sglang 0.3.3__py3-none-any.whl → 0.3.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_latency.py +31 -13
- sglang/bench_server_latency.py +21 -10
- sglang/bench_serving.py +101 -7
- sglang/global_config.py +0 -1
- sglang/srt/conversation.py +11 -2
- sglang/srt/layers/attention/__init__.py +27 -5
- sglang/srt/layers/attention/double_sparsity_backend.py +281 -0
- sglang/srt/layers/attention/flashinfer_backend.py +352 -83
- sglang/srt/layers/attention/triton_backend.py +6 -4
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +772 -0
- sglang/srt/layers/attention/triton_ops/extend_attention.py +5 -3
- sglang/srt/layers/attention/triton_ops/prefill_attention.py +4 -2
- sglang/srt/layers/sampler.py +6 -2
- sglang/srt/managers/data_parallel_controller.py +177 -0
- sglang/srt/managers/detokenizer_manager.py +31 -10
- sglang/srt/managers/io_struct.py +11 -2
- sglang/srt/managers/schedule_batch.py +126 -43
- sglang/srt/managers/schedule_policy.py +2 -1
- sglang/srt/managers/scheduler.py +245 -142
- sglang/srt/managers/tokenizer_manager.py +14 -1
- sglang/srt/managers/tp_worker.py +111 -1
- sglang/srt/mem_cache/chunk_cache.py +8 -4
- sglang/srt/mem_cache/memory_pool.py +77 -4
- sglang/srt/mem_cache/radix_cache.py +15 -7
- sglang/srt/model_executor/cuda_graph_runner.py +4 -4
- sglang/srt/model_executor/forward_batch_info.py +16 -21
- sglang/srt/model_executor/model_runner.py +100 -36
- sglang/srt/models/baichuan.py +2 -3
- sglang/srt/models/chatglm.py +5 -6
- sglang/srt/models/commandr.py +1 -2
- sglang/srt/models/dbrx.py +1 -2
- sglang/srt/models/deepseek.py +4 -5
- sglang/srt/models/deepseek_v2.py +5 -6
- sglang/srt/models/exaone.py +1 -2
- sglang/srt/models/gemma.py +2 -2
- sglang/srt/models/gemma2.py +5 -5
- sglang/srt/models/gpt_bigcode.py +5 -5
- sglang/srt/models/grok.py +1 -2
- sglang/srt/models/internlm2.py +1 -2
- sglang/srt/models/llama.py +1 -2
- sglang/srt/models/llama_classification.py +1 -2
- sglang/srt/models/llama_reward.py +2 -3
- sglang/srt/models/llava.py +4 -8
- sglang/srt/models/llavavid.py +1 -2
- sglang/srt/models/minicpm.py +1 -2
- sglang/srt/models/minicpm3.py +5 -6
- sglang/srt/models/mixtral.py +1 -2
- sglang/srt/models/mixtral_quant.py +1 -2
- sglang/srt/models/olmo.py +352 -0
- sglang/srt/models/olmoe.py +1 -2
- sglang/srt/models/qwen.py +1 -2
- sglang/srt/models/qwen2.py +1 -2
- sglang/srt/models/qwen2_moe.py +4 -5
- sglang/srt/models/stablelm.py +1 -2
- sglang/srt/models/torch_native_llama.py +1 -2
- sglang/srt/models/xverse.py +1 -2
- sglang/srt/models/xverse_moe.py +4 -5
- sglang/srt/models/yivl.py +1 -2
- sglang/srt/openai_api/adapter.py +97 -52
- sglang/srt/openai_api/protocol.py +10 -2
- sglang/srt/sampling/penaltylib/orchestrator.py +28 -9
- sglang/srt/sampling/sampling_batch_info.py +105 -59
- sglang/srt/sampling/sampling_params.py +2 -0
- sglang/srt/server.py +171 -37
- sglang/srt/server_args.py +127 -48
- sglang/srt/utils.py +37 -14
- sglang/test/few_shot_gsm8k.py +4 -1
- sglang/test/few_shot_gsm8k_engine.py +144 -0
- sglang/test/srt/sampling/penaltylib/utils.py +16 -12
- sglang/version.py +1 -1
- {sglang-0.3.3.dist-info → sglang-0.3.4.dist-info}/METADATA +82 -32
- sglang-0.3.4.dist-info/RECORD +143 -0
- {sglang-0.3.3.dist-info → sglang-0.3.4.dist-info}/WHEEL +1 -1
- sglang/srt/layers/attention/flashinfer_utils.py +0 -237
- sglang-0.3.3.dist-info/RECORD +0 -139
- {sglang-0.3.3.dist-info → sglang-0.3.4.dist-info}/LICENSE +0 -0
- {sglang-0.3.3.dist-info → sglang-0.3.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,772 @@
|
|
1
|
+
import torch
|
2
|
+
import triton
|
3
|
+
import triton.language as tl
|
4
|
+
|
5
|
+
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
6
|
+
|
7
|
+
if global_server_args_dict.get("attention_reduce_in_fp32", False):
|
8
|
+
REDUCE_TRITON_TYPE = tl.float32
|
9
|
+
REDUCE_TORCH_TYPE = torch.float32
|
10
|
+
else:
|
11
|
+
REDUCE_TRITON_TYPE = tl.float16
|
12
|
+
REDUCE_TORCH_TYPE = torch.float16
|
13
|
+
|
14
|
+
|
15
|
+
@triton.jit
|
16
|
+
def tanh(x):
|
17
|
+
# Tanh is just a scaled sigmoid
|
18
|
+
return 2 * tl.sigmoid(2 * x) - 1
|
19
|
+
|
20
|
+
|
21
|
+
@triton.jit
|
22
|
+
def _fwd_kernel_flash_decode_stage1(
|
23
|
+
Q,
|
24
|
+
K,
|
25
|
+
V,
|
26
|
+
sm_scale,
|
27
|
+
Req_to_tokens,
|
28
|
+
B_req_idx,
|
29
|
+
B_Seqlen,
|
30
|
+
Mid_O, # [batch, head, seq_block_num, head_dim]
|
31
|
+
Mid_O_LogExpSum, # [batch, head, seq_block_num]
|
32
|
+
stride_req_to_tokens_b,
|
33
|
+
stride_req_to_tokens_s,
|
34
|
+
stride_qbs,
|
35
|
+
stride_qh,
|
36
|
+
stride_qd,
|
37
|
+
stride_kbs,
|
38
|
+
stride_kh,
|
39
|
+
stride_kd,
|
40
|
+
stride_vbs,
|
41
|
+
stride_vh,
|
42
|
+
stride_vd,
|
43
|
+
stride_mid_ob,
|
44
|
+
stride_mid_oh,
|
45
|
+
stride_mid_os,
|
46
|
+
stride_mid_od,
|
47
|
+
stride_mid_o_eb,
|
48
|
+
stride_mid_o_eh,
|
49
|
+
stride_mid_o_es,
|
50
|
+
gqa_group_size,
|
51
|
+
BLOCK_SEQ: tl.constexpr,
|
52
|
+
BLOCK_DMODEL: tl.constexpr,
|
53
|
+
BLOCK_N: tl.constexpr,
|
54
|
+
):
|
55
|
+
cur_batch = tl.program_id(0)
|
56
|
+
cur_head = tl.program_id(1)
|
57
|
+
seq_start_block = tl.program_id(2)
|
58
|
+
cur_kv_head = cur_head // gqa_group_size
|
59
|
+
|
60
|
+
offs_d = tl.arange(0, BLOCK_DMODEL)
|
61
|
+
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
62
|
+
cur_batch_req_idx = tl.load(B_req_idx + cur_batch)
|
63
|
+
cur_batch_start_index = seq_start_block * BLOCK_SEQ
|
64
|
+
cur_batch_end_index = tl.minimum(
|
65
|
+
cur_batch_seq_len, cur_batch_start_index + BLOCK_SEQ
|
66
|
+
)
|
67
|
+
|
68
|
+
off_q = cur_batch * stride_qbs + cur_head * stride_qh + offs_d
|
69
|
+
|
70
|
+
block_n_size = (
|
71
|
+
tl.where(
|
72
|
+
cur_batch_end_index - cur_batch_start_index <= 0,
|
73
|
+
0,
|
74
|
+
cur_batch_end_index - cur_batch_start_index + BLOCK_N - 1,
|
75
|
+
)
|
76
|
+
// BLOCK_N
|
77
|
+
)
|
78
|
+
|
79
|
+
offs_n = cur_batch_start_index + tl.arange(0, BLOCK_N)
|
80
|
+
|
81
|
+
q = tl.load(Q + off_q)
|
82
|
+
|
83
|
+
sum_exp = 0.0
|
84
|
+
max_logic = -float("inf")
|
85
|
+
acc = tl.zeros([BLOCK_DMODEL], dtype=tl.float32)
|
86
|
+
|
87
|
+
for start_n in range(0, block_n_size, 1):
|
88
|
+
offs_n_new = start_n * BLOCK_N + offs_n
|
89
|
+
k_loc = tl.load(
|
90
|
+
Req_to_tokens + stride_req_to_tokens_b * cur_batch_req_idx + offs_n_new,
|
91
|
+
mask=offs_n_new < cur_batch_end_index,
|
92
|
+
other=0,
|
93
|
+
)
|
94
|
+
off_k = k_loc[:, None] * stride_kbs + cur_kv_head * stride_kh + offs_d[None, :]
|
95
|
+
k = tl.load(
|
96
|
+
K + off_k, mask=offs_n_new[:, None] < cur_batch_end_index, other=0.0
|
97
|
+
)
|
98
|
+
att_value = tl.sum(q[None, :] * k, 1)
|
99
|
+
att_value *= sm_scale
|
100
|
+
att_value = tl.where(offs_n_new < cur_batch_end_index, att_value, float("-inf"))
|
101
|
+
v = tl.load(
|
102
|
+
V + off_k, mask=offs_n_new[:, None] < cur_batch_end_index, other=0.0
|
103
|
+
)
|
104
|
+
|
105
|
+
cur_max_logic = tl.max(att_value, axis=0)
|
106
|
+
new_max_logic = tl.maximum(cur_max_logic, max_logic)
|
107
|
+
|
108
|
+
exp_logic = tl.exp(att_value - new_max_logic)
|
109
|
+
logic_scale = tl.exp(max_logic - new_max_logic)
|
110
|
+
acc *= logic_scale
|
111
|
+
acc += tl.sum(exp_logic[:, None] * v, axis=0)
|
112
|
+
|
113
|
+
sum_exp = sum_exp * logic_scale + tl.sum(exp_logic, axis=0)
|
114
|
+
max_logic = new_max_logic
|
115
|
+
|
116
|
+
need_store = tl.where(block_n_size == 0, 0, 1)
|
117
|
+
for _ in range(0, need_store, 1):
|
118
|
+
off_mid_o = (
|
119
|
+
cur_batch * stride_mid_ob
|
120
|
+
+ cur_head * stride_mid_oh
|
121
|
+
+ seq_start_block * stride_mid_os
|
122
|
+
+ offs_d
|
123
|
+
)
|
124
|
+
off_mid_o_logexpsum = (
|
125
|
+
cur_batch * stride_mid_o_eb + cur_head * stride_mid_o_eh + seq_start_block
|
126
|
+
)
|
127
|
+
tl.store(Mid_O + off_mid_o, acc / sum_exp)
|
128
|
+
tl.store(Mid_O_LogExpSum + off_mid_o_logexpsum, max_logic + tl.log(sum_exp))
|
129
|
+
return
|
130
|
+
|
131
|
+
|
132
|
+
@triton.jit
|
133
|
+
def _fwd_kernel_flash_decode_stage2(
|
134
|
+
B_Seqlen,
|
135
|
+
Mid_O, # [batch, head, seq_block_num, head_dim]
|
136
|
+
Mid_O_LogExpSum, # [batch, head, seq_block_num]
|
137
|
+
O, # [batch, head, head_dim]
|
138
|
+
stride_mid_ob,
|
139
|
+
stride_mid_oh,
|
140
|
+
stride_mid_os,
|
141
|
+
stride_mid_od,
|
142
|
+
stride_mid_o_eb,
|
143
|
+
stride_mid_o_eh,
|
144
|
+
stride_mid_o_es,
|
145
|
+
stride_obs,
|
146
|
+
stride_oh,
|
147
|
+
stride_od,
|
148
|
+
BLOCK_SEQ: tl.constexpr,
|
149
|
+
BLOCK_DMODEL: tl.constexpr,
|
150
|
+
):
|
151
|
+
cur_batch = tl.program_id(0)
|
152
|
+
cur_head = tl.program_id(1)
|
153
|
+
|
154
|
+
offs_d = tl.arange(0, BLOCK_DMODEL)
|
155
|
+
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
156
|
+
|
157
|
+
block_n_size = (
|
158
|
+
tl.where(cur_batch_seq_len <= 0, 0, cur_batch_seq_len + BLOCK_SEQ - 1)
|
159
|
+
// BLOCK_SEQ
|
160
|
+
)
|
161
|
+
|
162
|
+
sum_exp = 0.0
|
163
|
+
max_logic = -float("inf")
|
164
|
+
acc = tl.zeros([BLOCK_DMODEL], dtype=tl.float32)
|
165
|
+
|
166
|
+
offs_v = cur_batch * stride_mid_ob + cur_head * stride_mid_oh + offs_d
|
167
|
+
offs_logic = cur_batch * stride_mid_o_eb + cur_head * stride_mid_o_eh
|
168
|
+
for block_seq_n in range(0, block_n_size, 1):
|
169
|
+
tv = tl.load(Mid_O + offs_v + block_seq_n * stride_mid_os)
|
170
|
+
tlogic = tl.load(Mid_O_LogExpSum + offs_logic + block_seq_n)
|
171
|
+
new_max_logic = tl.maximum(tlogic, max_logic)
|
172
|
+
|
173
|
+
old_scale = tl.exp(max_logic - new_max_logic)
|
174
|
+
acc *= old_scale
|
175
|
+
exp_logic = tl.exp(tlogic - new_max_logic)
|
176
|
+
acc += exp_logic * tv
|
177
|
+
sum_exp = sum_exp * old_scale + exp_logic
|
178
|
+
max_logic = new_max_logic
|
179
|
+
|
180
|
+
tl.store(O + cur_batch * stride_obs + cur_head * stride_oh + offs_d, acc / sum_exp)
|
181
|
+
return
|
182
|
+
|
183
|
+
|
184
|
+
@torch.no_grad()
|
185
|
+
def flash_decode_stage1(
|
186
|
+
q,
|
187
|
+
k,
|
188
|
+
v,
|
189
|
+
Req_to_tokens,
|
190
|
+
B_req_idx,
|
191
|
+
B_Seqlen,
|
192
|
+
max_len_in_batch,
|
193
|
+
mid_out,
|
194
|
+
mid_out_logsumexp,
|
195
|
+
block_seq,
|
196
|
+
):
|
197
|
+
BLOCK_SEQ = block_seq
|
198
|
+
BLOCK_N = 16
|
199
|
+
assert BLOCK_SEQ % BLOCK_N == 0
|
200
|
+
# shape constraints
|
201
|
+
Lq, Lk = q.shape[-1], k.shape[-1]
|
202
|
+
assert Lq == Lk
|
203
|
+
assert Lk in {16, 32, 64, 128}
|
204
|
+
sm_scale = 1.0 / (Lk**0.5)
|
205
|
+
batch, head_num = B_req_idx.shape[0], q.shape[1]
|
206
|
+
grid = (batch, head_num, triton.cdiv(max_len_in_batch, BLOCK_SEQ))
|
207
|
+
gqa_group_size = q.shape[1] // k.shape[1]
|
208
|
+
|
209
|
+
_fwd_kernel_flash_decode_stage1[grid](
|
210
|
+
q,
|
211
|
+
k,
|
212
|
+
v,
|
213
|
+
sm_scale,
|
214
|
+
Req_to_tokens,
|
215
|
+
B_req_idx,
|
216
|
+
B_Seqlen,
|
217
|
+
mid_out,
|
218
|
+
mid_out_logsumexp,
|
219
|
+
Req_to_tokens.stride(0),
|
220
|
+
Req_to_tokens.stride(1),
|
221
|
+
q.stride(0),
|
222
|
+
q.stride(1),
|
223
|
+
q.stride(2),
|
224
|
+
k.stride(0),
|
225
|
+
k.stride(1),
|
226
|
+
k.stride(2),
|
227
|
+
v.stride(0),
|
228
|
+
v.stride(1),
|
229
|
+
v.stride(2),
|
230
|
+
mid_out.stride(0),
|
231
|
+
mid_out.stride(1),
|
232
|
+
mid_out.stride(2),
|
233
|
+
mid_out.stride(3),
|
234
|
+
mid_out_logsumexp.stride(0),
|
235
|
+
mid_out_logsumexp.stride(1),
|
236
|
+
mid_out_logsumexp.stride(2),
|
237
|
+
gqa_group_size,
|
238
|
+
BLOCK_SEQ=BLOCK_SEQ,
|
239
|
+
BLOCK_DMODEL=Lk,
|
240
|
+
BLOCK_N=BLOCK_N,
|
241
|
+
num_warps=1,
|
242
|
+
num_stages=2,
|
243
|
+
)
|
244
|
+
return
|
245
|
+
|
246
|
+
|
247
|
+
@torch.no_grad()
|
248
|
+
def flash_decode_stage2(mid_out, mid_out_logexpsum, B_Seqlen, O, block_seq):
|
249
|
+
Lk = mid_out.shape[-1]
|
250
|
+
assert Lk in {16, 32, 64, 128}
|
251
|
+
batch, head_num = mid_out.shape[0], mid_out.shape[1]
|
252
|
+
grid = (batch, head_num)
|
253
|
+
|
254
|
+
_fwd_kernel_flash_decode_stage2[grid](
|
255
|
+
B_Seqlen,
|
256
|
+
mid_out,
|
257
|
+
mid_out_logexpsum,
|
258
|
+
O,
|
259
|
+
mid_out.stride(0),
|
260
|
+
mid_out.stride(1),
|
261
|
+
mid_out.stride(2),
|
262
|
+
mid_out.stride(3),
|
263
|
+
mid_out_logexpsum.stride(0),
|
264
|
+
mid_out_logexpsum.stride(1),
|
265
|
+
mid_out_logexpsum.stride(2),
|
266
|
+
O.stride(0),
|
267
|
+
O.stride(1),
|
268
|
+
O.stride(2),
|
269
|
+
BLOCK_SEQ=block_seq,
|
270
|
+
BLOCK_DMODEL=Lk,
|
271
|
+
num_warps=4,
|
272
|
+
num_stages=2,
|
273
|
+
)
|
274
|
+
return
|
275
|
+
|
276
|
+
|
277
|
+
import torch
|
278
|
+
|
279
|
+
|
280
|
+
def flash_decode_attention_fwd(
|
281
|
+
q,
|
282
|
+
k_buffer,
|
283
|
+
v_buffer,
|
284
|
+
o,
|
285
|
+
req_to_token,
|
286
|
+
b_req_idx,
|
287
|
+
b_start_loc,
|
288
|
+
b_seq_len,
|
289
|
+
attn_logits,
|
290
|
+
max_len_in_batch,
|
291
|
+
sm_scale,
|
292
|
+
logit_cap=0.0,
|
293
|
+
):
|
294
|
+
BLOCK_SEQ = 256
|
295
|
+
kv_group_num = q.shape[1] // v_buffer.shape[1]
|
296
|
+
# batch_size = q.shape[0]
|
297
|
+
|
298
|
+
block_seq_num = (max_len_in_batch + BLOCK_SEQ - 1) // BLOCK_SEQ
|
299
|
+
|
300
|
+
mid_o = torch.empty(
|
301
|
+
[q.shape[0], q.shape[1], block_seq_num, q.shape[-1]],
|
302
|
+
dtype=torch.float32,
|
303
|
+
device="cuda",
|
304
|
+
)
|
305
|
+
mid_o_logexpsum = torch.empty(
|
306
|
+
[q.shape[0], q.shape[1], block_seq_num], dtype=torch.float32, device="cuda"
|
307
|
+
)
|
308
|
+
|
309
|
+
flash_decode_stage1(
|
310
|
+
q,
|
311
|
+
k_buffer,
|
312
|
+
v_buffer,
|
313
|
+
req_to_token,
|
314
|
+
b_req_idx,
|
315
|
+
b_seq_len,
|
316
|
+
max_len_in_batch,
|
317
|
+
mid_o,
|
318
|
+
mid_o_logexpsum,
|
319
|
+
BLOCK_SEQ,
|
320
|
+
)
|
321
|
+
flash_decode_stage2(mid_o, mid_o_logexpsum, b_seq_len, o, BLOCK_SEQ)
|
322
|
+
|
323
|
+
|
324
|
+
@triton.jit
|
325
|
+
def _sparse_fwd_kernel_flash_decode_stage1( # Double Sparsity's approximate attention
|
326
|
+
Q_Label,
|
327
|
+
K_Label_Buffer,
|
328
|
+
sm_scale,
|
329
|
+
Req_to_tokens, # shape: [B, S]
|
330
|
+
B_Seqlen,
|
331
|
+
Att_Out, # shape: [H, B, S] easier for topk
|
332
|
+
stride_req_to_tokens_b,
|
333
|
+
stride_qbs,
|
334
|
+
stride_qh,
|
335
|
+
stride_buf_kbs,
|
336
|
+
stride_buf_kh,
|
337
|
+
att_stride_h,
|
338
|
+
att_stride_b,
|
339
|
+
kv_group_num: tl.constexpr,
|
340
|
+
BLOCK_DMODEL: tl.constexpr,
|
341
|
+
BLOCK_N: tl.constexpr,
|
342
|
+
logit_cap: tl.constexpr,
|
343
|
+
):
|
344
|
+
cur_batch = tl.program_id(0)
|
345
|
+
cur_head = tl.program_id(1)
|
346
|
+
start_n = tl.program_id(2)
|
347
|
+
|
348
|
+
cur_kv_head = cur_head // kv_group_num
|
349
|
+
|
350
|
+
offs_d = tl.arange(0, BLOCK_DMODEL)
|
351
|
+
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
352
|
+
|
353
|
+
cur_batch_start_index = 0
|
354
|
+
cur_batch_end_index = cur_batch_seq_len
|
355
|
+
|
356
|
+
min_val = -float("inf")
|
357
|
+
att_value = tl.full([BLOCK_N], min_val, dtype=tl.float32)
|
358
|
+
|
359
|
+
off_q = cur_batch * stride_qbs + cur_head * stride_qh + offs_d
|
360
|
+
|
361
|
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
362
|
+
|
363
|
+
block_index = start_n * BLOCK_N
|
364
|
+
block_mask = tl.where(block_index < cur_batch_seq_len, 1, 0)
|
365
|
+
|
366
|
+
for start_mark in range(0, block_mask, 1):
|
367
|
+
q = tl.load(Q_Label + off_q + start_mark).to(REDUCE_TRITON_TYPE)
|
368
|
+
offs_n_new = cur_batch_start_index + offs_n
|
369
|
+
k_loc = tl.load(
|
370
|
+
Req_to_tokens + stride_req_to_tokens_b * cur_batch + offs_n_new,
|
371
|
+
mask=offs_n_new < cur_batch_end_index,
|
372
|
+
other=0,
|
373
|
+
)
|
374
|
+
offs_buf_k = (
|
375
|
+
k_loc[:, None] * stride_buf_kbs
|
376
|
+
+ cur_kv_head * stride_buf_kh
|
377
|
+
+ offs_d[None, :]
|
378
|
+
)
|
379
|
+
k = tl.load(
|
380
|
+
K_Label_Buffer + offs_buf_k,
|
381
|
+
mask=offs_n_new[:, None] < cur_batch_end_index,
|
382
|
+
other=0.0,
|
383
|
+
).to(REDUCE_TRITON_TYPE)
|
384
|
+
|
385
|
+
att_value = tl.sum(q[None, :] * k, 1)
|
386
|
+
att_value *= sm_scale
|
387
|
+
|
388
|
+
if logit_cap > 0:
|
389
|
+
att_value = logit_cap * tanh(att_value / logit_cap)
|
390
|
+
|
391
|
+
att_value = tl.where(offs_n < cur_batch_end_index, att_value, min_val)
|
392
|
+
off_o = cur_head * att_stride_h + (cur_batch * att_stride_b + offs_n)
|
393
|
+
tl.store(Att_Out + off_o, att_value)
|
394
|
+
|
395
|
+
|
396
|
+
@triton.jit
|
397
|
+
def _sparse_fwd_kernel_flash_decode_stage2(
|
398
|
+
Q,
|
399
|
+
K,
|
400
|
+
V,
|
401
|
+
sm_scale,
|
402
|
+
Req_to_tokens, # shape: [B, S]
|
403
|
+
Topk_token_indices, # shape: [H, B, k]
|
404
|
+
Mid_O, # [batch, head, seq_block_num, head_dim]
|
405
|
+
Mid_O_LogExpSum, # [batch, head, seq_block_num]
|
406
|
+
Heavy_token_num, # NOTE: This can be used as constexpr but we may support dynamic heavy token number in the future
|
407
|
+
stride_req_to_tokens_b,
|
408
|
+
stride_topk_token_indices_h,
|
409
|
+
stride_topk_token_indices_b,
|
410
|
+
stride_qbs,
|
411
|
+
stride_qh,
|
412
|
+
stride_kbs,
|
413
|
+
stride_kh,
|
414
|
+
stride_vbs,
|
415
|
+
stride_vh,
|
416
|
+
stride_mid_ob,
|
417
|
+
stride_mid_oh,
|
418
|
+
stride_mid_os,
|
419
|
+
stride_mid_o_eb,
|
420
|
+
stride_mid_o_eh,
|
421
|
+
gqa_group_size,
|
422
|
+
BLOCK_SEQ: tl.constexpr,
|
423
|
+
BLOCK_DMODEL: tl.constexpr,
|
424
|
+
BLOCK_N: tl.constexpr,
|
425
|
+
):
|
426
|
+
cur_batch = tl.program_id(0)
|
427
|
+
cur_head = tl.program_id(1)
|
428
|
+
seq_start_block = tl.program_id(2)
|
429
|
+
cur_kv_head = cur_head // gqa_group_size
|
430
|
+
|
431
|
+
offs_d = tl.arange(0, BLOCK_DMODEL)
|
432
|
+
cur_batch_start_index = seq_start_block * BLOCK_SEQ
|
433
|
+
cur_batch_end_index = tl.minimum(Heavy_token_num, cur_batch_start_index + BLOCK_SEQ)
|
434
|
+
|
435
|
+
off_q = cur_batch * stride_qbs + cur_head * stride_qh + offs_d
|
436
|
+
|
437
|
+
block_n_size = (
|
438
|
+
tl.where(
|
439
|
+
cur_batch_end_index - cur_batch_start_index <= 0,
|
440
|
+
0,
|
441
|
+
cur_batch_end_index - cur_batch_start_index + BLOCK_N - 1,
|
442
|
+
)
|
443
|
+
// BLOCK_N
|
444
|
+
)
|
445
|
+
|
446
|
+
# offs_n = cur_batch_start_index + tl.arange(0, BLOCK_N)
|
447
|
+
offs_n = tl.arange(0, BLOCK_N)
|
448
|
+
|
449
|
+
q = tl.load(Q + off_q)
|
450
|
+
|
451
|
+
sum_exp = 0.0
|
452
|
+
max_logic = -float("inf")
|
453
|
+
acc = tl.zeros([BLOCK_DMODEL], dtype=tl.float32)
|
454
|
+
|
455
|
+
for start_n in range(cur_batch_start_index, cur_batch_end_index, BLOCK_N):
|
456
|
+
# for start_n in range(0, block_n_size, 1):
|
457
|
+
# offs_n_new = start_n * BLOCK_N + offs_n
|
458
|
+
offs_n_new = start_n + offs_n
|
459
|
+
# offs_n_new = cur_batch_start_index + start_n * BLOCK_N + offs_n
|
460
|
+
topk_token_indices = tl.load(
|
461
|
+
Topk_token_indices
|
462
|
+
+ stride_topk_token_indices_h * cur_head
|
463
|
+
+ stride_topk_token_indices_b * cur_batch
|
464
|
+
+ offs_n_new,
|
465
|
+
mask=offs_n_new < cur_batch_end_index,
|
466
|
+
other=0,
|
467
|
+
)
|
468
|
+
k_loc = tl.load(
|
469
|
+
Req_to_tokens + stride_req_to_tokens_b * cur_batch + topk_token_indices,
|
470
|
+
mask=offs_n_new < cur_batch_end_index,
|
471
|
+
other=0,
|
472
|
+
)
|
473
|
+
off_k = k_loc[:, None] * stride_kbs + cur_kv_head * stride_kh + offs_d[None, :]
|
474
|
+
k = tl.load(
|
475
|
+
K + off_k, mask=offs_n_new[:, None] < cur_batch_end_index, other=0.0
|
476
|
+
)
|
477
|
+
att_value = tl.sum(q[None, :] * k, 1)
|
478
|
+
att_value *= sm_scale
|
479
|
+
att_value = tl.where(offs_n_new < cur_batch_end_index, att_value, float("-inf"))
|
480
|
+
v = tl.load(
|
481
|
+
V + off_k, mask=offs_n_new[:, None] < cur_batch_end_index, other=0.0
|
482
|
+
)
|
483
|
+
|
484
|
+
cur_max_logic = tl.max(att_value, axis=0)
|
485
|
+
new_max_logic = tl.maximum(cur_max_logic, max_logic)
|
486
|
+
|
487
|
+
exp_logic = tl.exp(att_value - new_max_logic)
|
488
|
+
logic_scale = tl.exp(max_logic - new_max_logic)
|
489
|
+
acc *= logic_scale
|
490
|
+
acc += tl.sum(exp_logic[:, None] * v, axis=0)
|
491
|
+
|
492
|
+
sum_exp = sum_exp * logic_scale + tl.sum(exp_logic, axis=0)
|
493
|
+
max_logic = new_max_logic
|
494
|
+
|
495
|
+
# need_store = tl.where(block_n_size == 0, 0, 1)
|
496
|
+
need_store = 1
|
497
|
+
for _ in range(0, need_store, 1):
|
498
|
+
off_mid_o = (
|
499
|
+
cur_batch * stride_mid_ob
|
500
|
+
+ cur_head * stride_mid_oh
|
501
|
+
+ seq_start_block * stride_mid_os
|
502
|
+
+ offs_d
|
503
|
+
)
|
504
|
+
off_mid_o_logexpsum = (
|
505
|
+
cur_batch * stride_mid_o_eb + cur_head * stride_mid_o_eh + seq_start_block
|
506
|
+
)
|
507
|
+
tl.store(Mid_O + off_mid_o, acc / sum_exp)
|
508
|
+
tl.store(Mid_O_LogExpSum + off_mid_o_logexpsum, max_logic + tl.log(sum_exp))
|
509
|
+
return
|
510
|
+
|
511
|
+
|
512
|
+
@triton.jit
|
513
|
+
def _sparse_fwd_kernel_flash_decode_stage3(
|
514
|
+
Mid_O, # [batch, head, seq_block_num, head_dim]
|
515
|
+
Mid_O_LogExpSum, # [batch, head, seq_block_num]
|
516
|
+
O, # [batch, head, head_dim]
|
517
|
+
seq_len, # NOTE: This can be used as constexpr but we may support dynamic heavy token number in the future
|
518
|
+
stride_mid_ob,
|
519
|
+
stride_mid_oh,
|
520
|
+
stride_mid_os,
|
521
|
+
stride_mid_o_eb,
|
522
|
+
stride_mid_o_eh,
|
523
|
+
stride_obs,
|
524
|
+
stride_oh,
|
525
|
+
BLOCK_SEQ: tl.constexpr,
|
526
|
+
BLOCK_DMODEL: tl.constexpr,
|
527
|
+
):
|
528
|
+
cur_batch = tl.program_id(0)
|
529
|
+
cur_head = tl.program_id(1)
|
530
|
+
|
531
|
+
offs_d = tl.arange(0, BLOCK_DMODEL)
|
532
|
+
|
533
|
+
block_n_size = tl.where(seq_len <= 0, 0, seq_len + BLOCK_SEQ - 1) // BLOCK_SEQ
|
534
|
+
|
535
|
+
sum_exp = 0.0
|
536
|
+
max_logic = -float("inf")
|
537
|
+
acc = tl.zeros([BLOCK_DMODEL], dtype=tl.float32)
|
538
|
+
|
539
|
+
offs_v = cur_batch * stride_mid_ob + cur_head * stride_mid_oh + offs_d
|
540
|
+
offs_logic = cur_batch * stride_mid_o_eb + cur_head * stride_mid_o_eh
|
541
|
+
for block_seq_n in range(0, block_n_size, 1):
|
542
|
+
tv = tl.load(Mid_O + offs_v + block_seq_n * stride_mid_os)
|
543
|
+
tlogic = tl.load(Mid_O_LogExpSum + offs_logic + block_seq_n)
|
544
|
+
new_max_logic = tl.maximum(tlogic, max_logic)
|
545
|
+
|
546
|
+
old_scale = tl.exp(max_logic - new_max_logic)
|
547
|
+
acc *= old_scale
|
548
|
+
exp_logic = tl.exp(tlogic - new_max_logic)
|
549
|
+
acc += exp_logic * tv
|
550
|
+
sum_exp = sum_exp * old_scale + exp_logic
|
551
|
+
max_logic = new_max_logic
|
552
|
+
|
553
|
+
tl.store(O + cur_batch * stride_obs + cur_head * stride_oh + offs_d, acc / sum_exp)
|
554
|
+
return
|
555
|
+
|
556
|
+
|
557
|
+
def sparse_flash_decode_stage1(
|
558
|
+
q_label,
|
559
|
+
k_label_buffer,
|
560
|
+
att_out,
|
561
|
+
Req_to_tokens,
|
562
|
+
B_Seqlen,
|
563
|
+
max_len_in_batch,
|
564
|
+
sm_scale,
|
565
|
+
logit_cap,
|
566
|
+
):
|
567
|
+
BLOCK = 32
|
568
|
+
# shape constraints
|
569
|
+
Lq, Lk = q_label.shape[-1], k_label_buffer.shape[-1]
|
570
|
+
assert Lq == Lk
|
571
|
+
assert Lk in {16, 32, 64, 128, 256, 576}
|
572
|
+
|
573
|
+
BLOCK_DMODEL = Lk
|
574
|
+
|
575
|
+
batch, head_num = q_label.shape[0], q_label.shape[1]
|
576
|
+
|
577
|
+
grid = (batch, head_num, triton.cdiv(max_len_in_batch, BLOCK))
|
578
|
+
kv_group_num = q_label.shape[1] // k_label_buffer.shape[1]
|
579
|
+
|
580
|
+
if kv_group_num == 1:
|
581
|
+
num_warps = 4
|
582
|
+
else:
|
583
|
+
num_warps = 2
|
584
|
+
|
585
|
+
_sparse_fwd_kernel_flash_decode_stage1[grid](
|
586
|
+
q_label,
|
587
|
+
k_label_buffer,
|
588
|
+
sm_scale,
|
589
|
+
Req_to_tokens,
|
590
|
+
B_Seqlen,
|
591
|
+
att_out,
|
592
|
+
Req_to_tokens.stride(0),
|
593
|
+
q_label.stride(0),
|
594
|
+
q_label.stride(1),
|
595
|
+
k_label_buffer.stride(0),
|
596
|
+
k_label_buffer.stride(1),
|
597
|
+
att_out.stride(0),
|
598
|
+
att_out.stride(1),
|
599
|
+
kv_group_num,
|
600
|
+
BLOCK_DMODEL,
|
601
|
+
BLOCK,
|
602
|
+
logit_cap,
|
603
|
+
num_warps=num_warps,
|
604
|
+
num_stages=1,
|
605
|
+
)
|
606
|
+
|
607
|
+
|
608
|
+
@torch.no_grad()
|
609
|
+
def sparse_flash_decode_stage2(
|
610
|
+
q,
|
611
|
+
k,
|
612
|
+
v,
|
613
|
+
Req_to_tokens,
|
614
|
+
Topk_token_indices,
|
615
|
+
heavy_token_num,
|
616
|
+
mid_out,
|
617
|
+
mid_out_logsumexp,
|
618
|
+
block_seq,
|
619
|
+
sm_scale,
|
620
|
+
):
|
621
|
+
BLOCK_SEQ = block_seq
|
622
|
+
BLOCK_N = 16
|
623
|
+
assert BLOCK_SEQ % BLOCK_N == 0
|
624
|
+
# shape constraints
|
625
|
+
Lq, Lk = q.shape[-1], k.shape[-1]
|
626
|
+
assert Lq == Lk
|
627
|
+
assert Lk in {16, 32, 64, 128}
|
628
|
+
assert heavy_token_num == Topk_token_indices.shape[-1]
|
629
|
+
# sm_scale = 1.0 / (Lk ** 0.5)
|
630
|
+
batch, head_num = q.shape[0], q.shape[1]
|
631
|
+
grid = (batch, head_num, triton.cdiv(heavy_token_num, BLOCK_SEQ))
|
632
|
+
|
633
|
+
gqa_group_size = q.shape[1] // k.shape[1]
|
634
|
+
|
635
|
+
_sparse_fwd_kernel_flash_decode_stage2[grid](
|
636
|
+
q,
|
637
|
+
k,
|
638
|
+
v,
|
639
|
+
sm_scale,
|
640
|
+
Req_to_tokens,
|
641
|
+
Topk_token_indices,
|
642
|
+
mid_out,
|
643
|
+
mid_out_logsumexp,
|
644
|
+
heavy_token_num,
|
645
|
+
Req_to_tokens.stride(0),
|
646
|
+
Topk_token_indices.stride(0),
|
647
|
+
Topk_token_indices.stride(1),
|
648
|
+
q.stride(0),
|
649
|
+
q.stride(1),
|
650
|
+
k.stride(0),
|
651
|
+
k.stride(1),
|
652
|
+
v.stride(0),
|
653
|
+
v.stride(1),
|
654
|
+
mid_out.stride(0),
|
655
|
+
mid_out.stride(1),
|
656
|
+
mid_out.stride(2),
|
657
|
+
mid_out_logsumexp.stride(0),
|
658
|
+
mid_out_logsumexp.stride(1),
|
659
|
+
gqa_group_size,
|
660
|
+
BLOCK_SEQ=BLOCK_SEQ,
|
661
|
+
BLOCK_DMODEL=Lk,
|
662
|
+
BLOCK_N=BLOCK_N,
|
663
|
+
num_warps=1,
|
664
|
+
num_stages=2,
|
665
|
+
)
|
666
|
+
return
|
667
|
+
|
668
|
+
|
669
|
+
@torch.no_grad()
|
670
|
+
def sparse_flash_decode_stage3(Seqlen, mid_out, mid_out_logexpsum, O, block_seq):
|
671
|
+
Lk = mid_out.shape[-1]
|
672
|
+
assert Lk in {16, 32, 64, 128}
|
673
|
+
batch, head_num = mid_out.shape[0], mid_out.shape[1]
|
674
|
+
grid = (batch, head_num)
|
675
|
+
|
676
|
+
_sparse_fwd_kernel_flash_decode_stage3[grid](
|
677
|
+
mid_out,
|
678
|
+
mid_out_logexpsum,
|
679
|
+
O,
|
680
|
+
Seqlen,
|
681
|
+
mid_out.stride(0),
|
682
|
+
mid_out.stride(1),
|
683
|
+
mid_out.stride(2),
|
684
|
+
mid_out_logexpsum.stride(0),
|
685
|
+
mid_out_logexpsum.stride(1),
|
686
|
+
O.stride(0),
|
687
|
+
O.stride(1),
|
688
|
+
BLOCK_SEQ=block_seq,
|
689
|
+
BLOCK_DMODEL=Lk,
|
690
|
+
num_warps=4,
|
691
|
+
num_stages=2,
|
692
|
+
)
|
693
|
+
return
|
694
|
+
|
695
|
+
|
696
|
+
def flash_decode_sparse_attention_fwd(
|
697
|
+
q,
|
698
|
+
k_buffer,
|
699
|
+
v_buffer,
|
700
|
+
o,
|
701
|
+
q_label,
|
702
|
+
k_label_buffer,
|
703
|
+
req_to_token,
|
704
|
+
b_seq_len,
|
705
|
+
max_len_in_batch,
|
706
|
+
sm_scale,
|
707
|
+
logit_cap,
|
708
|
+
heavy_token_num=32,
|
709
|
+
att_out_approx=None,
|
710
|
+
mid_out=None,
|
711
|
+
mid_o_logexpsum=None,
|
712
|
+
BLOCK_SEQ=256,
|
713
|
+
):
|
714
|
+
# TODO(Andy): Tune BLOCK_SEQ & BLOCK_D
|
715
|
+
kv_group_num = q.shape[1] // v_buffer.shape[1]
|
716
|
+
# batch_size = q.shape[0]
|
717
|
+
|
718
|
+
# Step 1: BGEMV approximate attention (page implementation)
|
719
|
+
|
720
|
+
if att_out_approx is None:
|
721
|
+
att_out_approx = torch.empty(
|
722
|
+
[q.shape[1], q.shape[0], max_len_in_batch],
|
723
|
+
dtype=REDUCE_TORCH_TYPE,
|
724
|
+
device=q.device,
|
725
|
+
)
|
726
|
+
|
727
|
+
if mid_out is None:
|
728
|
+
block_seq_num = (heavy_token_num + BLOCK_SEQ - 1) // BLOCK_SEQ
|
729
|
+
|
730
|
+
mid_out = torch.empty(
|
731
|
+
[q.shape[0], q.shape[1], block_seq_num, q.shape[-1]],
|
732
|
+
dtype=torch.float32,
|
733
|
+
device=q.device,
|
734
|
+
)
|
735
|
+
mid_o_logexpsum = torch.empty(
|
736
|
+
[q.shape[0], q.shape[1], block_seq_num],
|
737
|
+
dtype=torch.float32,
|
738
|
+
device=q.device,
|
739
|
+
)
|
740
|
+
|
741
|
+
sparse_flash_decode_stage1(
|
742
|
+
q_label,
|
743
|
+
k_label_buffer,
|
744
|
+
att_out_approx,
|
745
|
+
req_to_token,
|
746
|
+
b_seq_len,
|
747
|
+
max_len_in_batch,
|
748
|
+
sm_scale,
|
749
|
+
logit_cap,
|
750
|
+
)
|
751
|
+
|
752
|
+
# Step 2: TopK token selection
|
753
|
+
# NOTE(Andy): Apply sparse decoding when min > heavy_token_num and max > sparse decoding threshold
|
754
|
+
# TODO(Andy): Change a faster topk implementation
|
755
|
+
topk_token_indices = torch.topk(att_out_approx, heavy_token_num, dim=-1).indices
|
756
|
+
# topk_token_indices: [H, B, k], Req_to_tokens: [B, S]
|
757
|
+
# topk_token_indices = torch.arange(0, heavy_token_num, device=q.device).unsqueeze(0).unsqueeze(0).expand(q.shape[1], q.shape[0], -1)
|
758
|
+
|
759
|
+
sparse_flash_decode_stage2(
|
760
|
+
q,
|
761
|
+
k_buffer,
|
762
|
+
v_buffer,
|
763
|
+
req_to_token,
|
764
|
+
topk_token_indices,
|
765
|
+
heavy_token_num,
|
766
|
+
mid_out,
|
767
|
+
mid_o_logexpsum,
|
768
|
+
BLOCK_SEQ,
|
769
|
+
sm_scale,
|
770
|
+
)
|
771
|
+
|
772
|
+
sparse_flash_decode_stage3(heavy_token_num, mid_out, mid_o_logexpsum, o, BLOCK_SEQ)
|