sglang 0.2.5__py3-none-any.whl → 0.2.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (81) hide show
  1. sglang/__init__.py +33 -26
  2. sglang/api.py +9 -1
  3. sglang/bench_latency.py +2 -2
  4. sglang/bench_serving.py +10 -1
  5. sglang/check_env.py +1 -1
  6. sglang/lang/backend/litellm.py +1 -1
  7. sglang/lang/backend/openai.py +1 -1
  8. sglang/lang/backend/runtime_endpoint.py +4 -4
  9. sglang/lang/interpreter.py +24 -9
  10. sglang/lang/ir.py +1 -1
  11. sglang/srt/constrained/__init__.py +15 -0
  12. sglang/srt/constrained/base_cache.py +15 -0
  13. sglang/srt/constrained/fsm_cache.py +36 -1
  14. sglang/srt/constrained/jump_forward.py +15 -0
  15. sglang/srt/conversation.py +26 -0
  16. sglang/srt/hf_transformers_utils.py +18 -1
  17. sglang/srt/layers/context_flashattention_nopad.py +15 -0
  18. sglang/srt/layers/extend_attention.py +15 -0
  19. sglang/srt/layers/fused_moe.py +15 -0
  20. sglang/srt/layers/linear.py +15 -0
  21. sglang/srt/layers/logits_processor.py +109 -72
  22. sglang/srt/layers/quantization/__init__.py +15 -0
  23. sglang/srt/layers/quantization/fp8.py +15 -0
  24. sglang/srt/layers/radix_attention.py +21 -3
  25. sglang/srt/layers/token_attention.py +16 -1
  26. sglang/srt/managers/{controller/manager_multi.py → controller_multi.py} +17 -2
  27. sglang/srt/managers/{controller/manager_single.py → controller_single.py} +17 -2
  28. sglang/srt/managers/detokenizer_manager.py +16 -1
  29. sglang/srt/managers/io_struct.py +38 -5
  30. sglang/srt/managers/{controller/schedule_heuristic.py → policy_scheduler.py} +37 -22
  31. sglang/srt/managers/{controller/infer_batch.py → schedule_batch.py} +85 -25
  32. sglang/srt/managers/tokenizer_manager.py +99 -57
  33. sglang/srt/managers/{controller/tp_worker.py → tp_worker.py} +177 -81
  34. sglang/srt/mem_cache/flush_cache.py +33 -0
  35. sglang/srt/{memory_pool.py → mem_cache/memory_pool.py} +16 -1
  36. sglang/srt/{managers/controller → mem_cache}/radix_cache.py +15 -0
  37. sglang/srt/mm_utils.py +15 -0
  38. sglang/srt/model_config.py +20 -0
  39. sglang/srt/{managers/controller → model_executor}/cuda_graph_runner.py +42 -18
  40. sglang/srt/{managers/controller → model_executor}/model_runner.py +51 -16
  41. sglang/srt/model_loader/model_loader.py +15 -0
  42. sglang/srt/model_loader/utils.py +16 -1
  43. sglang/srt/models/chatglm.py +16 -1
  44. sglang/srt/models/commandr.py +16 -1
  45. sglang/srt/models/dbrx.py +16 -1
  46. sglang/srt/models/deepseek.py +16 -1
  47. sglang/srt/models/deepseek_v2.py +532 -0
  48. sglang/srt/models/gemma.py +16 -1
  49. sglang/srt/models/gemma2.py +16 -1
  50. sglang/srt/models/gpt_bigcode.py +16 -1
  51. sglang/srt/models/grok.py +16 -1
  52. sglang/srt/models/internlm2.py +16 -1
  53. sglang/srt/models/llama2.py +16 -1
  54. sglang/srt/models/llama_classification.py +19 -4
  55. sglang/srt/models/llava.py +17 -2
  56. sglang/srt/models/llavavid.py +17 -2
  57. sglang/srt/models/minicpm.py +16 -1
  58. sglang/srt/models/mistral.py +15 -0
  59. sglang/srt/models/mixtral.py +16 -1
  60. sglang/srt/models/mixtral_quant.py +16 -1
  61. sglang/srt/models/qwen.py +16 -1
  62. sglang/srt/models/qwen2.py +16 -1
  63. sglang/srt/models/qwen2_moe.py +16 -1
  64. sglang/srt/models/stablelm.py +16 -1
  65. sglang/srt/models/yivl.py +15 -0
  66. sglang/srt/openai_api/adapter.py +545 -160
  67. sglang/srt/openai_api/protocol.py +65 -1
  68. sglang/srt/sampling_params.py +20 -4
  69. sglang/srt/server.py +90 -37
  70. sglang/srt/server_args.py +76 -17
  71. sglang/srt/utils.py +15 -0
  72. sglang/test/test_programs.py +5 -1
  73. sglang/utils.py +22 -0
  74. sglang/version.py +1 -1
  75. {sglang-0.2.5.dist-info → sglang-0.2.7.dist-info}/METADATA +40 -12
  76. sglang-0.2.7.dist-info/RECORD +93 -0
  77. {sglang-0.2.5.dist-info → sglang-0.2.7.dist-info}/WHEEL +1 -1
  78. sglang/srt/flush_cache.py +0 -18
  79. sglang-0.2.5.dist-info/RECORD +0 -92
  80. {sglang-0.2.5.dist-info → sglang-0.2.7.dist-info}/LICENSE +0 -0
  81. {sglang-0.2.5.dist-info → sglang-0.2.7.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: sglang
3
- Version: 0.2.5
3
+ Version: 0.2.7
4
4
  Summary: SGLang is yet another fast serving framework for large language models and vision language models.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -245,11 +245,18 @@ Requires-Dist: outlines >=0.0.44 ; extra == 'srt'
245
245
 
246
246
  <div align="center">
247
247
  <img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
248
+
249
+ [![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
250
+ ![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
251
+ [![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
252
+ [![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
253
+ [![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
254
+
248
255
  </div>
249
256
 
250
257
  --------------------------------------------------------------------------------
251
258
 
252
- | [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) |
259
+ | [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) |
253
260
 
254
261
  SGLang is a fast serving framework for large language models and vision language models.
255
262
  It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
@@ -292,7 +299,8 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
292
299
 
293
300
  ### Method 2: From source
294
301
  ```
295
- git clone https://github.com/sgl-project/sglang.git
302
+ # Use the stable release branch
303
+ git clone -b release https://github.com/sgl-project/sglang.git
296
304
  cd sglang
297
305
 
298
306
  pip install --upgrade pip
@@ -341,7 +349,7 @@ curl http://localhost:30000/generate \
341
349
  }
342
350
  }'
343
351
  ```
344
- Learn more about the argument format [here](docs/sampling_params.md).
352
+ Learn more about the argument format [here](docs/en/sampling_params.md).
345
353
 
346
354
  ### OpenAI Compatible API
347
355
  In addition, the server supports OpenAI-compatible APIs.
@@ -388,7 +396,7 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
388
396
  ```
389
397
  python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
390
398
  ```
391
- - See [hyperparameter_tuning.md](docs/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
399
+ - See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
392
400
  - Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
393
401
  ```
394
402
  # Node 0
@@ -397,23 +405,24 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
397
405
  # Node 1
398
406
  python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
399
407
  ```
400
- - If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/custom_chat_template.md).
408
+ - If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
401
409
  - To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
402
410
  - To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
403
411
 
404
412
  ### Run Llama 3.1 405B
405
413
 
406
414
  ```bash
407
- # 2 nodes run 405B fp16
415
+ ## Run 405B (fp8) on a single node
416
+ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8
417
+
418
+ ## Run 405B (fp16) on two nodes
408
419
  # replace the `172.16.4.52:20000` with your own first node ip address and port, disable CUDA Graph temporarily
420
+
409
421
  # on the first node
410
422
  GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph --mem-frac 0.75
411
423
 
412
424
  # on the second
413
425
  GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph --mem-frac 0.75
414
-
415
- # single node run 405B fp8
416
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8
417
426
  ```
418
427
 
419
428
  ### Supported Models
@@ -422,6 +431,7 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instr
422
431
  - Mistral / Mixtral
423
432
  - Gemma / Gemma 2
424
433
  - Qwen / Qwen 2 / Qwen 2 MoE
434
+ - DeepSeek / DeepSeek 2
425
435
  - LLaVA 1.5 / 1.6
426
436
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
427
437
  - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
@@ -438,11 +448,11 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instr
438
448
  - InternLM 2
439
449
  - Mistral NeMo
440
450
 
441
- Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/model_support.md).
451
+ Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
442
452
 
443
453
  ### Benchmark Performance
444
454
 
445
- - Benchmark a single static batch. Run the following command without launching a server. The arguments are the same as those for `launch_server.py`.
455
+ - Benchmark a single static batch by running the following command without launching a server. The arguments are the same as those for `launch_server.py`. This is not a dynamic batching server, so it may run out of memory for a batch size that can run successfully with a real server. This is because a real server will truncate the prefill into several batches/chunks, while this unit test does not do this.
446
456
  ```
447
457
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
448
458
  ```
@@ -669,6 +679,24 @@ for out in state.text_iter():
669
679
  print(out, end="", flush=True)
670
680
  ```
671
681
 
682
+ #### Roles
683
+
684
+ Use `sgl.system`, `sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.
685
+
686
+ ```python
687
+ @sgl.function
688
+ def chat_example(s):
689
+ s += sgl.system("You are a helpful assistant.")
690
+ # Same as: s += s.system("You are a helpful assistant.")
691
+
692
+ with s.user():
693
+ s += "Question: What is the capital of France?"
694
+
695
+ s += sgl.assistant_begin()
696
+ s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
697
+ s += sgl.assistant_end()
698
+ ```
699
+
672
700
  #### Tips and Implementation Details
673
701
  - The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
674
702
  - The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
@@ -0,0 +1,93 @@
1
+ sglang/__init__.py,sha256=ECjvAWlxIwKtUIXGchfkoCIbF-iqLjH-Q0o8xHTlVNY,1352
2
+ sglang/api.py,sha256=s_P8BvGDCQ0PiqOapr2TLFge1NA7QmKqUx6bFQ8Q5GQ,5676
3
+ sglang/bench_latency.py,sha256=JPatRvstM3nXb-ViVgtR-TaRrFHpcHzqoDG7BQmRYK8,10539
4
+ sglang/bench_serving.py,sha256=6DK6Ps8y6-Eb9QlbGBRlhPRTseDqVIRoDreO5GDHZ64,34846
5
+ sglang/check_env.py,sha256=Eeb_20VetnlEFYSRcHFlNqt85lYUQN60NEtkoX7ahPA,4121
6
+ sglang/global_config.py,sha256=CyhGL7PE-KlMcg7IHWykzImU1y4NQlpeIlh9lHA77uo,1749
7
+ sglang/launch_server.py,sha256=Gg8CwNlTCCfg1dF65ZT9ePLxOT9LKtY79GhIPG6PCrU,358
8
+ sglang/launch_server_llavavid.py,sha256=40uaazMsavKuk6YXFa5v37kdUpFGuealgJJeph1g8gU,1025
9
+ sglang/utils.py,sha256=r0Z7hY_bFFk-b6WeQJir9br-hCW2-p7n5E7Et2WziaQ,8776
10
+ sglang/version.py,sha256=XHypfHSPdgXFKmOdoewn7czU670gt8InhHhzlP5j_aA,22
11
+ sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
+ sglang/lang/chat_template.py,sha256=psIlhaDo70twgLrx5Lgln03metLEA3-FZuixeI0Y7Ao,13309
13
+ sglang/lang/compiler.py,sha256=UiXUmPR9wBAPtnORrLcyQX8Uh0ZL0nKeV8ZgBozAJPw,7531
14
+ sglang/lang/interpreter.py,sha256=dt_NAAMv2oSYxwSMjhMr2pIGTe5_d12cSR91SUWvpCQ,30298
15
+ sglang/lang/ir.py,sha256=THa6hwnuTVXVYxnovNQP_o7A9v5O8uXE4eLXH9vDRLA,16648
16
+ sglang/lang/tracer.py,sha256=borJmlSJOhg1RUndGRnilnR60eEZz2Y9aU7BpftsOxU,8287
17
+ sglang/lang/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
+ sglang/lang/backend/anthropic.py,sha256=EXRX7xJgA5KZszX7toSLVnKzFQ5EO0Loj-YjHFtxSxg,2081
19
+ sglang/lang/backend/base_backend.py,sha256=APiMht4WYECLCOGRPCEUF6lX-an1vjVe2dWoMSgymWY,1831
20
+ sglang/lang/backend/litellm.py,sha256=ugmL7sfUxkUHVbHtwNzHgdQAEd4UCjNQboFuE3KThcY,2450
21
+ sglang/lang/backend/openai.py,sha256=6ww2rwKouWgtmjaCf4hk-kXXJ6bY6n9Xnbm3UTFZvl4,14808
22
+ sglang/lang/backend/runtime_endpoint.py,sha256=6iW1S62KmYyQGiWsHJFhZidK01vlIE55IsYN2tP38WQ,9202
23
+ sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
24
+ sglang/srt/conversation.py,sha256=V5YuoeO6-aLqGv0p3J2qx8TnBJbN1oTopYFutNul3GQ,16491
25
+ sglang/srt/hf_transformers_utils.py,sha256=Fg-3panb6lsqOhHmAYA0ivkXyBjdnvY5mqvilDv2xF4,11919
26
+ sglang/srt/mm_utils.py,sha256=n7_GmbOM_0IWVXovpM34rKIBw0Py9yb_NXSQw27u4OA,9454
27
+ sglang/srt/model_config.py,sha256=DO7m84WiT3dzPWmyKz_UXDAHEdqEjq8Lq5wCjzjYMME,6023
28
+ sglang/srt/sampling_params.py,sha256=uZFDlTUPnNR5_3IDH-INDeN-tm6LlRkC2KT-B3njxJs,3687
29
+ sglang/srt/server.py,sha256=2qgluP7_6-e36PDK_mr-rLK9us3_9KvXLG3255h-tS4,16022
30
+ sglang/srt/server_args.py,sha256=0cV-r5QTV_9Arl3hVf9mc20BlOhYhWSkICU0T3dS180,15412
31
+ sglang/srt/utils.py,sha256=uIatocIFzqi6fWSscz2MjF3jUcIRBJlqLgYeicM_W9s,22950
32
+ sglang/srt/constrained/__init__.py,sha256=NLpZGj9RIx83ejDrM_pfaRtqGgaPq_ggJszPQENUJ2E,2037
33
+ sglang/srt/constrained/base_cache.py,sha256=Aeu2HMPhXMPNQNEwPJ19sECN0PYPZKjisrZiCcocHiw,1970
34
+ sglang/srt/constrained/fsm_cache.py,sha256=Q7wfGx7VOghErqcC_0kK4aI-lBEO9TxoFPyUiBxEGVE,2626
35
+ sglang/srt/constrained/jump_forward.py,sha256=SYKj5Pd3d7oym5fAI8zUzj3zKk-lV30m_ksAy0ubgO8,6180
36
+ sglang/srt/layers/context_flashattention_nopad.py,sha256=r_TpHuYAVgq1pN81PiWe1bebtY-p9MBndBaoIE2VXrk,5180
37
+ sglang/srt/layers/extend_attention.py,sha256=zuNnAdL_wF6BX0Mwn1dgDJvh3YJjYwqa5Fbzp8muOVc,12573
38
+ sglang/srt/layers/fused_moe.py,sha256=KmyXwau2OOZpQimGIQrHptzGNs1trIud5AKEEKXdzPU,20823
39
+ sglang/srt/layers/linear.py,sha256=3Se2FRXyqXcd-uvNx2b7s-jolsUTEVeYBMYHmV82wPw,34518
40
+ sglang/srt/layers/logits_processor.py,sha256=JE0NYlQniy9wmPeIKs3QbYbpaXqAoNtVdEPkV_qt59I,11076
41
+ sglang/srt/layers/radix_attention.py,sha256=tdA-kdd9LQY1wbw3iYuy-9cikVJYmy3EctwAlUfN-Uo,6945
42
+ sglang/srt/layers/token_attention.py,sha256=ylUqUnozJCCohxTGAiiP3sxgUrcXfEVic8-qgcHYDj4,7968
43
+ sglang/srt/layers/quantization/__init__.py,sha256=JMlgE-FWS759lfQ9Uc6mGFqBbTFLlvKeVEFpZLATe14,2536
44
+ sglang/srt/layers/quantization/fp8.py,sha256=GQOLeGbrcUfwO-7oClzDda0RXGPHR70ZXUHArZsa174,25511
45
+ sglang/srt/managers/controller_multi.py,sha256=LYI-XE9h57DW8Uh4gpd8upsC3p2dd5weKzddEH274jg,6626
46
+ sglang/srt/managers/controller_single.py,sha256=CdQ9_XPZdcWF5jArDmVR8K-WZ9_8Gpgk4SwANKxTX-Y,5112
47
+ sglang/srt/managers/detokenizer_manager.py,sha256=GXWdW4n2N-otL3zcgdr0t1PcEe2EmQJA8AElntiNV1o,5606
48
+ sglang/srt/managers/io_struct.py,sha256=Rz7Ur9Yw6prDGdy6XjsSiUmVBccS6cef-G_9TW7HA_4,7105
49
+ sglang/srt/managers/policy_scheduler.py,sha256=ajSB-gCC6VJkXvnKU8FYU3Kgcigozp2pMTwF84Wp14o,3138
50
+ sglang/srt/managers/schedule_batch.py,sha256=tbos5i4KSfk1K8VH5HCNm2pQGlJMKVAE_mZ8haVMelc,36620
51
+ sglang/srt/managers/tokenizer_manager.py,sha256=tEct3shjjw_7ickj_cmt9IxoBHfgbryQHI7DZS0m4TA,20511
52
+ sglang/srt/managers/tp_worker.py,sha256=91gbWi7hSuyTC3Qvo7EXKmHM6GKWTK0Nqpda001jOw0,34349
53
+ sglang/srt/mem_cache/flush_cache.py,sha256=pTLKPRB17U6vl5RFJJvuJ4jCL2SyomgkUBNlkDpGRqo,978
54
+ sglang/srt/mem_cache/memory_pool.py,sha256=wkhjyYLbAZrl2FB5i4ODkxgMufBuDpe4N0kbXhu6ZO0,4509
55
+ sglang/srt/mem_cache/radix_cache.py,sha256=Xk0c8nwyPHEUsobVJQrr7edwyzUMk9MBYTQBprN8a0Y,8775
56
+ sglang/srt/model_executor/cuda_graph_runner.py,sha256=OdmO6R7nHWrRJCtZOxYkt0KNdGoX7Md4knsypwPYjaQ,9365
57
+ sglang/srt/model_executor/model_runner.py,sha256=WyPsO73MD3ziKAk76j4HemePYZluXjs9WGYeajUgfQA,15507
58
+ sglang/srt/model_loader/model_loader.py,sha256=QmZUhHh1nmWrfYlunfnxMcTsIvip1l6aMIlrXoCED4I,10697
59
+ sglang/srt/model_loader/utils.py,sha256=0AoWXX9uV5rKRYXJ4HduSnvdeerytI4ONCLCH6X4XFQ,10675
60
+ sglang/srt/models/chatglm.py,sha256=vYWooqyPmcSFZNjxj_g5I_FgHJlDytbEiz6vyv3JBNM,13856
61
+ sglang/srt/models/commandr.py,sha256=gaTI77hgitPlcUNyxMEdGu_XZQj2DuAMnh3KbZQ9HFg,14166
62
+ sglang/srt/models/dbrx.py,sha256=LQu7I2KH-XzY9iBlaK7IQsM1o3kzsuI1vTCspK2C19o,14655
63
+ sglang/srt/models/deepseek.py,sha256=adr57ZX6aPOBOpmvm7YIvoqo6u0jdrKJPZ8SGcVXAh8,16014
64
+ sglang/srt/models/deepseek_v2.py,sha256=9CORl-IroSguYPX3wz_aGe7mFoUE7cQRMs7CgbkBYLk,20087
65
+ sglang/srt/models/gemma.py,sha256=PMPI1-WLuLdk6e7u6I9d_LoCkauLkWY3aOP8MFEZ-sI,12279
66
+ sglang/srt/models/gemma2.py,sha256=kTjZcsptgtYaO8BL_NlygjVSMSloq2Mc4Rf3FKvEhbs,16420
67
+ sglang/srt/models/gpt_bigcode.py,sha256=U7GmHKywSu12D-EwvuWv3RwHkx6bPawaRIjlFIpQkfs,10194
68
+ sglang/srt/models/grok.py,sha256=NfZdsRVErDIUWFqjhtNf2pqC9G4cRdYHBFpgDq1IZ2A,27855
69
+ sglang/srt/models/internlm2.py,sha256=Ld2GUxZeqqqJ2vd4QiX2s1y2AceJLA1nVnUYY88GMQk,12219
70
+ sglang/srt/models/llama2.py,sha256=zhoCUh_3dNC7FOzDnaoHcHF3-y7vTVYDZzHKqIsUJgs,14764
71
+ sglang/srt/models/llama_classification.py,sha256=4r_orFZqBR3U_yC4bus1K3Z3-ADscYGSzgA82_VDN0g,4926
72
+ sglang/srt/models/llava.py,sha256=BJphgyQGdo7uTpJcKGEfWwdpH9GTMDnyiznLSSgmvm8,18476
73
+ sglang/srt/models/llavavid.py,sha256=-7vaVqaIfukCvMkNakEPblpwjIHC6ezrAvmpE5RzlUY,13602
74
+ sglang/srt/models/minicpm.py,sha256=Mj-dbhfN7li7cTEP-0sV7i5PSYkMGIaYCqRU7eDc-BY,13837
75
+ sglang/srt/models/mistral.py,sha256=jlrWBVNXbAUziAaIdHAjFcOJnKtn9Bl8rBd65ypJM-I,819
76
+ sglang/srt/models/mixtral.py,sha256=QiswCUdZ4VwMghtrr_vGP_dkzxSCrcUIcBgjlOZh_Ao,21391
77
+ sglang/srt/models/mixtral_quant.py,sha256=I1sIdistZHw7GO35qvlteA16DGVtME5rvEVV86v0-7Y,14216
78
+ sglang/srt/models/qwen.py,sha256=xAtlWyhMkcfwocRqzZoH01qKbkohXxAf4tnkPh0xtpM,10000
79
+ sglang/srt/models/qwen2.py,sha256=mXlVd6UTCXY3VdgodFpQnlaY-NYLIbA-SknxdA9R13w,12278
80
+ sglang/srt/models/qwen2_moe.py,sha256=YYdJEezic7GyW-_bXlNIaqBa0C4IHQpz_vuRBLxms4k,18141
81
+ sglang/srt/models/stablelm.py,sha256=b3d-ZwLQoLjZ6CupnkIq7d-z9tzGSxAyIcgSmZiZxZw,11362
82
+ sglang/srt/models/yivl.py,sha256=p4s_D_m4H2exP4b91Y-CTkq8T-eIG3DJsFy9pB0e7TM,4932
83
+ sglang/srt/openai_api/adapter.py,sha256=Jn8Awi93zkb3Wq5gqK698kOhmqYdtxZlRePciA50Ud4,30213
84
+ sglang/srt/openai_api/protocol.py,sha256=_mBNdxb_4ZRIeP0wmW8tMTc2x7zu4foVxBDCuCWkaiw,7822
85
+ sglang/test/test_conversation.py,sha256=gF_AyOxQgpPQBPnA57-kq-M0p_zFu-rBDMFgAq655Rw,1596
86
+ sglang/test/test_openai_protocol.py,sha256=DVx3r6hrb8oRqbo5AYIleldxbqMBTtb-gtORM6t_Y1c,1661
87
+ sglang/test/test_programs.py,sha256=s4WGpTmYP4Yx5g8JYZpbkeF9RN5iUnlKdi8FGAZovTc,13756
88
+ sglang/test/test_utils.py,sha256=kD_fQe3WroZ9Kc3NBRKPiZOFJ_JD2uEE9XIvPp6AD9Y,11048
89
+ sglang-0.2.7.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
90
+ sglang-0.2.7.dist-info/METADATA,sha256=NU4S55-t6q87AKPkgbDORvX_Om0XbAJ9K67_p30JnQ0,33216
91
+ sglang-0.2.7.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
92
+ sglang-0.2.7.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
93
+ sglang-0.2.7.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (71.1.0)
2
+ Generator: setuptools (72.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
sglang/srt/flush_cache.py DELETED
@@ -1,18 +0,0 @@
1
- """
2
- Flush the KV cache.
3
-
4
- Usage:
5
- python3 -m sglang.srt.flush_cache --url http://localhost:30000
6
- """
7
-
8
- import argparse
9
-
10
- import requests
11
-
12
- if __name__ == "__main__":
13
- parser = argparse.ArgumentParser()
14
- parser.add_argument("--url", type=str, default="http://localhost:30000")
15
- args = parser.parse_args()
16
-
17
- response = requests.get(args.url + "/flush_cache")
18
- assert response.status_code == 200
@@ -1,92 +0,0 @@
1
- sglang/__init__.py,sha256=UV7VlXhXrwi00Zg45iNB9KcnmrwLjdMtjMz06AiafY0,1151
2
- sglang/api.py,sha256=1JARbc1wNYF6tODdUpgmNgTyLOvMnxdTBctLvEwzGTY,5565
3
- sglang/bench_latency.py,sha256=UPy6WhrddMTDX7HqIeHNhCn5vF0YMOKxJlQRvhMC8zU,10552
4
- sglang/bench_serving.py,sha256=UWhTENnoATPJo3nk59Ktr73CwZgiY_MGaRY6TQk0ozI,34584
5
- sglang/check_env.py,sha256=CscuPMlf68dkgZf0m-FiLpUisNNDoihMck4qhLOeV1Q,4124
6
- sglang/global_config.py,sha256=CyhGL7PE-KlMcg7IHWykzImU1y4NQlpeIlh9lHA77uo,1749
7
- sglang/launch_server.py,sha256=Gg8CwNlTCCfg1dF65ZT9ePLxOT9LKtY79GhIPG6PCrU,358
8
- sglang/launch_server_llavavid.py,sha256=40uaazMsavKuk6YXFa5v37kdUpFGuealgJJeph1g8gU,1025
9
- sglang/utils.py,sha256=arJuwOAEX445M2NL9SAOi6jBNu0-cfU04PLAr-hIH3U,8168
10
- sglang/version.py,sha256=Xsa3ayOMVkhUWm4t06YeyHE0apjpZefxLH4ylp0CDtU,22
11
- sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
- sglang/lang/chat_template.py,sha256=psIlhaDo70twgLrx5Lgln03metLEA3-FZuixeI0Y7Ao,13309
13
- sglang/lang/compiler.py,sha256=UiXUmPR9wBAPtnORrLcyQX8Uh0ZL0nKeV8ZgBozAJPw,7531
14
- sglang/lang/interpreter.py,sha256=27j7H9p7TY4uUfF9f5E17FxK1xCNeNju4aut_PaWCrQ,29693
15
- sglang/lang/ir.py,sha256=5VVK2JnbspdysrhcGgkmp_JlAprd2XqqRnS_GfP_XWc,16645
16
- sglang/lang/tracer.py,sha256=borJmlSJOhg1RUndGRnilnR60eEZz2Y9aU7BpftsOxU,8287
17
- sglang/lang/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
- sglang/lang/backend/anthropic.py,sha256=EXRX7xJgA5KZszX7toSLVnKzFQ5EO0Loj-YjHFtxSxg,2081
19
- sglang/lang/backend/base_backend.py,sha256=APiMht4WYECLCOGRPCEUF6lX-an1vjVe2dWoMSgymWY,1831
20
- sglang/lang/backend/litellm.py,sha256=QsaLRh0KVyuaxRZGAvLOdCCSStIMs-V0XyMX0PR6y0w,2452
21
- sglang/lang/backend/openai.py,sha256=-ScfI2TFALB_FTYBur9ab0gNYxK1ogHkhdLxX19t6-Y,14808
22
- sglang/lang/backend/runtime_endpoint.py,sha256=TZ0NV89or5_3MIZZFnc1JXAAjnv7tCfeQmHDla8R0e0,9208
23
- sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
24
- sglang/srt/conversation.py,sha256=Il7JJuu4o42k2xdBWVfONNmstTsAM-4idX6AcEOnrXQ,15526
25
- sglang/srt/flush_cache.py,sha256=SJsbZnmDhH-gb9ch3hIwnI_nuwaOLlKvlXADyLBGENk,403
26
- sglang/srt/hf_transformers_utils.py,sha256=94mOI93B2xOmXKqfJfEoGxqHgwwlWNbPHgsA47AQJK8,11245
27
- sglang/srt/memory_pool.py,sha256=FhJk5GtYortO3MJIsMMQ-o49agwDHVX1aEQH2LITq6c,3949
28
- sglang/srt/mm_utils.py,sha256=OptgAHDX-73Bk4jAdr2BOAJtiEXJNzPrMhaM-dy275c,8889
29
- sglang/srt/model_config.py,sha256=lZu1D-XLVMETHS6FBMoPn8Uowa9QFGe95d3SuWrr2q8,5282
30
- sglang/srt/sampling_params.py,sha256=OI11asr1Bd_E5soDjih614v4flgWxdMZU9HAF0aBafQ,3062
31
- sglang/srt/server.py,sha256=IUed6vnXCx7-xbrpEMAaJZ_aa4UubPAQ5pXvcv-xNoY,14607
32
- sglang/srt/server_args.py,sha256=aF6L35mEB-FU3BL_ooKuCIcOXLhYLxA9-MjpaOTQRCo,13189
33
- sglang/srt/utils.py,sha256=HvKkGbut8sOxMpGIzYsJ9NEZJg48LOnxyGESaGZmANs,22385
34
- sglang/srt/constrained/__init__.py,sha256=5LB3_mDTMW6wcRkFA5J2Rd5HPHHEKRyiELhe4gtlBYM,1472
35
- sglang/srt/constrained/base_cache.py,sha256=QQjmFEiT8jlOskJoZobhrDl2TKB-B4b1LPQo9JQCP_w,1405
36
- sglang/srt/constrained/fsm_cache.py,sha256=P4qNDHHxpKpTnYL_8V1R6OFXlUwbM6ZcBdzddpcBgb4,1135
37
- sglang/srt/constrained/jump_forward.py,sha256=s60jZ7Ue8zaodgQm7gDpN6pSedpvpUck_waJALUMj60,5615
38
- sglang/srt/layers/context_flashattention_nopad.py,sha256=7ps_9W_ia9zikL9HqsSUwWHyBVotywosE-dOiPtaGY8,4615
39
- sglang/srt/layers/extend_attention.py,sha256=aYAAL9HZJpaSASp-ulMvbmSmyMcqdYUsgVQC-Lbm7_U,12008
40
- sglang/srt/layers/fused_moe.py,sha256=uyrbCaIHioq3G00xQUrCo53hYDoHzk5rep3Eji3oQiQ,20258
41
- sglang/srt/layers/linear.py,sha256=qLwFkOiRAljzE7LkAkLRdcCdVMk-t7b56jEjwQAuYDM,33953
42
- sglang/srt/layers/logits_processor.py,sha256=KyRYANCiq9Cfu_VPjrIbSBAlqN_clcAgF3JrG9waU5k,9674
43
- sglang/srt/layers/radix_attention.py,sha256=A3J_wOlysjblFXHgehAqRHBQmpYAHLyUovyLFsrMJ7A,6386
44
- sglang/srt/layers/token_attention.py,sha256=EJ4gjbVLfshOZ_vr1iB-Eq8_B-4F26n_wPDj6e1Zrww,7386
45
- sglang/srt/layers/quantization/__init__.py,sha256=PQFzdPpul98DvywBA6YMBOnrMjtHE1LMlMpJ7FM8J3I,1971
46
- sglang/srt/layers/quantization/fp8.py,sha256=jaqgRFnHC--IL8iqB6Qygi-KXYPYBKKqt_j4Rk55_h4,24946
47
- sglang/srt/managers/detokenizer_manager.py,sha256=8rN2cdMr61LWy07lingEqLnNy0W5Rebdn14IsTQ9PCs,5049
48
- sglang/srt/managers/io_struct.py,sha256=VHy9wdZ3sfZA7fS6iq8lqbxdHL5WkBZNqxpacyZ8_8c,5483
49
- sglang/srt/managers/tokenizer_manager.py,sha256=SbivhFhZUR9HU9pLTe93MlYprAFAHzOU3KMBA2piQUk,19308
50
- sglang/srt/managers/controller/cuda_graph_runner.py,sha256=0aRqA1_34oJ557Zn8PjpJecex5bBWJdnCmBlcDVvYO0,8509
51
- sglang/srt/managers/controller/infer_batch.py,sha256=SKwCwhnZ_CNlG0mVCEc4X0e4HNjJFke-c8zdWP3TzjQ,34186
52
- sglang/srt/managers/controller/manager_multi.py,sha256=DT8Y9RF5OyTxlrLEZYz4claNWir3UrVztdOZaVPiA6g,6077
53
- sglang/srt/managers/controller/manager_single.py,sha256=2xO_iWK6tWvc0B31nKbe2N3klxwQBJmPTnFhNjzhVSI,4566
54
- sglang/srt/managers/controller/model_runner.py,sha256=4-nBd9_MgIlamjEdLZDepBEykYNR8nL-65Sf1EYsnx0,14371
55
- sglang/srt/managers/controller/radix_cache.py,sha256=tx8LEQpqLxipw9UUVj4D1YQLMMDmWnjDYv8oDlOl-co,8210
56
- sglang/srt/managers/controller/schedule_heuristic.py,sha256=SQAGzPS3aB_TPj7rnPBhewwyR6W1sVwW4D3zG3JUY00,2714
57
- sglang/srt/managers/controller/tp_worker.py,sha256=yjz-Xzl0zEy4QSU-EYneZH5vi3oHtBuXTtYe4VuDp2g,30517
58
- sglang/srt/model_loader/model_loader.py,sha256=VS8VQL5ITN3akZ9eU_-uHWMan1axLMNG2_O12HzGysA,10132
59
- sglang/srt/model_loader/utils.py,sha256=I2PS5HIH5Cg-p7xKO_Cw_foK2vQ61xVc3zQv7CbeGEw,10120
60
- sglang/srt/models/chatglm.py,sha256=pH8g2Dj8qQLGPYpWVTb-IONfXsdfmpWi0-IEYNdSi4s,13296
61
- sglang/srt/models/commandr.py,sha256=hHsNQWi0X8rNL7_gpcoUxQxdhxtvx5_RVx8u6cLzqYQ,13606
62
- sglang/srt/models/dbrx.py,sha256=rRxOusGPu670ommeqXg62AllwB1apzE4yZoWc1fcr2M,14095
63
- sglang/srt/models/deepseek.py,sha256=YtoPmv4fKmiH_jsRMSab9Wxq3aOZga9pCPGnkCs3Vvs,15457
64
- sglang/srt/models/gemma.py,sha256=DweoalfWYhLL-ZWLAO5gl4SCZflWmejVeDG3Vky_WNo,11719
65
- sglang/srt/models/gemma2.py,sha256=x3Dua-TVwRm5fJjo5UDekdoWqwt9xYbMuB-ogfXyiT8,15860
66
- sglang/srt/models/gpt_bigcode.py,sha256=XHO1naPdXfiKYQRQ6uZe1fN3PBDhKH3-bchsaaZvfE4,9637
67
- sglang/srt/models/grok.py,sha256=611zrlIchvFaVfztRdBY7z97oU3KB-anykbOZy1hK6M,27295
68
- sglang/srt/models/internlm2.py,sha256=8MNcwxU5Th9IxWa314HqqmbCRlPUFScnfneBDs0riIU,11659
69
- sglang/srt/models/llama2.py,sha256=OyAf_lun5aZEsT80WmrIYBF8QXTXRpW8sUlylr4AZIc,14204
70
- sglang/srt/models/llama_classification.py,sha256=foCPvNyP2bTZ0YcRBF-qkmBv-gT24lhLNCXP30Oq4VU,4370
71
- sglang/srt/models/llava.py,sha256=vBI6EEeOG_9o23Shi9h8k58rxTOHZnSKMmPl3B3Q3uc,17924
72
- sglang/srt/models/llavavid.py,sha256=SrNQ-U2wekHvP_up-ZXRkCSros2NzheHpPfXHrp0YBU,13050
73
- sglang/srt/models/minicpm.py,sha256=9uE8D-NopAj-sfaKJ7d-0x-PuCTEevQPoHPZvZlwstA,13277
74
- sglang/srt/models/mistral.py,sha256=XSn7fiZqspyWVTYrpVAacAnWdwAybBtyn9-Sh9AvMTM,254
75
- sglang/srt/models/mixtral.py,sha256=LWOIu3okC_30RWTy2Yh2xDjQzbiEBMEpZquleDMU1Y8,20831
76
- sglang/srt/models/mixtral_quant.py,sha256=ObxdI5thDuy-7ljLMwWdmkuirhI1ESoA_h_mTYE5BE4,13656
77
- sglang/srt/models/qwen.py,sha256=AUf9L6tkdFXn6VTlBariplMH7yM-o96JH0xLLoM4YgI,9440
78
- sglang/srt/models/qwen2.py,sha256=87Tt1Bti-Py3AGudcf7k5ni-OHhtDKPj_Hke44YGw4U,11718
79
- sglang/srt/models/qwen2_moe.py,sha256=oHNoo45myV5kitkls2GWVzuGt1Q4pRHN2nLlXEltFI8,17581
80
- sglang/srt/models/stablelm.py,sha256=Z_XCDSHY_QMz3lZwwkZdIZjEOizZjLYJU9GDi8o08qQ,10802
81
- sglang/srt/models/yivl.py,sha256=55KPrQ-dVplI0hh2WCSugjc1luE0J2UAafjZxu_7Xuc,4367
82
- sglang/srt/openai_api/adapter.py,sha256=A0IG9ZKEMkkYCsLrVEspnVWzZHBUbc1vHv747LrF8ew,15920
83
- sglang/srt/openai_api/protocol.py,sha256=j7ifIR2SFQxTwaHAd9ksM096vfffcNltzTH4sg7H0RA,5739
84
- sglang/test/test_conversation.py,sha256=gF_AyOxQgpPQBPnA57-kq-M0p_zFu-rBDMFgAq655Rw,1596
85
- sglang/test/test_openai_protocol.py,sha256=DVx3r6hrb8oRqbo5AYIleldxbqMBTtb-gtORM6t_Y1c,1661
86
- sglang/test/test_programs.py,sha256=uefeHUFKT2NJESOujj-CsnPXdw1aQQN2TzUbPCHJjGs,13654
87
- sglang/test/test_utils.py,sha256=kD_fQe3WroZ9Kc3NBRKPiZOFJ_JD2uEE9XIvPp6AD9Y,11048
88
- sglang-0.2.5.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
89
- sglang-0.2.5.dist-info/METADATA,sha256=4Z5MwXfQgcYh4Gm39qyVUaafvApHVnafS0tVqf1gr8g,31692
90
- sglang-0.2.5.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
91
- sglang-0.2.5.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
92
- sglang-0.2.5.dist-info/RECORD,,