sglang 0.3.1__py3-none-any.whl → 0.3.1.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_latency.py +7 -2
- sglang/global_config.py +5 -13
- sglang/lang/interpreter.py +0 -3
- sglang/srt/constrained/fsm_cache.py +5 -1
- sglang/srt/layers/activation.py +12 -0
- sglang/srt/layers/attention_backend.py +12 -12
- sglang/srt/layers/fused_moe/layer.py +27 -7
- sglang/srt/layers/layernorm.py +12 -0
- sglang/srt/layers/sampler.py +32 -97
- sglang/srt/lora/lora_manager.py +11 -8
- sglang/srt/managers/schedule_batch.py +1 -0
- sglang/srt/managers/tp_worker.py +8 -7
- sglang/srt/model_executor/cuda_graph_runner.py +12 -1
- sglang/srt/model_executor/model_runner.py +24 -41
- sglang/srt/models/deepseek_v2.py +6 -1
- sglang/srt/models/minicpm3.py +5 -1
- sglang/srt/models/olmoe.py +415 -0
- sglang/srt/sampling/sampling_batch_info.py +3 -50
- sglang/srt/server.py +6 -1
- sglang/srt/server_args.py +34 -1
- sglang/srt/utils.py +7 -51
- sglang/test/test_utils.py +0 -1
- sglang/version.py +1 -1
- {sglang-0.3.1.dist-info → sglang-0.3.1.post1.dist-info}/METADATA +2 -2
- {sglang-0.3.1.dist-info → sglang-0.3.1.post1.dist-info}/RECORD +28 -27
- {sglang-0.3.1.dist-info → sglang-0.3.1.post1.dist-info}/WHEEL +1 -1
- {sglang-0.3.1.dist-info → sglang-0.3.1.post1.dist-info}/LICENSE +0 -0
- {sglang-0.3.1.dist-info → sglang-0.3.1.post1.dist-info}/top_level.txt +0 -0
| @@ -40,7 +40,7 @@ from vllm.model_executor.models import ModelRegistry | |
| 40 40 | 
             
            from sglang.srt.configs.model_config import AttentionArch, ModelConfig
         | 
| 41 41 | 
             
            from sglang.srt.layers.attention_backend import FlashInferAttnBackend, TritonAttnBackend
         | 
| 42 42 | 
             
            from sglang.srt.layers.logits_processor import LogitsProcessorOutput
         | 
| 43 | 
            -
            from sglang.srt.layers.sampler import  | 
| 43 | 
            +
            from sglang.srt.layers.sampler import Sampler
         | 
| 44 44 | 
             
            from sglang.srt.lora.lora_manager import LoRAManager
         | 
| 45 45 | 
             
            from sglang.srt.managers.schedule_batch import ScheduleBatch, global_server_args_dict
         | 
| 46 46 | 
             
            from sglang.srt.mem_cache.memory_pool import (
         | 
| @@ -54,11 +54,9 @@ from sglang.srt.server_args import ServerArgs | |
| 54 54 | 
             
            from sglang.srt.utils import (
         | 
| 55 55 | 
             
                get_available_gpu_memory,
         | 
| 56 56 | 
             
                is_generation_model,
         | 
| 57 | 
            -
                is_llama3_405b_fp8_head_16,
         | 
| 58 57 | 
             
                is_multimodal_model,
         | 
| 59 58 | 
             
                monkey_patch_vllm_dummy_weight_loader,
         | 
| 60 59 | 
             
                monkey_patch_vllm_p2p_access_check,
         | 
| 61 | 
            -
                monkey_patch_vllm_qvk_linear_loader,
         | 
| 62 60 | 
             
            )
         | 
| 63 61 |  | 
| 64 62 | 
             
            logger = logging.getLogger(__name__)
         | 
| @@ -166,10 +164,13 @@ class ModelRunner: | |
| 166 164 | 
             
                    return min_per_gpu_memory
         | 
| 167 165 |  | 
| 168 166 | 
             
                def load_model(self):
         | 
| 169 | 
            -
                    torch.set_num_threads(1)
         | 
| 170 167 | 
             
                    logger.info(
         | 
| 171 168 | 
             
                        f"Load weight begin. avail mem={get_available_gpu_memory(self.gpu_id):.2f} GB"
         | 
| 172 169 | 
             
                    )
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    # This can reduce thread conflicts and speed up weight loading.
         | 
| 172 | 
            +
                    torch.set_num_threads(1)
         | 
| 173 | 
            +
             | 
| 173 174 | 
             
                    if torch.cuda.get_device_capability()[0] < 8:
         | 
| 174 175 | 
             
                        logger.info(
         | 
| 175 176 | 
             
                            "Compute capability below sm80. Use float16 due to lack of bfloat16 support."
         | 
| @@ -178,6 +179,7 @@ class ModelRunner: | |
| 178 179 | 
             
                        if torch.cuda.get_device_capability()[1] < 5:
         | 
| 179 180 | 
             
                            raise RuntimeError("SGLang only supports sm75 and above.")
         | 
| 180 181 |  | 
| 182 | 
            +
                    # Prepare the vllm model config
         | 
| 181 183 | 
             
                    monkey_patch_vllm_dummy_weight_loader()
         | 
| 182 184 | 
             
                    self.device_config = DeviceConfig()
         | 
| 183 185 | 
             
                    self.load_config = LoadConfig(load_format=self.server_args.load_format)
         | 
| @@ -188,23 +190,16 @@ class ModelRunner: | |
| 188 190 | 
             
                        tokenizer_mode=None,
         | 
| 189 191 | 
             
                        trust_remote_code=self.server_args.trust_remote_code,
         | 
| 190 192 | 
             
                        dtype=self.server_args.dtype,
         | 
| 191 | 
            -
                        seed= | 
| 193 | 
            +
                        seed=self.server_args.random_seed,
         | 
| 192 194 | 
             
                        skip_tokenizer_init=True,
         | 
| 193 195 | 
             
                    )
         | 
| 194 | 
            -
             | 
| 195 | 
            -
                    # A temporary hack to fix the num_heads for meta-llama/Meta-Llama-3.1-405B-FP8 checkpoints
         | 
| 196 | 
            -
                    # Drop this after Sept, 2024.
         | 
| 197 | 
            -
                    if is_llama3_405b_fp8_head_16(self.model_config) and self.tp_size <= 8:
         | 
| 198 | 
            -
                        self.model_config.hf_config.num_key_value_heads = 8
         | 
| 199 | 
            -
                        self.vllm_model_config.hf_config.num_key_value_heads = 8
         | 
| 200 | 
            -
                        monkey_patch_vllm_qvk_linear_loader()
         | 
| 201 | 
            -
             | 
| 202 | 
            -
                    self.dtype = self.vllm_model_config.dtype
         | 
| 203 196 | 
             
                    if self.model_config.model_override_args is not None:
         | 
| 204 197 | 
             
                        self.vllm_model_config.hf_config.update(
         | 
| 205 198 | 
             
                            self.model_config.model_override_args
         | 
| 206 199 | 
             
                        )
         | 
| 200 | 
            +
                    self.dtype = self.vllm_model_config.dtype
         | 
| 207 201 |  | 
| 202 | 
            +
                    # Load the model
         | 
| 208 203 | 
             
                    self.model = get_model(
         | 
| 209 204 | 
             
                        model_config=self.vllm_model_config,
         | 
| 210 205 | 
             
                        load_config=self.load_config,
         | 
| @@ -255,20 +250,20 @@ class ModelRunner: | |
| 255 250 | 
             
                            tokenizer_mode=None,
         | 
| 256 251 | 
             
                            trust_remote_code=self.server_args.trust_remote_code,
         | 
| 257 252 | 
             
                            dtype=self.server_args.dtype,
         | 
| 258 | 
            -
                            seed= | 
| 253 | 
            +
                            seed=self.server_args.random_seed,
         | 
| 259 254 | 
             
                            skip_tokenizer_init=True,
         | 
| 260 255 | 
             
                        )
         | 
| 261 256 | 
             
                    except Exception as e:
         | 
| 262 | 
            -
                         | 
| 263 | 
            -
                        return False,  | 
| 257 | 
            +
                        message = f"Failed to load model config: {e}."
         | 
| 258 | 
            +
                        return False, message
         | 
| 264 259 |  | 
| 265 260 | 
             
                    load_config = LoadConfig(load_format=load_format)
         | 
| 266 261 |  | 
| 267 262 | 
             
                    # Only support vllm DefaultModelLoader for now
         | 
| 268 263 | 
             
                    loader = get_model_loader(load_config)
         | 
| 269 264 | 
             
                    if not isinstance(loader, DefaultModelLoader):
         | 
| 270 | 
            -
                         | 
| 271 | 
            -
                        return False,  | 
| 265 | 
            +
                        message = f"Failed to get model loader: {loader}."
         | 
| 266 | 
            +
                        return False, message
         | 
| 272 267 |  | 
| 273 268 | 
             
                    def get_weight_iter(config):
         | 
| 274 269 | 
             
                        iter = loader._get_weights_iterator(
         | 
| @@ -293,14 +288,14 @@ class ModelRunner: | |
| 293 288 | 
             
                        try:
         | 
| 294 289 | 
             
                            iter = get_weight_iter(vllm_model_config)
         | 
| 295 290 | 
             
                        except Exception as e:
         | 
| 296 | 
            -
                            message = f"Failed to get weights iterator: {e}"
         | 
| 297 | 
            -
                            logger.error(message)
         | 
| 291 | 
            +
                            message = f"Failed to get weights iterator: {e}."
         | 
| 298 292 | 
             
                            return False, message
         | 
| 299 293 | 
             
                        try:
         | 
| 300 294 | 
             
                            model = model_load_weights(self.model, iter)
         | 
| 301 295 | 
             
                        except Exception as e:
         | 
| 302 | 
            -
                            message =  | 
| 303 | 
            -
             | 
| 296 | 
            +
                            message = (
         | 
| 297 | 
            +
                                f"Failed to update weights: {e}.\nRolling back to original weights."
         | 
| 298 | 
            +
                            )
         | 
| 304 299 | 
             
                            del iter
         | 
| 305 300 | 
             
                            gc.collect()
         | 
| 306 301 | 
             
                            iter = get_weight_iter(self.vllm_model_config)
         | 
| @@ -315,7 +310,7 @@ class ModelRunner: | |
| 315 310 | 
             
                    self.model_config.path = model_path
         | 
| 316 311 |  | 
| 317 312 | 
             
                    logger.info("Update weights end.")
         | 
| 318 | 
            -
                    return True, "Succeeded to update model weights"
         | 
| 313 | 
            +
                    return True, "Succeeded to update model weights."
         | 
| 319 314 |  | 
| 320 315 | 
             
                def init_lora_manager(self):
         | 
| 321 316 | 
             
                    self.lora_manager = LoRAManager(
         | 
| @@ -521,21 +516,6 @@ class ModelRunner: | |
| 521 516 | 
             
                    else:
         | 
| 522 517 | 
             
                        raise ValueError(f"Invaid forward mode: {batch.forward_mode}")
         | 
| 523 518 |  | 
| 524 | 
            -
                def _check_sample_results(self, sample_output: SampleOutput):
         | 
| 525 | 
            -
                    if not torch.all(sample_output.success):
         | 
| 526 | 
            -
                        probs = sample_output.probs
         | 
| 527 | 
            -
                        batch_next_token_ids = sample_output.batch_next_token_ids
         | 
| 528 | 
            -
                        logging.warning("Sampling failed, fallback to top_k=1 strategy")
         | 
| 529 | 
            -
                        probs = probs.masked_fill(torch.isnan(probs), 0.0)
         | 
| 530 | 
            -
                        argmax_ids = torch.argmax(probs, dim=-1)
         | 
| 531 | 
            -
                        batch_next_token_ids = torch.where(
         | 
| 532 | 
            -
                            sample_output.success, batch_next_token_ids, argmax_ids
         | 
| 533 | 
            -
                        )
         | 
| 534 | 
            -
                        sample_output.probs = probs
         | 
| 535 | 
            -
                        sample_output.batch_next_token_ids = batch_next_token_ids
         | 
| 536 | 
            -
             | 
| 537 | 
            -
                    return sample_output.batch_next_token_ids
         | 
| 538 | 
            -
             | 
| 539 519 | 
             
                def _apply_logits_bias(
         | 
| 540 520 | 
             
                    self, logits: torch.Tensor, sampling_info: SamplingBatchInfo
         | 
| 541 521 | 
             
                ):
         | 
| @@ -564,13 +544,16 @@ class ModelRunner: | |
| 564 544 | 
             
                def sample(
         | 
| 565 545 | 
             
                    self, logits_output: LogitsProcessorOutput, batch: ScheduleBatch
         | 
| 566 546 | 
             
                ) -> torch.Tensor:
         | 
| 547 | 
            +
                    # Put CPU-heavy tasks here. They will be overlapped with the forward pass.
         | 
| 567 548 | 
             
                    batch.sampling_info.update_regex_vocab_mask(batch)
         | 
| 568 549 | 
             
                    batch.sampling_info.update_penalties()
         | 
| 569 550 | 
             
                    logits = self._apply_logits_bias(
         | 
| 570 551 | 
             
                        logits_output.next_token_logits, batch.sampling_info
         | 
| 571 552 | 
             
                    )
         | 
| 572 | 
            -
             | 
| 573 | 
            -
                     | 
| 553 | 
            +
             | 
| 554 | 
            +
                    # Sample the next tokens.
         | 
| 555 | 
            +
                    next_token_ids = self.sampler(logits, batch.sampling_info)
         | 
| 556 | 
            +
                    return next_token_ids
         | 
| 574 557 |  | 
| 575 558 |  | 
| 576 559 | 
             
            @lru_cache()
         | 
    
        sglang/srt/models/deepseek_v2.py
    CHANGED
    
    | @@ -19,7 +19,6 @@ limitations under the License. | |
| 19 19 | 
             
            from typing import Any, Dict, Iterable, Optional, Tuple
         | 
| 20 20 |  | 
| 21 21 | 
             
            import torch
         | 
| 22 | 
            -
            from flashinfer import bmm_fp8
         | 
| 23 22 | 
             
            from torch import nn
         | 
| 24 23 | 
             
            from transformers import PretrainedConfig
         | 
| 25 24 | 
             
            from vllm.config import CacheConfig
         | 
| @@ -48,6 +47,11 @@ from sglang.srt.layers.logits_processor import LogitsProcessor | |
| 48 47 | 
             
            from sglang.srt.layers.radix_attention import RadixAttention
         | 
| 49 48 | 
             
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         | 
| 50 49 | 
             
            from sglang.srt.model_executor.forward_batch_info import InputMetadata
         | 
| 50 | 
            +
            from sglang.srt.utils import is_hip
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            # ROCm: flashinfer available later
         | 
| 53 | 
            +
            if not is_hip():
         | 
| 54 | 
            +
                from flashinfer import bmm_fp8
         | 
| 51 55 |  | 
| 52 56 |  | 
| 53 57 | 
             
            class DeepseekV2MLP(nn.Module):
         | 
| @@ -649,6 +653,7 @@ class DeepseekV2ForCausalLM(nn.Module): | |
| 649 653 | 
             
                    )
         | 
| 650 654 | 
             
                    self.logits_processor = LogitsProcessor(config)
         | 
| 651 655 |  | 
| 656 | 
            +
                @torch.no_grad()
         | 
| 652 657 | 
             
                def forward(
         | 
| 653 658 | 
             
                    self,
         | 
| 654 659 | 
             
                    input_ids: torch.Tensor,
         | 
    
        sglang/srt/models/minicpm3.py
    CHANGED
    
    | @@ -19,7 +19,6 @@ import math | |
| 19 19 | 
             
            from typing import Any, Dict, Iterable, Optional, Tuple
         | 
| 20 20 |  | 
| 21 21 | 
             
            import torch
         | 
| 22 | 
            -
            from flashinfer import bmm_fp8
         | 
| 23 22 | 
             
            from torch import nn
         | 
| 24 23 | 
             
            from transformers import PretrainedConfig
         | 
| 25 24 | 
             
            from vllm.config import CacheConfig
         | 
| @@ -44,6 +43,11 @@ from sglang.srt.layers.logits_processor import LogitsProcessor | |
| 44 43 | 
             
            from sglang.srt.layers.radix_attention import RadixAttention
         | 
| 45 44 | 
             
            from sglang.srt.managers.schedule_batch import global_server_args_dict
         | 
| 46 45 | 
             
            from sglang.srt.model_executor.forward_batch_info import InputMetadata
         | 
| 46 | 
            +
            from sglang.srt.utils import is_hip
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            # ROCm: flashinfer available later
         | 
| 49 | 
            +
            if not is_hip():
         | 
| 50 | 
            +
                from flashinfer import bmm_fp8
         | 
| 47 51 |  | 
| 48 52 |  | 
| 49 53 | 
             
            class MiniCPM3MLP(nn.Module):
         | 
| @@ -0,0 +1,415 @@ | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Copyright 2023-2024 SGLang Team
         | 
| 3 | 
            +
            Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            You may obtain a copy of the License at
         | 
| 6 | 
            +
             | 
| 7 | 
            +
                http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            limitations under the License.
         | 
| 14 | 
            +
            """
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            # Adapted from:
         | 
| 17 | 
            +
            # https://github.com/vllm-project/vllm/pull/7922
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            """Inference-only OLMoE model compatible with HuggingFace weights."""
         | 
| 20 | 
            +
            from typing import Any, Dict, Iterable, List, Optional, Tuple
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            import torch.nn.functional as F
         | 
| 24 | 
            +
            from torch import nn
         | 
| 25 | 
            +
            from transformers import PretrainedConfig
         | 
| 26 | 
            +
            from vllm.config import CacheConfig
         | 
| 27 | 
            +
            from vllm.distributed import (
         | 
| 28 | 
            +
                get_tensor_model_parallel_world_size,
         | 
| 29 | 
            +
                tensor_model_parallel_all_reduce,
         | 
| 30 | 
            +
            )
         | 
| 31 | 
            +
            from vllm.model_executor.layers.fused_moe import FusedMoE
         | 
| 32 | 
            +
            from vllm.model_executor.layers.linear import (
         | 
| 33 | 
            +
                MergedColumnParallelLinear,
         | 
| 34 | 
            +
                QKVParallelLinear,
         | 
| 35 | 
            +
                ReplicatedLinear,
         | 
| 36 | 
            +
                RowParallelLinear,
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
         | 
| 39 | 
            +
            from vllm.model_executor.layers.rotary_embedding import get_rope
         | 
| 40 | 
            +
            from vllm.model_executor.layers.vocab_parallel_embedding import (
         | 
| 41 | 
            +
                ParallelLMHead,
         | 
| 42 | 
            +
                VocabParallelEmbedding,
         | 
| 43 | 
            +
            )
         | 
| 44 | 
            +
            from vllm.model_executor.model_loader.weight_utils import default_weight_loader
         | 
| 45 | 
            +
            from vllm.utils import print_warning_once
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            from sglang.srt.layers.activation import SiluAndMul
         | 
| 48 | 
            +
            from sglang.srt.layers.layernorm import RMSNorm
         | 
| 49 | 
            +
            from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
         | 
| 50 | 
            +
            from sglang.srt.layers.radix_attention import RadixAttention
         | 
| 51 | 
            +
            from sglang.srt.model_executor.forward_batch_info import InputMetadata
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            class OlmoeMoE(nn.Module):
         | 
| 55 | 
            +
                """A tensor-parallel MoE implementation for Olmoe that shards each expert
         | 
| 56 | 
            +
                across all ranks.
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                Each expert's weights are sharded across all ranks and a fused MoE
         | 
| 59 | 
            +
                kernel is used for the forward pass, and finally we reduce the outputs
         | 
| 60 | 
            +
                across ranks.
         | 
| 61 | 
            +
                """
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                def __init__(
         | 
| 64 | 
            +
                    self,
         | 
| 65 | 
            +
                    num_experts: int,
         | 
| 66 | 
            +
                    top_k: int,
         | 
| 67 | 
            +
                    hidden_size: int,
         | 
| 68 | 
            +
                    intermediate_size: int,
         | 
| 69 | 
            +
                    params_dtype: Optional[torch.dtype] = None,
         | 
| 70 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 71 | 
            +
                    tp_size: Optional[int] = None,
         | 
| 72 | 
            +
                    prefix: str = "",
         | 
| 73 | 
            +
                ):
         | 
| 74 | 
            +
                    super().__init__()
         | 
| 75 | 
            +
                    self.hidden_size = hidden_size
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                    # Gate always runs at half / full precision for now.
         | 
| 78 | 
            +
                    self.gate = ReplicatedLinear(
         | 
| 79 | 
            +
                        hidden_size, num_experts, bias=False, quant_config=None
         | 
| 80 | 
            +
                    )
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    self.experts = FusedMoE(
         | 
| 83 | 
            +
                        num_experts=num_experts,
         | 
| 84 | 
            +
                        top_k=top_k,
         | 
| 85 | 
            +
                        hidden_size=hidden_size,
         | 
| 86 | 
            +
                        intermediate_size=intermediate_size,
         | 
| 87 | 
            +
                        reduce_results=True,
         | 
| 88 | 
            +
                        renormalize=False,
         | 
| 89 | 
            +
                        quant_config=quant_config,
         | 
| 90 | 
            +
                        tp_size=tp_size,
         | 
| 91 | 
            +
                    )
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 94 | 
            +
                    # NOTE: hidden_states can have either 1D or 2D shape.
         | 
| 95 | 
            +
                    orig_shape = hidden_states.shape
         | 
| 96 | 
            +
                    hidden_states = hidden_states.view(-1, self.hidden_size)
         | 
| 97 | 
            +
                    # router_logits: (num_tokens, n_experts)
         | 
| 98 | 
            +
                    router_logits, _ = self.gate(hidden_states)
         | 
| 99 | 
            +
                    final_hidden_states = self.experts(
         | 
| 100 | 
            +
                        hidden_states=hidden_states, router_logits=router_logits
         | 
| 101 | 
            +
                    )
         | 
| 102 | 
            +
                    return final_hidden_states.view(orig_shape)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
             | 
| 105 | 
            +
            class OlmoeAttention(nn.Module):
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                def __init__(
         | 
| 108 | 
            +
                    self,
         | 
| 109 | 
            +
                    layer_id: int,
         | 
| 110 | 
            +
                    hidden_size: int,
         | 
| 111 | 
            +
                    num_heads: int,
         | 
| 112 | 
            +
                    num_kv_heads: int,
         | 
| 113 | 
            +
                    rope_theta: float = 10000,
         | 
| 114 | 
            +
                    rope_scaling: Optional[Dict[str, Any]] = None,
         | 
| 115 | 
            +
                    max_position_embeddings: int = 4096,
         | 
| 116 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 117 | 
            +
                ) -> None:
         | 
| 118 | 
            +
                    super().__init__()
         | 
| 119 | 
            +
                    self.hidden_size = hidden_size
         | 
| 120 | 
            +
                    tp_size = get_tensor_model_parallel_world_size()
         | 
| 121 | 
            +
                    self.total_num_heads = num_heads
         | 
| 122 | 
            +
                    assert self.total_num_heads % tp_size == 0
         | 
| 123 | 
            +
                    self.num_heads = self.total_num_heads // tp_size
         | 
| 124 | 
            +
                    self.total_num_kv_heads = num_kv_heads
         | 
| 125 | 
            +
                    if self.total_num_kv_heads >= tp_size:
         | 
| 126 | 
            +
                        # Number of KV heads is greater than TP size, so we partition
         | 
| 127 | 
            +
                        # the KV heads across multiple tensor parallel GPUs.
         | 
| 128 | 
            +
                        assert self.total_num_kv_heads % tp_size == 0
         | 
| 129 | 
            +
                    else:
         | 
| 130 | 
            +
                        # Number of KV heads is less than TP size, so we replicate
         | 
| 131 | 
            +
                        # the KV heads across multiple tensor parallel GPUs.
         | 
| 132 | 
            +
                        assert tp_size % self.total_num_kv_heads == 0
         | 
| 133 | 
            +
                    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
         | 
| 134 | 
            +
                    self.head_dim = hidden_size // self.total_num_heads
         | 
| 135 | 
            +
                    self.q_size = self.num_heads * self.head_dim
         | 
| 136 | 
            +
                    self.kv_size = self.num_kv_heads * self.head_dim
         | 
| 137 | 
            +
                    self.scaling = self.head_dim**-0.5
         | 
| 138 | 
            +
                    self.rope_theta = rope_theta
         | 
| 139 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    self.qkv_proj = QKVParallelLinear(
         | 
| 142 | 
            +
                        hidden_size,
         | 
| 143 | 
            +
                        self.head_dim,
         | 
| 144 | 
            +
                        self.total_num_heads,
         | 
| 145 | 
            +
                        self.total_num_kv_heads,
         | 
| 146 | 
            +
                        bias=False,
         | 
| 147 | 
            +
                        quant_config=quant_config,
         | 
| 148 | 
            +
                    )
         | 
| 149 | 
            +
                    self.q_norm = RMSNorm(hidden_size, eps=1e-5)
         | 
| 150 | 
            +
                    self.k_norm = RMSNorm(hidden_size, eps=1e-5)
         | 
| 151 | 
            +
                    self.o_proj = RowParallelLinear(
         | 
| 152 | 
            +
                        self.total_num_heads * self.head_dim,
         | 
| 153 | 
            +
                        hidden_size,
         | 
| 154 | 
            +
                        bias=False,
         | 
| 155 | 
            +
                        quant_config=quant_config,
         | 
| 156 | 
            +
                    )
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    self.rotary_emb = get_rope(
         | 
| 159 | 
            +
                        self.head_dim,
         | 
| 160 | 
            +
                        rotary_dim=self.head_dim,
         | 
| 161 | 
            +
                        max_position=max_position_embeddings,
         | 
| 162 | 
            +
                        base=rope_theta,
         | 
| 163 | 
            +
                        rope_scaling=rope_scaling,
         | 
| 164 | 
            +
                        is_neox_style=True,
         | 
| 165 | 
            +
                    )
         | 
| 166 | 
            +
                    self.attn = RadixAttention(
         | 
| 167 | 
            +
                        self.num_heads,
         | 
| 168 | 
            +
                        self.head_dim,
         | 
| 169 | 
            +
                        self.scaling,
         | 
| 170 | 
            +
                        layer_id=layer_id,
         | 
| 171 | 
            +
                        num_kv_heads=self.num_kv_heads,
         | 
| 172 | 
            +
                    )
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                def forward(
         | 
| 175 | 
            +
                    self,
         | 
| 176 | 
            +
                    positions: torch.Tensor,
         | 
| 177 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 178 | 
            +
                    input_metadata: InputMetadata,
         | 
| 179 | 
            +
                ) -> torch.Tensor:
         | 
| 180 | 
            +
                    qkv, _ = self.qkv_proj(hidden_states)
         | 
| 181 | 
            +
                    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
         | 
| 182 | 
            +
                    q, k = self.q_norm(q.contiguous()), self.k_norm(k.contiguous())
         | 
| 183 | 
            +
                    q, k = self.rotary_emb(positions, q, k)
         | 
| 184 | 
            +
                    attn_output = self.attn(q, k, v, input_metadata)
         | 
| 185 | 
            +
                    output, _ = self.o_proj(attn_output)
         | 
| 186 | 
            +
                    return output
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            class OlmoeDecoderLayer(nn.Module):
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                def __init__(
         | 
| 192 | 
            +
                    self,
         | 
| 193 | 
            +
                    config: PretrainedConfig,
         | 
| 194 | 
            +
                    layer_id: int = 0,
         | 
| 195 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 196 | 
            +
                ) -> None:
         | 
| 197 | 
            +
                    super().__init__()
         | 
| 198 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 199 | 
            +
                    rope_theta = getattr(config, "rope_theta", 10000)
         | 
| 200 | 
            +
                    rope_scaling = getattr(config, "rope_scaling", None)
         | 
| 201 | 
            +
                    max_position_embeddings = getattr(config, "max_position_embeddings", 4096)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    self.self_attn = OlmoeAttention(
         | 
| 204 | 
            +
                        layer_id,
         | 
| 205 | 
            +
                        hidden_size=self.hidden_size,
         | 
| 206 | 
            +
                        num_heads=config.num_attention_heads,
         | 
| 207 | 
            +
                        num_kv_heads=config.num_key_value_heads,
         | 
| 208 | 
            +
                        rope_theta=rope_theta,
         | 
| 209 | 
            +
                        rope_scaling=rope_scaling,
         | 
| 210 | 
            +
                        max_position_embeddings=max_position_embeddings,
         | 
| 211 | 
            +
                        quant_config=quant_config,
         | 
| 212 | 
            +
                    )
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    self.mlp = OlmoeMoE(
         | 
| 215 | 
            +
                        num_experts=config.num_experts,
         | 
| 216 | 
            +
                        top_k=config.num_experts_per_tok,
         | 
| 217 | 
            +
                        hidden_size=config.hidden_size,
         | 
| 218 | 
            +
                        intermediate_size=config.intermediate_size,
         | 
| 219 | 
            +
                        quant_config=quant_config,
         | 
| 220 | 
            +
                    )
         | 
| 221 | 
            +
                    self.input_layernorm = RMSNorm(config.hidden_size, eps=1e-5)
         | 
| 222 | 
            +
                    self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=1e-5)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                def forward(
         | 
| 225 | 
            +
                    self,
         | 
| 226 | 
            +
                    positions: torch.Tensor,
         | 
| 227 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 228 | 
            +
                    input_metadata: InputMetadata,
         | 
| 229 | 
            +
                    residual: Optional[torch.Tensor],
         | 
| 230 | 
            +
                ) -> torch.Tensor:
         | 
| 231 | 
            +
                    # Self Attention
         | 
| 232 | 
            +
                    if residual is None:
         | 
| 233 | 
            +
                        residual = hidden_states
         | 
| 234 | 
            +
                        hidden_states = self.input_layernorm(hidden_states)
         | 
| 235 | 
            +
                    else:
         | 
| 236 | 
            +
                        hidden_states, residual = self.input_layernorm(hidden_states, residual)
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    hidden_states = self.self_attn(
         | 
| 239 | 
            +
                        positions=positions,
         | 
| 240 | 
            +
                        hidden_states=hidden_states,
         | 
| 241 | 
            +
                        input_metadata=input_metadata,
         | 
| 242 | 
            +
                    )
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    # Fully Connected
         | 
| 245 | 
            +
                    hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
         | 
| 246 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 247 | 
            +
                    return hidden_states, residual
         | 
| 248 | 
            +
             | 
| 249 | 
            +
             | 
| 250 | 
            +
            class OlmoeModel(nn.Module):
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                def __init__(
         | 
| 253 | 
            +
                    self,
         | 
| 254 | 
            +
                    config: PretrainedConfig,
         | 
| 255 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 256 | 
            +
                ) -> None:
         | 
| 257 | 
            +
                    super().__init__()
         | 
| 258 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 259 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    self.embed_tokens = VocabParallelEmbedding(
         | 
| 262 | 
            +
                        config.vocab_size,
         | 
| 263 | 
            +
                        config.hidden_size,
         | 
| 264 | 
            +
                    )
         | 
| 265 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 266 | 
            +
                        [
         | 
| 267 | 
            +
                            OlmoeDecoderLayer(config, layer_id, quant_config=quant_config)
         | 
| 268 | 
            +
                            for layer_id in range(config.num_hidden_layers)
         | 
| 269 | 
            +
                        ]
         | 
| 270 | 
            +
                    )
         | 
| 271 | 
            +
                    self.norm = RMSNorm(config.hidden_size, eps=1e-5)
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                def forward(
         | 
| 274 | 
            +
                    self,
         | 
| 275 | 
            +
                    input_ids: torch.Tensor,
         | 
| 276 | 
            +
                    positions: torch.Tensor,
         | 
| 277 | 
            +
                    input_metadata: InputMetadata,
         | 
| 278 | 
            +
                    input_embeds: torch.Tensor = None,
         | 
| 279 | 
            +
                ) -> torch.Tensor:
         | 
| 280 | 
            +
                    if input_embeds is None:
         | 
| 281 | 
            +
                        hidden_states = self.embed_tokens(input_ids)
         | 
| 282 | 
            +
                    else:
         | 
| 283 | 
            +
                        hidden_states = input_embeds
         | 
| 284 | 
            +
                    residual = None
         | 
| 285 | 
            +
                    for i in range(len(self.layers)):
         | 
| 286 | 
            +
                        layer = self.layers[i]
         | 
| 287 | 
            +
                        hidden_states, residual = layer(
         | 
| 288 | 
            +
                            positions, hidden_states, input_metadata, residual
         | 
| 289 | 
            +
                        )
         | 
| 290 | 
            +
                    hidden_states, _ = self.norm(hidden_states, residual)
         | 
| 291 | 
            +
                    return hidden_states
         | 
| 292 | 
            +
             | 
| 293 | 
            +
             | 
| 294 | 
            +
            class OlmoeForCausalLM(nn.Module):
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                fall_back_to_pt_during_load = False
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                def __init__(
         | 
| 299 | 
            +
                    self,
         | 
| 300 | 
            +
                    config: PretrainedConfig,
         | 
| 301 | 
            +
                    cache_config: Optional[CacheConfig] = None,
         | 
| 302 | 
            +
                    quant_config: Optional[QuantizationConfig] = None,
         | 
| 303 | 
            +
                ) -> None:
         | 
| 304 | 
            +
                    super().__init__()
         | 
| 305 | 
            +
                    self.config = config
         | 
| 306 | 
            +
                    self.quant_config = quant_config
         | 
| 307 | 
            +
                    self.model = OlmoeModel(config, quant_config)
         | 
| 308 | 
            +
                    self.lm_head = ParallelLMHead(
         | 
| 309 | 
            +
                        config.vocab_size, config.hidden_size, quant_config=quant_config
         | 
| 310 | 
            +
                    )
         | 
| 311 | 
            +
                    self.logits_processor = LogitsProcessor(config)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                def forward(
         | 
| 314 | 
            +
                    self,
         | 
| 315 | 
            +
                    input_ids: torch.Tensor,
         | 
| 316 | 
            +
                    positions: torch.Tensor,
         | 
| 317 | 
            +
                    input_metadata: InputMetadata,
         | 
| 318 | 
            +
                    input_embeds: torch.Tensor = None,
         | 
| 319 | 
            +
                ) -> torch.Tensor:
         | 
| 320 | 
            +
                    hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
         | 
| 321 | 
            +
                    return self.logits_processor(
         | 
| 322 | 
            +
                        input_ids, hidden_states, self.lm_head.weight, input_metadata
         | 
| 323 | 
            +
                    )
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
         | 
| 326 | 
            +
                    stacked_params_mapping = [
         | 
| 327 | 
            +
                        # (param_name, shard_name, shard_id)
         | 
| 328 | 
            +
                        ("qkv_proj", "q_proj", "q"),
         | 
| 329 | 
            +
                        ("qkv_proj", "k_proj", "k"),
         | 
| 330 | 
            +
                        ("qkv_proj", "v_proj", "v"),
         | 
| 331 | 
            +
                        ("gate_up_proj", "gate_proj", 0),
         | 
| 332 | 
            +
                        ("gate_up_proj", "up_proj", 1),
         | 
| 333 | 
            +
                    ]
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                    # Params for weights, fp8 weight scales, fp8 activation scales
         | 
| 336 | 
            +
                    # (param_name, weight_name, expert_id, shard_id)
         | 
| 337 | 
            +
                    expert_params_mapping = FusedMoE.make_expert_params_mapping(
         | 
| 338 | 
            +
                        ckpt_gate_proj_name="gate_proj",
         | 
| 339 | 
            +
                        ckpt_down_proj_name="down_proj",
         | 
| 340 | 
            +
                        ckpt_up_proj_name="up_proj",
         | 
| 341 | 
            +
                        num_experts=self.config.num_experts,
         | 
| 342 | 
            +
                    )
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    params_dict = dict(self.named_parameters())
         | 
| 345 | 
            +
                    for name, loaded_weight in weights:
         | 
| 346 | 
            +
                        if "rotary_emb.inv_freq" in name:
         | 
| 347 | 
            +
                            continue
         | 
| 348 | 
            +
                        for param_name, weight_name, shard_id in stacked_params_mapping:
         | 
| 349 | 
            +
                            # Skip non-stacked layers and experts (experts handled below).
         | 
| 350 | 
            +
                            if weight_name not in name:
         | 
| 351 | 
            +
                                continue
         | 
| 352 | 
            +
                            # We have mlp.experts[0].gate_proj in the checkpoint.
         | 
| 353 | 
            +
                            # Since we handle the experts below in expert_params_mapping,
         | 
| 354 | 
            +
                            # we need to skip here BEFORE we update the name, otherwise
         | 
| 355 | 
            +
                            # name will be updated to mlp.experts[0].gate_up_proj, which
         | 
| 356 | 
            +
                            # will then be updated below in expert_params_mapping
         | 
| 357 | 
            +
                            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
         | 
| 358 | 
            +
                            if "mlp.experts" in name:
         | 
| 359 | 
            +
                                continue
         | 
| 360 | 
            +
                            name = name.replace(weight_name, param_name)
         | 
| 361 | 
            +
                            # Skip loading extra bias for GPTQ models.
         | 
| 362 | 
            +
                            if name.endswith(".bias") and name not in params_dict:
         | 
| 363 | 
            +
                                continue
         | 
| 364 | 
            +
                            if name not in params_dict:
         | 
| 365 | 
            +
                                continue
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                            param = params_dict[name]
         | 
| 368 | 
            +
                            weight_loader = param.weight_loader
         | 
| 369 | 
            +
                            weight_loader(param, loaded_weight, shard_id)
         | 
| 370 | 
            +
                            break
         | 
| 371 | 
            +
                        else:
         | 
| 372 | 
            +
                            for mapping in expert_params_mapping:
         | 
| 373 | 
            +
                                param_name, weight_name, expert_id, shard_id = mapping
         | 
| 374 | 
            +
                                if weight_name not in name:
         | 
| 375 | 
            +
                                    continue
         | 
| 376 | 
            +
                                name = name.replace(weight_name, param_name)
         | 
| 377 | 
            +
                                param = params_dict[name]
         | 
| 378 | 
            +
                                weight_loader = param.weight_loader
         | 
| 379 | 
            +
                                weight_loader(
         | 
| 380 | 
            +
                                    param,
         | 
| 381 | 
            +
                                    loaded_weight,
         | 
| 382 | 
            +
                                    name,
         | 
| 383 | 
            +
                                    shard_id=shard_id,
         | 
| 384 | 
            +
                                    expert_id=expert_id,
         | 
| 385 | 
            +
                                )
         | 
| 386 | 
            +
                                break
         | 
| 387 | 
            +
                            else:
         | 
| 388 | 
            +
                                # Skip loading extra bias for GPTQ models.
         | 
| 389 | 
            +
                                if name.endswith(".bias") and name not in params_dict:
         | 
| 390 | 
            +
                                    continue
         | 
| 391 | 
            +
                                # Remapping the name of FP8 kv-scale.
         | 
| 392 | 
            +
                                if name.endswith("kv_scale"):
         | 
| 393 | 
            +
                                    remapped_kv_scale_name = name.replace(
         | 
| 394 | 
            +
                                        ".kv_scale", ".attn.kv_scale"
         | 
| 395 | 
            +
                                    )
         | 
| 396 | 
            +
                                    if remapped_kv_scale_name not in params_dict:
         | 
| 397 | 
            +
                                        print_warning_once(
         | 
| 398 | 
            +
                                            "Found kv scale in the checkpoint "
         | 
| 399 | 
            +
                                            f"(e.g. {name}), but not found the expected "
         | 
| 400 | 
            +
                                            f"name in the model "
         | 
| 401 | 
            +
                                            f"(e.g. {remapped_kv_scale_name}). "
         | 
| 402 | 
            +
                                            "kv-scale is not loaded."
         | 
| 403 | 
            +
                                        )
         | 
| 404 | 
            +
                                        continue
         | 
| 405 | 
            +
                                    else:
         | 
| 406 | 
            +
                                        name = remapped_kv_scale_name
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                                param = params_dict[name]
         | 
| 409 | 
            +
                                weight_loader = getattr(
         | 
| 410 | 
            +
                                    param, "weight_loader", default_weight_loader
         | 
| 411 | 
            +
                                )
         | 
| 412 | 
            +
                                weight_loader(param, loaded_weight)
         | 
| 413 | 
            +
             | 
| 414 | 
            +
             | 
| 415 | 
            +
            EntryClass = OlmoeForCausalLM
         | 
| @@ -34,56 +34,6 @@ class SamplingBatchInfo: | |
| 34 34 | 
             
                linear_penalties: torch.Tensor = None
         | 
| 35 35 | 
             
                scaling_penalties: torch.Tensor = None
         | 
| 36 36 |  | 
| 37 | 
            -
                def __len__(self):
         | 
| 38 | 
            -
                    return len(self.temperatures)
         | 
| 39 | 
            -
             | 
| 40 | 
            -
                def can_run_in_cuda_graph(self):
         | 
| 41 | 
            -
                    # Vocab bias and min_ps are not supported in CUDA graph
         | 
| 42 | 
            -
                    return (
         | 
| 43 | 
            -
                        self.logit_bias is None
         | 
| 44 | 
            -
                        and self.linear_penalties is None
         | 
| 45 | 
            -
                        and self.scaling_penalties is None
         | 
| 46 | 
            -
                        and not self.need_min_p_sampling
         | 
| 47 | 
            -
                    )
         | 
| 48 | 
            -
             | 
| 49 | 
            -
                @classmethod
         | 
| 50 | 
            -
                def dummy_one(cls, max_bs: int, vocab_size: int):
         | 
| 51 | 
            -
                    ret = cls(vocab_size=vocab_size)
         | 
| 52 | 
            -
                    with torch.device("cuda"):
         | 
| 53 | 
            -
                        ret.temperatures = torch.ones((max_bs, 1), dtype=torch.float)
         | 
| 54 | 
            -
                        ret.top_ps = torch.ones((max_bs,), dtype=torch.float)
         | 
| 55 | 
            -
                        ret.top_ks = torch.ones((max_bs,), dtype=torch.int)
         | 
| 56 | 
            -
                        ret.vocab_mask = torch.zeros((max_bs, vocab_size), dtype=torch.bool)
         | 
| 57 | 
            -
                    return ret
         | 
| 58 | 
            -
             | 
| 59 | 
            -
                def __getitem__(self, key):
         | 
| 60 | 
            -
                    if isinstance(key, slice):
         | 
| 61 | 
            -
                        # NOTE:This method is only used in CUDA graph
         | 
| 62 | 
            -
                        assert self.can_run_in_cuda_graph()
         | 
| 63 | 
            -
                        return SamplingBatchInfo(
         | 
| 64 | 
            -
                            vocab_size=self.vocab_size,
         | 
| 65 | 
            -
                            temperatures=self.temperatures[key],
         | 
| 66 | 
            -
                            top_ps=self.top_ps[key],
         | 
| 67 | 
            -
                            top_ks=self.top_ks[key],
         | 
| 68 | 
            -
                            vocab_mask=self.vocab_mask[key],
         | 
| 69 | 
            -
                        )
         | 
| 70 | 
            -
                    else:
         | 
| 71 | 
            -
                        raise NotImplementedError
         | 
| 72 | 
            -
             | 
| 73 | 
            -
                def inplace_assign(self, bs: int, other: SamplingBatchInfo):
         | 
| 74 | 
            -
                    # NOTE:This method is only used in CUDA graph
         | 
| 75 | 
            -
                    assert self.can_run_in_cuda_graph()
         | 
| 76 | 
            -
             | 
| 77 | 
            -
                    self.vocab_size = other.vocab_size
         | 
| 78 | 
            -
                    self.temperatures[:bs] = other.temperatures
         | 
| 79 | 
            -
                    self.top_ps[:bs] = other.top_ps
         | 
| 80 | 
            -
                    self.top_ks[:bs] = other.top_ks
         | 
| 81 | 
            -
             | 
| 82 | 
            -
                    if other.vocab_mask is None:
         | 
| 83 | 
            -
                        self.vocab_mask[:bs].fill_(False)
         | 
| 84 | 
            -
                    else:
         | 
| 85 | 
            -
                        self.vocab_mask[:bs] = other.vocab_mask
         | 
| 86 | 
            -
             | 
| 87 37 | 
             
                @classmethod
         | 
| 88 38 | 
             
                def from_schedule_batch(cls, batch: ScheduleBatch, vocab_size: int):
         | 
| 89 39 | 
             
                    reqs = batch.reqs
         | 
| @@ -130,6 +80,9 @@ class SamplingBatchInfo: | |
| 130 80 |  | 
| 131 81 | 
             
                    return ret
         | 
| 132 82 |  | 
| 83 | 
            +
                def __len__(self):
         | 
| 84 | 
            +
                    return len(self.temperatures)
         | 
| 85 | 
            +
             | 
| 133 86 | 
             
                def update_penalties(self):
         | 
| 134 87 | 
             
                    self.scaling_penalties = None
         | 
| 135 88 | 
             
                    self.linear_penalties = None
         |