sglang 0.3.0__py3-none-any.whl → 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. sglang/bench_latency.py +10 -6
  2. sglang/bench_serving.py +33 -38
  3. sglang/global_config.py +0 -4
  4. sglang/lang/backend/runtime_endpoint.py +5 -2
  5. sglang/lang/interpreter.py +1 -1
  6. sglang/launch_server.py +3 -6
  7. sglang/launch_server_llavavid.py +7 -8
  8. sglang/srt/{model_config.py → configs/model_config.py} +5 -0
  9. sglang/srt/constrained/__init__.py +2 -0
  10. sglang/srt/constrained/fsm_cache.py +29 -38
  11. sglang/srt/constrained/jump_forward.py +0 -1
  12. sglang/srt/conversation.py +4 -1
  13. sglang/srt/hf_transformers_utils.py +1 -3
  14. sglang/srt/layers/attention_backend.py +480 -0
  15. sglang/srt/layers/flashinfer_utils.py +235 -0
  16. sglang/srt/layers/logits_processor.py +64 -77
  17. sglang/srt/layers/radix_attention.py +11 -161
  18. sglang/srt/layers/sampler.py +6 -25
  19. sglang/srt/layers/torchao_utils.py +75 -0
  20. sglang/srt/layers/{decode_attention.py → triton_attention/decode_attention.py} +67 -63
  21. sglang/srt/layers/{extend_attention.py → triton_attention/extend_attention.py} +40 -132
  22. sglang/srt/layers/{prefill_attention.py → triton_attention/prefill_attention.py} +13 -7
  23. sglang/srt/lora/lora.py +403 -0
  24. sglang/srt/lora/lora_config.py +43 -0
  25. sglang/srt/lora/lora_manager.py +256 -0
  26. sglang/srt/managers/controller_multi.py +1 -5
  27. sglang/srt/managers/controller_single.py +0 -5
  28. sglang/srt/managers/io_struct.py +16 -1
  29. sglang/srt/managers/policy_scheduler.py +122 -5
  30. sglang/srt/managers/schedule_batch.py +104 -71
  31. sglang/srt/managers/tokenizer_manager.py +17 -8
  32. sglang/srt/managers/tp_worker.py +181 -115
  33. sglang/srt/model_executor/cuda_graph_runner.py +58 -133
  34. sglang/srt/model_executor/forward_batch_info.py +35 -312
  35. sglang/srt/model_executor/model_runner.py +117 -131
  36. sglang/srt/models/baichuan.py +416 -0
  37. sglang/srt/models/chatglm.py +1 -5
  38. sglang/srt/models/commandr.py +1 -5
  39. sglang/srt/models/dbrx.py +1 -5
  40. sglang/srt/models/deepseek.py +1 -5
  41. sglang/srt/models/deepseek_v2.py +1 -5
  42. sglang/srt/models/exaone.py +1 -5
  43. sglang/srt/models/gemma.py +1 -5
  44. sglang/srt/models/gemma2.py +1 -5
  45. sglang/srt/models/gpt_bigcode.py +1 -5
  46. sglang/srt/models/grok.py +1 -5
  47. sglang/srt/models/internlm2.py +1 -5
  48. sglang/srt/models/llama.py +51 -5
  49. sglang/srt/models/llama_classification.py +1 -20
  50. sglang/srt/models/llava.py +30 -5
  51. sglang/srt/models/llavavid.py +2 -2
  52. sglang/srt/models/minicpm.py +1 -5
  53. sglang/srt/models/minicpm3.py +665 -0
  54. sglang/srt/models/mixtral.py +6 -5
  55. sglang/srt/models/mixtral_quant.py +1 -5
  56. sglang/srt/models/qwen.py +1 -5
  57. sglang/srt/models/qwen2.py +1 -5
  58. sglang/srt/models/qwen2_moe.py +6 -5
  59. sglang/srt/models/stablelm.py +1 -5
  60. sglang/srt/models/xverse.py +375 -0
  61. sglang/srt/models/xverse_moe.py +445 -0
  62. sglang/srt/openai_api/adapter.py +65 -46
  63. sglang/srt/openai_api/protocol.py +11 -3
  64. sglang/srt/sampling/sampling_batch_info.py +57 -44
  65. sglang/srt/server.py +24 -14
  66. sglang/srt/server_args.py +130 -28
  67. sglang/srt/utils.py +12 -0
  68. sglang/test/few_shot_gsm8k.py +132 -0
  69. sglang/test/runners.py +114 -22
  70. sglang/test/test_programs.py +7 -5
  71. sglang/test/test_utils.py +85 -1
  72. sglang/utils.py +32 -37
  73. sglang/version.py +1 -1
  74. {sglang-0.3.0.dist-info → sglang-0.3.1.dist-info}/METADATA +30 -18
  75. sglang-0.3.1.dist-info/RECORD +129 -0
  76. {sglang-0.3.0.dist-info → sglang-0.3.1.dist-info}/WHEEL +1 -1
  77. sglang-0.3.0.dist-info/RECORD +0 -118
  78. {sglang-0.3.0.dist-info → sglang-0.3.1.dist-info}/LICENSE +0 -0
  79. {sglang-0.3.0.dist-info → sglang-0.3.1.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: sglang
3
- Version: 0.3.0
3
+ Version: 0.3.1
4
4
  Summary: SGLang is yet another fast serving framework for large language models and vision language models.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -242,6 +242,7 @@ Requires-Dist: psutil; extra == "srt"
242
242
  Requires-Dist: pydantic; extra == "srt"
243
243
  Requires-Dist: python-multipart; extra == "srt"
244
244
  Requires-Dist: torch; extra == "srt"
245
+ Requires-Dist: torchao; extra == "srt"
245
246
  Requires-Dist: uvicorn; extra == "srt"
246
247
  Requires-Dist: uvloop; extra == "srt"
247
248
  Requires-Dist: zmq; extra == "srt"
@@ -253,6 +254,7 @@ Requires-Dist: matplotlib; extra == "test"
253
254
  Requires-Dist: pandas; extra == "test"
254
255
  Requires-Dist: sentence-transformers; extra == "test"
255
256
  Requires-Dist: accelerate; extra == "test"
257
+ Requires-Dist: peft; extra == "test"
256
258
 
257
259
  <div align="center">
258
260
  <img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
@@ -271,14 +273,16 @@ Requires-Dist: accelerate; extra == "test"
271
273
 
272
274
  SGLang is a fast serving framework for large language models and vision language models.
273
275
  It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
274
-
275
276
  The core features include:
276
- - **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
277
- - **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
277
+
278
+ - **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, chunked prefill, and quantization (INT4/FP8/AWQ/GPTQ).
279
+ - **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
280
+ - **Extensive Model Support**: Supports a wide range of generative models (Llama 3, Gemma 2, Mistral, QWen, DeepSeek, LLaVA, etc.) and embedding models (e5-mistral), with easy extensibility for integrating new models.
281
+ - **Active Community**: SGLang is open-source and backed by an active community with industry adoption, welcoming contributions to improve LLM and VLM serving.
278
282
 
279
283
  ## News
284
+ - [2024/09] 🔥 SGLang v0.3 Release: 7x Faster DeepSeek MLA, 1.5x Faster torch.compile, Multi-Image/Video LLaVA-OneVision ([blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/)).
280
285
  - [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
281
- - [2024/08] 🔥 LLaVA-OneVision with single-image, multi-image and video are supported ([blog](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)).
282
286
  - [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
283
287
 
284
288
  <details>
@@ -300,6 +304,8 @@ The core features include:
300
304
 
301
305
  ## Install
302
306
 
307
+ You can install SGLang using any of the methods below.
308
+
303
309
  ### Method 1: With pip
304
310
  ```
305
311
  pip install --upgrade pip
@@ -312,7 +318,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
312
318
  ### Method 2: From source
313
319
  ```
314
320
  # Use the last release branch
315
- git clone -b v0.3.0 https://github.com/sgl-project/sglang.git
321
+ git clone -b v0.3.1 https://github.com/sgl-project/sglang.git
316
322
  cd sglang
317
323
 
318
324
  pip install --upgrade pip
@@ -323,7 +329,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
323
329
  ```
324
330
 
325
331
  ### Method 3: Using docker
326
- The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
332
+ The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
327
333
  Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
328
334
 
329
335
  ```bash
@@ -391,7 +397,7 @@ sky status --endpoint 30000 sglang
391
397
 
392
398
 
393
399
  ### Common Notes
394
- - [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is currently one of the dependencies that must be installed for SGLang. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), consider using Triton's kernel by `--disable-flashinfer --disable-flashinfer-sampling` and raise an issue.
400
+ - [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
395
401
  - If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
396
402
 
397
403
  ## Backend: SGLang Runtime (SRT)
@@ -457,24 +463,29 @@ print(response)
457
463
  It supports streaming, vision, and most features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
458
464
 
459
465
  ### Additional Server Arguments
460
- - Add `--tp 2` to enable multi-GPU tensor parallelism. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
466
+ - To enable multi-GPU tensor parallelism, add `--tp 2`. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
461
467
  ```
462
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
468
+ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 2
463
469
  ```
464
- - Add `--dp 2` to enable multi-GPU data parallelism. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
470
+ - To enable multi-GPU data parallelism, add `--dp 2`. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
465
471
  ```
466
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
472
+ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --dp 2 --tp 2
467
473
  ```
468
474
  - If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
469
475
  ```
470
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
476
+ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --mem-fraction-static 0.7
471
477
  ```
472
478
  - See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
473
479
  - If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
474
480
  ```
475
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --chunked-prefill-size 4096
481
+ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --chunked-prefill-size 4096
476
482
  ```
477
- - Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
483
+ - To enable torch.compile acceleration, add `--enable-torch-compile`. It accelerates small models on small batch sizes.
484
+ - To enable fp8 weight quantization, add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
485
+ - To enable fp8 kv cache quantization, add `--kv-cache-dtype fp8_e5m2`.
486
+ - To enable DeepSeek MLA acceleration, add `--enable-mla`.
487
+ - If the model does not have a chat template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
488
+ - To run tensor parallelism on multiple nodes, add `--nnodes 2`. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
478
489
  ```
479
490
  # Node 0
480
491
  python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
@@ -482,9 +493,6 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
482
493
  # Node 1
483
494
  python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
484
495
  ```
485
- - If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
486
- - To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
487
- - To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
488
496
 
489
497
  ### Supported Models
490
498
 
@@ -510,6 +518,10 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
510
518
  - ChatGLM
511
519
  - InternLM 2
512
520
  - Exaone 3
521
+ - BaiChuan2
522
+ - MiniCPM / MiniCPM 3
523
+ - XVERSE / XVERSE MoE
524
+
513
525
 
514
526
  **Embedding Models**
515
527
 
@@ -0,0 +1,129 @@
1
+ sglang/__init__.py,sha256=T8MYdFfKFPZcgFKHMBpOCIlFbhjwmr77Nqm6mdE6bCY,1590
2
+ sglang/api.py,sha256=pH4CjwOXUweL5MF1sIkFMddDxfnF7PyUxEHC5kvNVbI,6468
3
+ sglang/bench_latency.py,sha256=EvmXpaREU-g25OTcOUTgAUPmA-txfnyjaqY-4hlq97w,16925
4
+ sglang/bench_serving.py,sha256=6OM5JIDuoxJDg-VLE4ijGGcS8-6ViaidV05lIrZmSzo,36239
5
+ sglang/check_env.py,sha256=rGRABCgt-0SfUrow4px28b2P59aMn8eVTnN5eZc_a8s,5397
6
+ sglang/global_config.py,sha256=KWpXd4OCCWW2TRQo-dShvLs4jb15ej9Ejhxr_wggzBg,1535
7
+ sglang/launch_server.py,sha256=UnjNjYuZ8TtvmRtgYEsFImkbvCwvn_tQjk0V7cHy67E,450
8
+ sglang/launch_server_llavavid.py,sha256=olPKyhozi1coCwoRMwBRYWsTFByrgus9CwPSeNmskgc,1002
9
+ sglang/utils.py,sha256=NA_4xUrTI7KICQ3PEACfNWKE3nxSA5QvQZJNd4TQrDc,9395
10
+ sglang/version.py,sha256=r4xAFihOf72W9TD-lpMi6ntWSTKTP2SlzKP1ytkjRbI,22
11
+ sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
+ sglang/lang/chat_template.py,sha256=uqI_I9zIKXGXg7-W-yjqvx1ZeS_TuwFCms6wkmC2QmY,13411
13
+ sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
14
+ sglang/lang/compiler.py,sha256=o1C6G3TzhjSlsH-doTPy5oiVehr57dxNTa5oZw5TTAI,7639
15
+ sglang/lang/interpreter.py,sha256=M42SuOnijFaHWOe3Qyi-bNanRt-mYhSDa1wWn1J42Hw,30324
16
+ sglang/lang/ir.py,sha256=W3UfZikcGeT86PDDjDjw-yNzrKY2e2UYO4DTatMCfm0,17704
17
+ sglang/lang/tracer.py,sha256=borJmlSJOhg1RUndGRnilnR60eEZz2Y9aU7BpftsOxU,8287
18
+ sglang/lang/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
+ sglang/lang/backend/anthropic.py,sha256=EXRX7xJgA5KZszX7toSLVnKzFQ5EO0Loj-YjHFtxSxg,2081
20
+ sglang/lang/backend/base_backend.py,sha256=Q5HdiDtyBewQeoYH0kDtBRVL8KFiEPNq9dw7XmauHQ8,1985
21
+ sglang/lang/backend/litellm.py,sha256=ugmL7sfUxkUHVbHtwNzHgdQAEd4UCjNQboFuE3KThcY,2450
22
+ sglang/lang/backend/openai.py,sha256=qM7eVH_kMxnDd2rpxOH0v76KxtOJFlAwgLgWIKvFGCI,15060
23
+ sglang/lang/backend/runtime_endpoint.py,sha256=MEyMl5cIAMwaWmp4j0HtuCOQ_XdJoyywztvAOGsicao,9832
24
+ sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
25
+ sglang/srt/conversation.py,sha256=S5w5V6G1xigNxa3UQoSxRcMpQLWWDT9EPBoHBvHkSAk,19663
26
+ sglang/srt/hf_transformers_utils.py,sha256=6HlqcmGPIvnSGaEEICeuzwag1QylSoSGbXRVvUdIMDo,6016
27
+ sglang/srt/mm_utils.py,sha256=zox644S3IHUWmADdK4MnIbdTS2DWHOy0_Dq0gCU38QQ,12273
28
+ sglang/srt/server.py,sha256=FNmTpX7E9fVWj_NFzp4AtE5ODaA_rg5Xm8uZ0FB0X4o,20041
29
+ sglang/srt/server_args.py,sha256=5OHH3gaO1s5Y2UQw2_FnFxwxrsqnUQ_WNqP1R1IWUAA,21877
30
+ sglang/srt/utils.py,sha256=pckOt7gyQfJaV3-h8FPurWyrPij5_EBUX_Xp7x6y6YM,24229
31
+ sglang/srt/configs/__init__.py,sha256=292SuEorST-lAq2Uvsv2M7yC28uYZlssVvRDsF-bZCQ,86
32
+ sglang/srt/configs/exaone.py,sha256=Duxd4yQoKy8GWEzZD_kCY_OzmN_67CTJL_Kgn0eXk3g,10731
33
+ sglang/srt/configs/model_config.py,sha256=OqHrucJQHbH-wxgkGj-Dcx_B888uUGASpLRjz40HaLY,6651
34
+ sglang/srt/constrained/__init__.py,sha256=ze8awDPvwAzdeMwzJ-25kXOQ4nVWoaP55jBDt5UOS_4,2070
35
+ sglang/srt/constrained/base_tool_cache.py,sha256=5sazBMHHDpHMoqOjuY6itCxwTmIFCflIWEDXMtmrPVs,2006
36
+ sglang/srt/constrained/fsm_cache.py,sha256=jItSvCu_XrAgltfejwgvdltaiT98-8lJGBe_84cSnTk,2786
37
+ sglang/srt/constrained/jump_forward.py,sha256=9_HxmXtWjr5S6a5e0cBimbY3ZhiLiJC74V6jIqDXfuo,6575
38
+ sglang/srt/layers/activation.py,sha256=JEXNTgqxoiU4N-gVm4XMjobhft4JKDcMrgTkfpsRUzM,4856
39
+ sglang/srt/layers/attention_backend.py,sha256=39P3iMs7B1iEzCA3EHdqUp3BLafeIVFnFWGzpEhlTRk,18182
40
+ sglang/srt/layers/flashinfer_utils.py,sha256=jyaO7XiEisFZg_dfaCbfRCHSHSKYoM1wOzfHa0h1q14,7413
41
+ sglang/srt/layers/layernorm.py,sha256=RXuS4UyksatqTF6lSK7VYyEiUEnBiNIBlEn8q4w84UA,3404
42
+ sglang/srt/layers/logits_processor.py,sha256=Js2qSk1Z3uPL2cYO1ARai51f2i8OedV3qdwByQVSJtI,12439
43
+ sglang/srt/layers/pooler.py,sha256=qNMG3Ycvt2yf9mk1Lcs-2K7oPeCuVeDYoHAxkMu9b_Q,1610
44
+ sglang/srt/layers/radix_attention.py,sha256=EcVO0fUSmgvE_9R-MlpgJq0O_uT8ACuHzbMi19bANYc,1874
45
+ sglang/srt/layers/sampler.py,sha256=1BKsZbSLBGFVtTJo1LsThuoRjOSOnsL1AiwFxJNIXRs,5800
46
+ sglang/srt/layers/torchao_utils.py,sha256=rTECwKSXhj_ylh_iSzfbopz9_lZOFHatquQrNJNLZlE,2703
47
+ sglang/srt/layers/fused_moe/__init__.py,sha256=bWCrDdOy2ANEXTb8CHYO63O3Iu3eZnn0PJbgl0z5vvE,75
48
+ sglang/srt/layers/fused_moe/fused_moe.py,sha256=1WM2cObWXcFWtqh_utGJFPnrT344rORwuQ9hJDaH2s0,23104
49
+ sglang/srt/layers/fused_moe/layer.py,sha256=GT3r2UPx_PAufJd0SUMOXyh76ymAeYDubd0SM0H71bo,20977
50
+ sglang/srt/layers/triton_attention/decode_attention.py,sha256=XCQTX0kUttT1AG5FRMgfQbiXgvoempYD0UR2r6D_vJg,16711
51
+ sglang/srt/layers/triton_attention/extend_attention.py,sha256=XTUTMrE-5jfMEufQUifZ-8NJQABSPcF47qhnNT5Z1iI,11050
52
+ sglang/srt/layers/triton_attention/prefill_attention.py,sha256=QkXPcT02c13zha2M4mBm2S5dh_sS-Gc4FkkrcywRqvc,5377
53
+ sglang/srt/lora/lora.py,sha256=ksj866lgDul6zxO30Jm7Nrjv-mFAMrzdvP8sez3Pl6U,14938
54
+ sglang/srt/lora/lora_config.py,sha256=paVB7F7SIuxr_vodvKf8zzAlH2fdVYHhXxcXV62D0Vo,1411
55
+ sglang/srt/lora/lora_manager.py,sha256=Q7rk1SMEZ75wda68rAZDGVyX_o8ZdIW2I5Fo_llaqHs,9475
56
+ sglang/srt/managers/controller_multi.py,sha256=KolZDso2WqH1ZhQw9p1eTmlFRgo4bcvzBxE44_sNE_o,6300
57
+ sglang/srt/managers/controller_single.py,sha256=DiZALP_iIPZQMRx09a-LwT5_Dg7p-WU8HXyMoxJ9sRA,4955
58
+ sglang/srt/managers/detokenizer_manager.py,sha256=yQkL5gLomLiy1qc6e9HNz8hcj7JQFHm1AfIrzpXaWJE,6852
59
+ sglang/srt/managers/io_struct.py,sha256=bqmL3NDPLqOn6Au3WLF0NOe8Dh7ECMN7BTHCkEZ_Edk,11247
60
+ sglang/srt/managers/policy_scheduler.py,sha256=tiBUi2GJU5eQEBK6HfsO1_YjWtFkougo40954DIp4dM,13026
61
+ sglang/srt/managers/schedule_batch.py,sha256=QfixWzh7ks60eYE52mZHfUseXqcb89h4ZO1Aur3weLU,27340
62
+ sglang/srt/managers/tokenizer_manager.py,sha256=ql-sObjl1oRigJwnLtqqTaaw-i7gPTDMoNXDEMftr40,29643
63
+ sglang/srt/managers/tp_worker.py,sha256=Zbl_tFUAsD6Qv1fUEJCn_jyUc3JjDm33yI3Nmu1HY8w,39174
64
+ sglang/srt/mem_cache/base_prefix_cache.py,sha256=qEQwEkG4E5rab2ZoTqcesf5pR_J4nV2jBxIHsBJHtIM,924
65
+ sglang/srt/mem_cache/chunk_cache.py,sha256=CjZZYlqQzq7mYOiBMLWA5XNb6HIyh5lIMdY-K0OUZEc,2368
66
+ sglang/srt/mem_cache/flush_cache.py,sha256=pTLKPRB17U6vl5RFJJvuJ4jCL2SyomgkUBNlkDpGRqo,978
67
+ sglang/srt/mem_cache/memory_pool.py,sha256=4br3Ea2bfA-YsF_sPOVHlF2zQzYGd8fVaYTp197yZsE,7871
68
+ sglang/srt/mem_cache/radix_cache.py,sha256=0AVr1BKKDOtTyybUkwxrz6PT8khDx-DpzgN5MgL27IE,10088
69
+ sglang/srt/model_executor/cuda_graph_runner.py,sha256=LngmwtBcvobJ_9G8lD966SihjmMJlgMgHe_ZogK1kDg,10090
70
+ sglang/srt/model_executor/forward_batch_info.py,sha256=yvkhayY9Zu6gysoojcGT73lADGOtfHKkFKWdJLRyACI,6141
71
+ sglang/srt/model_executor/model_runner.py,sha256=7jBSCdZxyDLWMOdwv1vRa7Oue-xbp8lA6I11ZPKFdAc,23457
72
+ sglang/srt/models/baichuan.py,sha256=NrG1rMJXhemkrUCEf8xKOSDQVsOD-nN8RQz6MWHOg84,15124
73
+ sglang/srt/models/chatglm.py,sha256=KwxLHBEvK02McXDvBS0gnRxfIvOAu2QP7lgibrj9Nbc,13371
74
+ sglang/srt/models/commandr.py,sha256=2rAXRZRb4PkJZ4NWEqP_rIgsjxbdZyHpuoMOarqTWzQ,14163
75
+ sglang/srt/models/dbrx.py,sha256=N_0Ku_p1NCsc29NktUBNqPv7Z33XhYxOZK5xN7nzW4s,14661
76
+ sglang/srt/models/deepseek.py,sha256=7UJgde1EV9ey6d-CKRcEyTKh1_WhZdatpZiltIuqpik,16006
77
+ sglang/srt/models/deepseek_v2.py,sha256=3D9WtPvVOu8U40x_KOksnmWBLmLIcgtV958go8NSj5Q,28307
78
+ sglang/srt/models/exaone.py,sha256=3I5ZoiLotf7U-8c9QJRubpgf6JDx9I_z-ViXQlCC-x8,13087
79
+ sglang/srt/models/gemma.py,sha256=GkwgGFHgGlXgBZN7s7Wooz5tMyCp1YtgLahU2NOo66M,12273
80
+ sglang/srt/models/gemma2.py,sha256=sFfCNEm0_OOWElRSTDuroRv8wNMX8v_81Uko9m546KA,14923
81
+ sglang/srt/models/gpt_bigcode.py,sha256=kzHYogeGXZF4KHpkXA-RGqvs016mA-6klWxD2QJTi9E,10195
82
+ sglang/srt/models/grok.py,sha256=6I4OwQwNyAbh5GF24_SRm12XYBvM9iGWB-T4TSTJ0wU,14929
83
+ sglang/srt/models/internlm2.py,sha256=6j7JH0p3yib8GZDH8Cmrs-pgwfH3eOlAK6V3Cq64O7w,12202
84
+ sglang/srt/models/llama.py,sha256=tjdjlIxJr31vgbzGBP_el9RgYxw1kzvmqnVinnTVVUw,15259
85
+ sglang/srt/models/llama_classification.py,sha256=A2ABTUD5u4XoWv1dsIPU7wcCQP3jhbDJblMhLgaiFBA,3402
86
+ sglang/srt/models/llama_embedding.py,sha256=RI2mpYheP5WwhuTINU-6IrU61usuMyCK9h2zDEyLW4g,3458
87
+ sglang/srt/models/llava.py,sha256=O4XGdl70Hh4tM_OHapFGHbReC82mbe9xLw6GELKWKhU,24881
88
+ sglang/srt/models/llavavid.py,sha256=ou5uIuskBoBo0lXvqFFfDLBYYVfehx27n-Lu8X9gpLs,11992
89
+ sglang/srt/models/minicpm.py,sha256=ioqCsTCE_oF8xqGF5fm5cK9dclK5Y0EQ1UJfyteIDDo,13825
90
+ sglang/srt/models/minicpm3.py,sha256=S7bNeCAsfvL44Vn350KLaqX674SCb4CpUuDnhjLjr3U,25113
91
+ sglang/srt/models/mistral.py,sha256=tiYoKjyYVzlQl52QUZ33odD2yCxj9dxcqln474VuZOw,744
92
+ sglang/srt/models/mixtral.py,sha256=oRC7mKBrPJhvzkWSabrbeQQQac-jtF4EV6H2Sgjc5JY,13897
93
+ sglang/srt/models/mixtral_quant.py,sha256=wMACJq78OTWj7HlqPDRNEh8cjrVAjKqJEsOG3CO5xow,14072
94
+ sglang/srt/models/qwen.py,sha256=nqSRzkiZzpRVG6WGQ1MBUclQnXyw8jlvoOq-euM8j5s,9954
95
+ sglang/srt/models/qwen2.py,sha256=9_M-VkHN1_T1XN-gsl_L636QMQ9BLF2WqvTcx_1L6aw,12432
96
+ sglang/srt/models/qwen2_moe.py,sha256=s7b5XnSvsBYtZZUkjPp442m59CqPJ3HxGUIwXBVWsXw,17153
97
+ sglang/srt/models/stablelm.py,sha256=30ngpc0Xq3VxzXJlf6svP1oax8Q3krMJkxM8PVKtZWU,11359
98
+ sglang/srt/models/xverse.py,sha256=luhp_90ZNkTpXHDCURO4MZBy1vbvHTVCwSe4PYYLWBs,13701
99
+ sglang/srt/models/xverse_moe.py,sha256=YR--WZ33G7XEMsS7ZJl1cQ62Q8PDo9gWqpvJBY_cb-M,15886
100
+ sglang/srt/models/yivl.py,sha256=B6MELthWIm5KdSzX3o2tbbpApY8XdjUdmcQSD4dQe_I,4835
101
+ sglang/srt/openai_api/adapter.py,sha256=CJ47YftRHAip1FMcHIhtCorBtzlIkv7F0Wz_JUcI4T4,51032
102
+ sglang/srt/openai_api/protocol.py,sha256=rdSwUAoO5-KLemJOE50xwSUagxY4T1QIiNyCYsTtCi0,9868
103
+ sglang/srt/sampling/sampling_batch_info.py,sha256=vkwy59Jt51FESYukmwDKwPbCM45WMb16dx_408B3oqc,7900
104
+ sglang/srt/sampling/sampling_params.py,sha256=ggOXxafqfCD-xrGYcM57byLZ79CIeBP4AD5F44L_CW0,5635
105
+ sglang/srt/sampling/penaltylib/__init__.py,sha256=5vQw0Y5DSzmsoFg1IdMIKLwFVhYZ5ArADHVBYbSmOec,513
106
+ sglang/srt/sampling/penaltylib/orchestrator.py,sha256=WkTNeDhj9H9rtp2ZZeX6MS2sdKSGlLboE6FcuKrwUo0,10815
107
+ sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py,sha256=IvYioX53Vq_ji-0Zhcz_r5mUa3T3GaIydVS6K4FhWfE,2557
108
+ sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py,sha256=XJZP0C4NFyXgcODbIWXxrgVEjmRgqLdZuVAtoN-LveY,3565
109
+ sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py,sha256=0PlANTrR959foTA3Nj5qBE7ndaOZgG-9X6LhzlmEUc8,2533
110
+ sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=v9jOgA0-I31WcrhIydiFbpy2ZJPLytFLGM98NRPd2sU,2820
111
+ sglang/test/few_shot_gsm8k.py,sha256=uSHEPvUFbAgWKtaqxkhBpQrQV_SlTk0HN9FhjNLpL4g,3731
112
+ sglang/test/run_eval.py,sha256=NWxeLWmInBgkCvC9Jr_QzF7GfAiBve3Gf1JQrEOlNlU,3899
113
+ sglang/test/runners.py,sha256=ZoWhT1TDXfLBVdbivXx1KUu9dhPlGjL_xrP18WLzVLo,11404
114
+ sglang/test/simple_eval_common.py,sha256=r0G-9QLycs2ax3RMc44T_61fzMxlpTzv6pececC7lyY,12379
115
+ sglang/test/simple_eval_gpqa.py,sha256=8Xt9Bw05c7SZTYrCZgB68OZUqUbLo69ywiyx0bTvSUk,3220
116
+ sglang/test/simple_eval_humaneval.py,sha256=7lTi841NT58smNOtRwCedrdX9IWWypdLkOtaQOBy-GI,5687
117
+ sglang/test/simple_eval_math.py,sha256=6kGKNwNbLN-Af3Wj8WTimWhH-Xp3enDmSvvSjsgWUpk,2550
118
+ sglang/test/simple_eval_mgsm.py,sha256=wfbqJW9Rkc66vzq2fEMF6jchmoA8mw1OUiGU55cZ2B0,10261
119
+ sglang/test/simple_eval_mmlu.py,sha256=FkwamjGMjueTixymkedF-YiPloSLiy4ftILFUrKZ9XI,4357
120
+ sglang/test/test_activation.py,sha256=jkdNRzJnbd5OgZliQaIXpxovlcky17UrweomcOcMxoE,1442
121
+ sglang/test/test_layernorm.py,sha256=IacByD5d-stXjzBz8Ypamc7povlcedpKPbb_4JLgo3c,3720
122
+ sglang/test/test_programs.py,sha256=3-XKnppQdCNWjaJb6jwib5Z9OSpgKvH8SFLJbE4J9qI,17001
123
+ sglang/test/test_utils.py,sha256=iBs07MBFxOidipTG1-s2hrCvcURFJVXo7gg10pzAQX8,17168
124
+ sglang/test/srt/sampling/penaltylib/utils.py,sha256=-0p0rV-P4lNo7xAe3rQSBHTubc50a-DFyOQmLGAkgkQ,12515
125
+ sglang-0.3.1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
126
+ sglang-0.3.1.dist-info/METADATA,sha256=QKZQ7PjuK22x_QlQy1LqPX6y4zLgJJ9FPoNNSkw3cEk,38125
127
+ sglang-0.3.1.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
128
+ sglang-0.3.1.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
129
+ sglang-0.3.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (74.1.1)
2
+ Generator: setuptools (74.1.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,118 +0,0 @@
1
- sglang/__init__.py,sha256=T8MYdFfKFPZcgFKHMBpOCIlFbhjwmr77Nqm6mdE6bCY,1590
2
- sglang/api.py,sha256=pH4CjwOXUweL5MF1sIkFMddDxfnF7PyUxEHC5kvNVbI,6468
3
- sglang/bench_latency.py,sha256=F7jMfKqMf1XFKJgkpR_yE33VJpsIhSr_SOJeRbngkb0,16758
4
- sglang/bench_serving.py,sha256=J_mMwnmDn0Jt07mzdGAuYOxpockHPLYJFL-kwoaqASY,36527
5
- sglang/check_env.py,sha256=rGRABCgt-0SfUrow4px28b2P59aMn8eVTnN5eZc_a8s,5397
6
- sglang/global_config.py,sha256=nwOjUflwqLQySPUMvk8Hk63TIS6mknh_ODSW3CZ1rJw,1704
7
- sglang/launch_server.py,sha256=FODfO0DW546dh-u1qDlWtrhsmj6hxkarXXv3cIdgkj8,549
8
- sglang/launch_server_llavavid.py,sha256=xnpSILJxsrbvqkERav5P26bErCQnhoTFmoKeScJltUA,1034
9
- sglang/utils.py,sha256=zxHwQhVxW_lWf-IH0wUw_pBTRLHLPypdRiU5M4XosMM,9669
10
- sglang/version.py,sha256=VrXpHDu3erkzwl_WXrqINBm9xWkcyUy53IQOj042dOs,22
11
- sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
- sglang/lang/chat_template.py,sha256=uqI_I9zIKXGXg7-W-yjqvx1ZeS_TuwFCms6wkmC2QmY,13411
13
- sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
14
- sglang/lang/compiler.py,sha256=o1C6G3TzhjSlsH-doTPy5oiVehr57dxNTa5oZw5TTAI,7639
15
- sglang/lang/interpreter.py,sha256=AC3tNNDwYfiu87jCldBWXYpFicCv6NMPJACMFEfCXu4,30331
16
- sglang/lang/ir.py,sha256=W3UfZikcGeT86PDDjDjw-yNzrKY2e2UYO4DTatMCfm0,17704
17
- sglang/lang/tracer.py,sha256=borJmlSJOhg1RUndGRnilnR60eEZz2Y9aU7BpftsOxU,8287
18
- sglang/lang/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
- sglang/lang/backend/anthropic.py,sha256=EXRX7xJgA5KZszX7toSLVnKzFQ5EO0Loj-YjHFtxSxg,2081
20
- sglang/lang/backend/base_backend.py,sha256=Q5HdiDtyBewQeoYH0kDtBRVL8KFiEPNq9dw7XmauHQ8,1985
21
- sglang/lang/backend/litellm.py,sha256=ugmL7sfUxkUHVbHtwNzHgdQAEd4UCjNQboFuE3KThcY,2450
22
- sglang/lang/backend/openai.py,sha256=qM7eVH_kMxnDd2rpxOH0v76KxtOJFlAwgLgWIKvFGCI,15060
23
- sglang/lang/backend/runtime_endpoint.py,sha256=hpezro0H6vG9KzLeKfYpPMwb4TaE0UanCIM0uG8Kdjw,9746
24
- sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
25
- sglang/srt/conversation.py,sha256=2KDNe1suUPy6xqSkCx2xcO3pDPxTwqx5FaUxaqwCJ-M,19525
26
- sglang/srt/hf_transformers_utils.py,sha256=5UXJ-LdP92Sk_T843M9BHdnxRrcyiYfWH2IEg3dWgKI,6085
27
- sglang/srt/mm_utils.py,sha256=zox644S3IHUWmADdK4MnIbdTS2DWHOy0_Dq0gCU38QQ,12273
28
- sglang/srt/model_config.py,sha256=68QQ8iUWQHPv01RBeH23mvay6iJg9DWmCogC_vUgFLk,6371
29
- sglang/srt/server.py,sha256=yi8prs9_M0P0dOInrQLkHKiZ-oTigk_uzW8otEHImbU,19846
30
- sglang/srt/server_args.py,sha256=GiDyPWCvYA_98mSE9LuvUoEodo9gRnNPPIPn0nFkxUs,18259
31
- sglang/srt/utils.py,sha256=JJOlqRPbN_tSSNWj63syQpfz4v7hUwNvzWvOUpBh9SM,23746
32
- sglang/srt/configs/__init__.py,sha256=292SuEorST-lAq2Uvsv2M7yC28uYZlssVvRDsF-bZCQ,86
33
- sglang/srt/configs/exaone.py,sha256=Duxd4yQoKy8GWEzZD_kCY_OzmN_67CTJL_Kgn0eXk3g,10731
34
- sglang/srt/constrained/__init__.py,sha256=NLpZGj9RIx83ejDrM_pfaRtqGgaPq_ggJszPQENUJ2E,2037
35
- sglang/srt/constrained/base_tool_cache.py,sha256=5sazBMHHDpHMoqOjuY6itCxwTmIFCflIWEDXMtmrPVs,2006
36
- sglang/srt/constrained/fsm_cache.py,sha256=wigJs9PeTt-vYPJQEeUZwEKl6MFIfb5xy8uIg18bDbM,3132
37
- sglang/srt/constrained/jump_forward.py,sha256=LWRsmGPQcH6KT87wXwCRqtblU3pcAVCEzO0nWPxevs0,6636
38
- sglang/srt/layers/activation.py,sha256=JEXNTgqxoiU4N-gVm4XMjobhft4JKDcMrgTkfpsRUzM,4856
39
- sglang/srt/layers/decode_attention.py,sha256=TPD_608ZX9fQ_HDImifkxG_qcEYmimbEYY8lCBIjFuM,16628
40
- sglang/srt/layers/extend_attention.py,sha256=XIXm3p2cvKrDg10Po4qYGaEkXJOJBtCIhTB_lTyjAFE,14390
41
- sglang/srt/layers/layernorm.py,sha256=RXuS4UyksatqTF6lSK7VYyEiUEnBiNIBlEn8q4w84UA,3404
42
- sglang/srt/layers/logits_processor.py,sha256=Zx4eFAkFlThPrmz_-HuCN9SqGLanARm0wdZSVDyASAc,13085
43
- sglang/srt/layers/pooler.py,sha256=qNMG3Ycvt2yf9mk1Lcs-2K7oPeCuVeDYoHAxkMu9b_Q,1610
44
- sglang/srt/layers/prefill_attention.py,sha256=y7vdcuX8lMa9Qf_jQYNDvQO9PVCBQSs3hb5LV2DFgpU,5256
45
- sglang/srt/layers/radix_attention.py,sha256=o5a8r3XQ-oRwaxBlAgzJGv7p3dMbu0LrYsDc4uvpPgA,8338
46
- sglang/srt/layers/sampler.py,sha256=zPVa3PHc-tjDM_oP-1XFeHSRIErx844SLoe6MG8Qef0,6418
47
- sglang/srt/layers/fused_moe/__init__.py,sha256=bWCrDdOy2ANEXTb8CHYO63O3Iu3eZnn0PJbgl0z5vvE,75
48
- sglang/srt/layers/fused_moe/fused_moe.py,sha256=1WM2cObWXcFWtqh_utGJFPnrT344rORwuQ9hJDaH2s0,23104
49
- sglang/srt/layers/fused_moe/layer.py,sha256=GT3r2UPx_PAufJd0SUMOXyh76ymAeYDubd0SM0H71bo,20977
50
- sglang/srt/managers/controller_multi.py,sha256=z3rguY1YYlSvVqLjKuurgJW1h0dxwPgIdPCQdJsVzYs,6478
51
- sglang/srt/managers/controller_single.py,sha256=5brrZ8vZxjvrSJHWrm5H3qGEZShN4EROG5r1o3pSjps,5124
52
- sglang/srt/managers/detokenizer_manager.py,sha256=yQkL5gLomLiy1qc6e9HNz8hcj7JQFHm1AfIrzpXaWJE,6852
53
- sglang/srt/managers/io_struct.py,sha256=Bd91cydX9_960NNP2xngqK-lsIaDB3oMYd56QddN4_Q,10722
54
- sglang/srt/managers/policy_scheduler.py,sha256=7HNUxBKJE444s_bHcPpbnHCygsnH-NIXYNSC2q6mRmc,8584
55
- sglang/srt/managers/schedule_batch.py,sha256=i68O-e9I_gDlme96xSBDjA2xDF1p-XBKvJRiJ9CsgcY,26423
56
- sglang/srt/managers/tokenizer_manager.py,sha256=8aHR5h9nYZsfdZE80uBc9egDFOQgKvjxmp-30Ha4ELk,29463
57
- sglang/srt/managers/tp_worker.py,sha256=4UuaBLzV6NMsG4XEIcpa4xMcOKIFvTan51ynKz85HXg,36842
58
- sglang/srt/mem_cache/base_prefix_cache.py,sha256=qEQwEkG4E5rab2ZoTqcesf5pR_J4nV2jBxIHsBJHtIM,924
59
- sglang/srt/mem_cache/chunk_cache.py,sha256=CjZZYlqQzq7mYOiBMLWA5XNb6HIyh5lIMdY-K0OUZEc,2368
60
- sglang/srt/mem_cache/flush_cache.py,sha256=pTLKPRB17U6vl5RFJJvuJ4jCL2SyomgkUBNlkDpGRqo,978
61
- sglang/srt/mem_cache/memory_pool.py,sha256=4br3Ea2bfA-YsF_sPOVHlF2zQzYGd8fVaYTp197yZsE,7871
62
- sglang/srt/mem_cache/radix_cache.py,sha256=0AVr1BKKDOtTyybUkwxrz6PT8khDx-DpzgN5MgL27IE,10088
63
- sglang/srt/model_executor/cuda_graph_runner.py,sha256=4vIUqVQpnHNhwWrokMVmGM4Dp5JFPHyXIvpEQsi2pNU,12862
64
- sglang/srt/model_executor/forward_batch_info.py,sha256=fSLhatN8vCgxn0Mft9D-r0pNi3SN0EQSTJmgaOtrqJc,16471
65
- sglang/srt/model_executor/model_runner.py,sha256=93YCStmZfdZlY0r-GGIVi0Xw66VwF77dEtGVmQf1VfU,23893
66
- sglang/srt/models/chatglm.py,sha256=PPOaeqipbkcsTUhMPbLb1HItWgW7KntefUfjEoMSxUM,13585
67
- sglang/srt/models/commandr.py,sha256=k86ykwWOlxLGaBbGUoMSaXngUxCbMVRbY5AoMOWpbU8,14377
68
- sglang/srt/models/dbrx.py,sha256=goLJ9Yt-9vxkwhCUFBidvP41H_dYTFsvrMZ4xm4FqGA,14875
69
- sglang/srt/models/deepseek.py,sha256=aYP6HUgxQbhcQGQEF4vX0ronBF8AirqIFG98EQn0YzY,16220
70
- sglang/srt/models/deepseek_v2.py,sha256=Htw_HDju9huYU5gBu2dqq6bKVao-AsifxfkGl2xRx-8,28521
71
- sglang/srt/models/exaone.py,sha256=ZFr0G0WITxg3dDfV_-vWqZpK_wMmiZi4r0vOT0gO9V4,13301
72
- sglang/srt/models/gemma.py,sha256=Ya_u2lKPKAc9iHEsW_HAEfCDgYTbxUOCzBI0LDuoOYs,12489
73
- sglang/srt/models/gemma2.py,sha256=MCmzzRAAafEQuQj6aGtB-TF4jH0RWrXcOPxSz6LRsXs,15137
74
- sglang/srt/models/gpt_bigcode.py,sha256=HEhMRO1Y37JfZtP7mDp0MexWj5h6XT9rKvxorOMKoQA,10409
75
- sglang/srt/models/grok.py,sha256=ZcJ4E11rKh-xo4k_j-H1XRreJWWv8yii-bMYC1lO2R8,15143
76
- sglang/srt/models/internlm2.py,sha256=VtWATs2eLIqbadYXTPY_vycFIstVk4zg3kxycA9H0Qw,12416
77
- sglang/srt/models/llama.py,sha256=MfDnlVWoJUG9DxgGYPiwhoU-0ZeRbhp6UmBR2ZAJSNk,13402
78
- sglang/srt/models/llama_classification.py,sha256=oSeROs633Gnak8vrbnWnCWDxfgP_zmKGO1A_43ukEQ4,4029
79
- sglang/srt/models/llama_embedding.py,sha256=RI2mpYheP5WwhuTINU-6IrU61usuMyCK9h2zDEyLW4g,3458
80
- sglang/srt/models/llava.py,sha256=OXmlOVIjFnMRKGwLweYB1N-xlfpZlTlZpqhsbwUCY6Y,23471
81
- sglang/srt/models/llavavid.py,sha256=4R2t8BZJKN85IrTLsLFb4yZuKVI2Cwp7kY8AJ-nEVoE,12012
82
- sglang/srt/models/minicpm.py,sha256=7RZEJ2TCqBL1JmMFVJ3J9DmZHRw0q90st49Wkh-sdL4,14039
83
- sglang/srt/models/mistral.py,sha256=tiYoKjyYVzlQl52QUZ33odD2yCxj9dxcqln474VuZOw,744
84
- sglang/srt/models/mixtral.py,sha256=KIsvruhXNq3Fwrs4_YE7J6fx54ObfnMuRNxgScE3Bmo,13830
85
- sglang/srt/models/mixtral_quant.py,sha256=O_97UKDYZokFhIBnamWfw0HLhln9_BUk_KfQ-sQnd8s,14286
86
- sglang/srt/models/qwen.py,sha256=geK88AyEyPbbDvMHJNY8XMSNpsCeu8g9kxnKyiJBpK4,10168
87
- sglang/srt/models/qwen2.py,sha256=WGYy3wcRY3f8Drd9I8GblXfv0bbHluRKVhnnhEZf584,12654
88
- sglang/srt/models/qwen2_moe.py,sha256=b0gd42GBWyvDmUu8BZbD9ZJO_ExbXBLQZRvu61UuXOA,17086
89
- sglang/srt/models/stablelm.py,sha256=9feHoiDEXSIe0WCrt4AfWXqxliJwRvr8w4XSnk6ipSI,11573
90
- sglang/srt/models/yivl.py,sha256=B6MELthWIm5KdSzX3o2tbbpApY8XdjUdmcQSD4dQe_I,4835
91
- sglang/srt/openai_api/adapter.py,sha256=3EeqASZXogpUkOP4xj7Rg_LfOLiIMUrZ9uFdeAy_pcc,50144
92
- sglang/srt/openai_api/protocol.py,sha256=onhnCjXpXCysvx_dLgOEmXz5XHHYB1t772cvHcK1GlY,9538
93
- sglang/srt/sampling/sampling_batch_info.py,sha256=CIoD0SzHSWCe7Wc4jkJj5vIPHGnOdfbgkC6fG5KQxOw,7551
94
- sglang/srt/sampling/sampling_params.py,sha256=ggOXxafqfCD-xrGYcM57byLZ79CIeBP4AD5F44L_CW0,5635
95
- sglang/srt/sampling/penaltylib/__init__.py,sha256=5vQw0Y5DSzmsoFg1IdMIKLwFVhYZ5ArADHVBYbSmOec,513
96
- sglang/srt/sampling/penaltylib/orchestrator.py,sha256=WkTNeDhj9H9rtp2ZZeX6MS2sdKSGlLboE6FcuKrwUo0,10815
97
- sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py,sha256=IvYioX53Vq_ji-0Zhcz_r5mUa3T3GaIydVS6K4FhWfE,2557
98
- sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py,sha256=XJZP0C4NFyXgcODbIWXxrgVEjmRgqLdZuVAtoN-LveY,3565
99
- sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py,sha256=0PlANTrR959foTA3Nj5qBE7ndaOZgG-9X6LhzlmEUc8,2533
100
- sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=v9jOgA0-I31WcrhIydiFbpy2ZJPLytFLGM98NRPd2sU,2820
101
- sglang/test/run_eval.py,sha256=NWxeLWmInBgkCvC9Jr_QzF7GfAiBve3Gf1JQrEOlNlU,3899
102
- sglang/test/runners.py,sha256=7N2g4vyqN98o6F0Lem5LUNAlW9ShEVxZxZuzSjmc0i4,7688
103
- sglang/test/simple_eval_common.py,sha256=r0G-9QLycs2ax3RMc44T_61fzMxlpTzv6pececC7lyY,12379
104
- sglang/test/simple_eval_gpqa.py,sha256=8Xt9Bw05c7SZTYrCZgB68OZUqUbLo69ywiyx0bTvSUk,3220
105
- sglang/test/simple_eval_humaneval.py,sha256=7lTi841NT58smNOtRwCedrdX9IWWypdLkOtaQOBy-GI,5687
106
- sglang/test/simple_eval_math.py,sha256=6kGKNwNbLN-Af3Wj8WTimWhH-Xp3enDmSvvSjsgWUpk,2550
107
- sglang/test/simple_eval_mgsm.py,sha256=wfbqJW9Rkc66vzq2fEMF6jchmoA8mw1OUiGU55cZ2B0,10261
108
- sglang/test/simple_eval_mmlu.py,sha256=FkwamjGMjueTixymkedF-YiPloSLiy4ftILFUrKZ9XI,4357
109
- sglang/test/test_activation.py,sha256=jkdNRzJnbd5OgZliQaIXpxovlcky17UrweomcOcMxoE,1442
110
- sglang/test/test_layernorm.py,sha256=IacByD5d-stXjzBz8Ypamc7povlcedpKPbb_4JLgo3c,3720
111
- sglang/test/test_programs.py,sha256=l21J8N91QTMO9TOvXPWNvPZVT0DgxYxOPHh1pOoFV_k,16927
112
- sglang/test/test_utils.py,sha256=3tt-BBv-lx7BT3whbVTMyRz6sh5jIbdBEbLZ08m2Ms8,15132
113
- sglang/test/srt/sampling/penaltylib/utils.py,sha256=-0p0rV-P4lNo7xAe3rQSBHTubc50a-DFyOQmLGAkgkQ,12515
114
- sglang-0.3.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
115
- sglang-0.3.0.dist-info/METADATA,sha256=muukBuN4kq_4mCG_r_RFY94pQliDcVh-WuXNMApXoak,37383
116
- sglang-0.3.0.dist-info/WHEEL,sha256=uCRv0ZEik_232NlR4YDw4Pv3Ajt5bKvMH13NUU7hFuI,91
117
- sglang-0.3.0.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
118
- sglang-0.3.0.dist-info/RECORD,,