sgl.function
869
- def chat_example(s):
870
- s += sgl.system("You are a helpful assistant.")
871
- # Same as: s += s.system("You are a helpful assistant.")
872
-
873
- with s.user():
874
- s += "Question: What is the capital of France?"
875
-
876
- s += sgl.assistant_begin()
877
- s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
878
- s += sgl.assistant_end()
879
- ```
880
-
881
- #### Tips and Implementation Details
882
- - The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
883
- - The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
884
-
885
- ## Benchmark And Performance
886
- Learn more in our release blogs: [v0.2](https://lmsys.org/blog/2024-07-25-sglang-llama3/), [v0.3](https://lmsys.org/blog/2024-09-04-sglang-v0-3/).
887
-
888
- ## Roadmap
889
- [Development Roadmap (2024 Q4)](https://github.com/sgl-project/sglang/issues/1487)
890
-
891
- ## Citation And Acknowledgment
892
- Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
893
- We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).
894
-
895
-
896
- <p align="center">
897
- <a href="#sglangtop" target="_blank">
898
- <bold>Back To Top </bold>
899
- </a>
900
- </p>