sglang 0.2.15__py3-none-any.whl → 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (81) hide show
  1. sglang/bench_latency.py +10 -6
  2. sglang/bench_serving.py +33 -38
  3. sglang/global_config.py +0 -4
  4. sglang/lang/backend/runtime_endpoint.py +13 -6
  5. sglang/lang/interpreter.py +1 -1
  6. sglang/launch_server.py +3 -6
  7. sglang/launch_server_llavavid.py +7 -8
  8. sglang/srt/{model_config.py → configs/model_config.py} +5 -0
  9. sglang/srt/constrained/__init__.py +2 -0
  10. sglang/srt/constrained/fsm_cache.py +29 -38
  11. sglang/srt/constrained/jump_forward.py +0 -1
  12. sglang/srt/conversation.py +4 -1
  13. sglang/srt/hf_transformers_utils.py +2 -4
  14. sglang/srt/layers/attention_backend.py +480 -0
  15. sglang/srt/layers/flashinfer_utils.py +235 -0
  16. sglang/srt/layers/logits_processor.py +64 -77
  17. sglang/srt/layers/radix_attention.py +11 -161
  18. sglang/srt/layers/sampler.py +40 -35
  19. sglang/srt/layers/torchao_utils.py +75 -0
  20. sglang/srt/layers/{decode_attention.py → triton_attention/decode_attention.py} +67 -63
  21. sglang/srt/layers/{extend_attention.py → triton_attention/extend_attention.py} +40 -132
  22. sglang/srt/layers/{prefill_attention.py → triton_attention/prefill_attention.py} +13 -7
  23. sglang/srt/lora/lora.py +403 -0
  24. sglang/srt/lora/lora_config.py +43 -0
  25. sglang/srt/lora/lora_manager.py +256 -0
  26. sglang/srt/managers/controller_multi.py +1 -5
  27. sglang/srt/managers/controller_single.py +0 -5
  28. sglang/srt/managers/io_struct.py +16 -1
  29. sglang/srt/managers/policy_scheduler.py +122 -5
  30. sglang/srt/managers/schedule_batch.py +110 -74
  31. sglang/srt/managers/tokenizer_manager.py +24 -15
  32. sglang/srt/managers/tp_worker.py +181 -115
  33. sglang/srt/model_executor/cuda_graph_runner.py +60 -133
  34. sglang/srt/model_executor/forward_batch_info.py +35 -312
  35. sglang/srt/model_executor/model_runner.py +118 -141
  36. sglang/srt/models/baichuan.py +416 -0
  37. sglang/srt/models/chatglm.py +6 -8
  38. sglang/srt/models/commandr.py +1 -5
  39. sglang/srt/models/dbrx.py +1 -5
  40. sglang/srt/models/deepseek.py +1 -5
  41. sglang/srt/models/deepseek_v2.py +1 -5
  42. sglang/srt/models/exaone.py +8 -43
  43. sglang/srt/models/gemma.py +1 -5
  44. sglang/srt/models/gemma2.py +1 -5
  45. sglang/srt/models/gpt_bigcode.py +1 -5
  46. sglang/srt/models/grok.py +1 -5
  47. sglang/srt/models/internlm2.py +1 -5
  48. sglang/srt/models/{llama2.py → llama.py} +48 -26
  49. sglang/srt/models/llama_classification.py +14 -40
  50. sglang/srt/models/llama_embedding.py +7 -6
  51. sglang/srt/models/llava.py +38 -16
  52. sglang/srt/models/llavavid.py +7 -8
  53. sglang/srt/models/minicpm.py +1 -5
  54. sglang/srt/models/minicpm3.py +665 -0
  55. sglang/srt/models/mistral.py +2 -3
  56. sglang/srt/models/mixtral.py +6 -5
  57. sglang/srt/models/mixtral_quant.py +1 -5
  58. sglang/srt/models/qwen.py +1 -5
  59. sglang/srt/models/qwen2.py +1 -5
  60. sglang/srt/models/qwen2_moe.py +6 -5
  61. sglang/srt/models/stablelm.py +1 -5
  62. sglang/srt/models/xverse.py +375 -0
  63. sglang/srt/models/xverse_moe.py +445 -0
  64. sglang/srt/openai_api/adapter.py +65 -46
  65. sglang/srt/openai_api/protocol.py +11 -3
  66. sglang/srt/sampling/sampling_batch_info.py +67 -58
  67. sglang/srt/server.py +24 -14
  68. sglang/srt/server_args.py +130 -28
  69. sglang/srt/utils.py +12 -0
  70. sglang/test/few_shot_gsm8k.py +132 -0
  71. sglang/test/runners.py +114 -22
  72. sglang/test/test_programs.py +70 -0
  73. sglang/test/test_utils.py +89 -1
  74. sglang/utils.py +38 -4
  75. sglang/version.py +1 -1
  76. {sglang-0.2.15.dist-info → sglang-0.3.1.dist-info}/METADATA +31 -18
  77. sglang-0.3.1.dist-info/RECORD +129 -0
  78. {sglang-0.2.15.dist-info → sglang-0.3.1.dist-info}/WHEEL +1 -1
  79. sglang-0.2.15.dist-info/RECORD +0 -118
  80. {sglang-0.2.15.dist-info → sglang-0.3.1.dist-info}/LICENSE +0 -0
  81. {sglang-0.2.15.dist-info → sglang-0.3.1.dist-info}/top_level.txt +0 -0
@@ -71,12 +71,10 @@ class ControllerMulti:
71
71
  self,
72
72
  server_args: ServerArgs,
73
73
  port_args: PortArgs,
74
- model_override_args,
75
74
  ):
76
75
  # Parse args
77
76
  self.server_args = server_args
78
77
  self.port_args = port_args
79
- self.model_override_args = model_override_args
80
78
  self.load_balance_method = LoadBalanceMethod.from_str(
81
79
  server_args.load_balance_method
82
80
  )
@@ -114,7 +112,6 @@ class ControllerMulti:
114
112
  self.server_args,
115
113
  self.port_args,
116
114
  pipe_controller_writer,
117
- self.model_override_args,
118
115
  True,
119
116
  gpu_ids,
120
117
  dp_worker_id,
@@ -189,14 +186,13 @@ def start_controller_process(
189
186
  server_args: ServerArgs,
190
187
  port_args: PortArgs,
191
188
  pipe_writer,
192
- model_override_args: dict,
193
189
  ):
194
190
  """Start a controller process."""
195
191
 
196
192
  configure_logger(server_args)
197
193
 
198
194
  try:
199
- controller = ControllerMulti(server_args, port_args, model_override_args)
195
+ controller = ControllerMulti(server_args, port_args)
200
196
  except Exception:
201
197
  pipe_writer.send(get_exception_traceback())
202
198
  raise
@@ -40,7 +40,6 @@ class ControllerSingle:
40
40
  self,
41
41
  server_args: ServerArgs,
42
42
  port_args: PortArgs,
43
- model_override_args: dict,
44
43
  gpu_ids: List[int],
45
44
  is_data_parallel_worker: bool,
46
45
  dp_worker_id: int,
@@ -76,7 +75,6 @@ class ControllerSingle:
76
75
  tp_rank_range,
77
76
  server_args,
78
77
  port_args.nccl_ports[dp_worker_id],
79
- model_override_args,
80
78
  )
81
79
 
82
80
  # Launch tp rank 0
@@ -85,7 +83,6 @@ class ControllerSingle:
85
83
  0,
86
84
  server_args,
87
85
  port_args.nccl_ports[dp_worker_id],
88
- model_override_args,
89
86
  )
90
87
  self.tp_cpu_group = self.tp_server.model_runner.tp_group.cpu_group
91
88
 
@@ -126,7 +123,6 @@ def start_controller_process(
126
123
  server_args: ServerArgs,
127
124
  port_args: PortArgs,
128
125
  pipe_writer: multiprocessing.connection.Connection,
129
- model_override_args: dict,
130
126
  is_data_parallel_worker: bool = False,
131
127
  gpu_ids: List[int] = None,
132
128
  dp_worker_id: int = None,
@@ -149,7 +145,6 @@ def start_controller_process(
149
145
  controller = ControllerSingle(
150
146
  server_args,
151
147
  port_args,
152
- model_override_args,
153
148
  gpu_ids,
154
149
  is_data_parallel_worker,
155
150
  dp_worker_id,
@@ -20,7 +20,7 @@ processes (TokenizerManager, DetokenizerManager, Controller).
20
20
 
21
21
  import copy
22
22
  import uuid
23
- from dataclasses import dataclass, field
23
+ from dataclasses import dataclass
24
24
  from typing import Dict, List, Optional, Union
25
25
 
26
26
  from sglang.srt.managers.schedule_batch import BaseFinishReason
@@ -43,6 +43,7 @@ class GenerateReqInput:
43
43
  # Whether to return logprobs.
44
44
  return_logprob: Optional[Union[List[bool], bool]] = None
45
45
  # If return logprobs, the start location in the prompt for returning logprobs.
46
+ # By default, this value is "-1", which means it will only return logprobs for output tokens.
46
47
  logprob_start_len: Optional[Union[List[int], int]] = None
47
48
  # If return logprobs, the number of top logprobs to return at each position.
48
49
  top_logprobs_num: Optional[Union[List[int], int]] = None
@@ -50,6 +51,13 @@ class GenerateReqInput:
50
51
  return_text_in_logprobs: bool = False
51
52
  # Whether to stream output.
52
53
  stream: bool = False
54
+ # The modalities of the image data [image, multi-images, video]
55
+ modalities: Optional[List[str]] = None
56
+
57
+ is_single: bool = True
58
+
59
+ # LoRA related
60
+ lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None
53
61
 
54
62
  def post_init(self):
55
63
  if (self.text is None and self.input_ids is None) or (
@@ -177,6 +185,11 @@ class TokenizedGenerateReqInput:
177
185
  top_logprobs_num: int
178
186
  # Whether to stream output
179
187
  stream: bool
188
+ # Modalities of the input images
189
+ modalites: Optional[List[str]] = None
190
+
191
+ # LoRA related
192
+ lora_path: Optional[str] = None # None means just use the base model
180
193
 
181
194
 
182
195
  @dataclass
@@ -190,6 +203,8 @@ class EmbeddingReqInput:
190
203
  # Dummy sampling params for compatibility
191
204
  sampling_params: Union[List[Dict], Dict] = None
192
205
 
206
+ is_single: bool = True
207
+
193
208
  def post_init(self):
194
209
  if (self.text is None and self.input_ids is None) or (
195
210
  self.text is not None and self.input_ids is not None
@@ -108,18 +108,25 @@ class PrefillAdder:
108
108
  def __init__(
109
109
  self,
110
110
  tree_cache: BasePrefixCache,
111
+ running_batch: ScheduleBatch,
112
+ new_token_ratio: float,
111
113
  rem_total_tokens: int,
112
114
  rem_input_tokens: int,
113
115
  rem_chunk_tokens: Optional[int],
114
116
  mixed_with_decode_tokens: int = 0,
115
117
  ):
116
118
  self.tree_cache = tree_cache
119
+ self.running_batch = running_batch
120
+ self.new_token_ratio = new_token_ratio
117
121
  self.rem_total_tokens = rem_total_tokens - mixed_with_decode_tokens
122
+ self.rem_total_tokens_ = self.rem_total_tokens
123
+ self.total_tokens = rem_total_tokens
118
124
  self.rem_input_tokens = rem_input_tokens - mixed_with_decode_tokens
119
125
  self.rem_chunk_tokens = rem_chunk_tokens
120
126
  if self.rem_chunk_tokens is not None:
121
127
  self.rem_chunk_tokens -= mixed_with_decode_tokens
122
128
 
129
+ self.req_states = None
123
130
  self.can_run_list = []
124
131
  self.new_inflight_req = None
125
132
  self.log_hit_tokens = 0
@@ -136,16 +143,20 @@ class PrefillAdder:
136
143
  )
137
144
  )
138
145
 
139
- def remove_running_tokens(
140
- self, running_batch: ScheduleBatch, new_token_ratio: float
141
- ):
146
+ def remove_running_tokens(self, running_batch: ScheduleBatch):
142
147
  self.rem_total_tokens -= sum(
143
148
  [
144
149
  min(
145
150
  (r.sampling_params.max_new_tokens - len(r.output_ids)),
146
151
  CLIP_MAX_NEW_TOKENS,
147
152
  )
148
- * new_token_ratio
153
+ * self.new_token_ratio
154
+ for r in running_batch.reqs
155
+ ]
156
+ )
157
+ self.rem_total_tokens_ -= sum(
158
+ [
159
+ r.sampling_params.max_new_tokens - len(r.output_ids)
149
160
  for r in running_batch.reqs
150
161
  ]
151
162
  )
@@ -154,6 +165,7 @@ class PrefillAdder:
154
165
  self, prefix_len: int, extend_input_len: int, max_new_tokens: int
155
166
  ):
156
167
  self.rem_total_tokens -= extend_input_len + max_new_tokens
168
+ self.rem_total_tokens_ -= extend_input_len + max_new_tokens
157
169
  self.rem_input_tokens -= extend_input_len
158
170
  if self.rem_chunk_tokens is not None:
159
171
  self.rem_chunk_tokens -= extend_input_len
@@ -161,7 +173,29 @@ class PrefillAdder:
161
173
  self.log_hit_tokens += prefix_len
162
174
  self.log_input_tokens += extend_input_len
163
175
 
176
+ def add_inflight_req_ignore_eos(self, req: Req):
177
+ truncated = req.extend_input_len > self.rem_chunk_tokens
178
+ req.extend_input_len = min(req.extend_input_len, self.rem_chunk_tokens)
179
+ req.fill_ids = req.fill_ids[: len(req.prefix_indices) + req.extend_input_len]
180
+ self.can_run_list.append(req)
181
+
182
+ self._prefill_one_req(
183
+ 0,
184
+ req.extend_input_len,
185
+ (
186
+ min(req.sampling_params.max_new_tokens, CLIP_MAX_NEW_TOKENS)
187
+ if not truncated
188
+ else 0
189
+ ),
190
+ )
191
+
192
+ # Return if chunked prefill not finished
193
+ return req if truncated else None
194
+
164
195
  def add_inflight_req(self, req: Req):
196
+ if req.sampling_params.ignore_eos:
197
+ return self.add_inflight_req_ignore_eos(req)
198
+
165
199
  truncated = req.extend_input_len > self.rem_chunk_tokens
166
200
  req.extend_input_len = min(req.extend_input_len, self.rem_chunk_tokens)
167
201
  req.fill_ids = req.fill_ids[: len(req.prefix_indices) + req.extend_input_len]
@@ -190,7 +224,90 @@ class PrefillAdder:
190
224
  delta = self.tree_cache.dec_lock_ref(last_node)
191
225
  self.rem_total_tokens += delta
192
226
 
227
+ def add_one_req_ignore_eos(self, req: Req):
228
+ def get_req_state(r):
229
+ new_token_ratio = (
230
+ 1.0 if r.sampling_params.ignore_eos else self.new_token_ratio
231
+ )
232
+ tokens_left = r.sampling_params.max_new_tokens * new_token_ratio - len(
233
+ r.output_ids
234
+ )
235
+ tokens_occupied = len(r.origin_input_ids) + len(r.output_ids)
236
+
237
+ if tokens_left > 0:
238
+ return (tokens_left, tokens_occupied)
239
+
240
+ return None
241
+
242
+ # Quick Check
243
+ can_run = False
244
+ if (
245
+ req.extend_input_len + req.sampling_params.max_new_tokens
246
+ <= self.rem_total_tokens
247
+ ):
248
+ can_run = True
249
+
250
+ if not can_run:
251
+ if self.req_states is None:
252
+ self.req_states = []
253
+ if self.running_batch is not None:
254
+ for r in self.running_batch.reqs:
255
+ state = get_req_state(r)
256
+ if state is not None:
257
+ self.req_states.append(state)
258
+ for r in self.can_run_list:
259
+ state = get_req_state(r)
260
+ if state is not None:
261
+ self.req_states.append(state)
262
+ state = get_req_state(req)
263
+ if state is not None:
264
+ self.req_states.append(state)
265
+
266
+ self.req_states.sort(key=lambda x: x[0])
267
+ else:
268
+ state = get_req_state(req)
269
+ if state is not None:
270
+ for i, (tokens_left, tokens_occupied) in enumerate(self.req_states):
271
+ if tokens_left >= state[0]:
272
+ self.req_states.insert(i, state)
273
+ break
274
+ else:
275
+ self.req_states.append(state)
276
+
277
+ tokens_freed = 0
278
+ for i, (tokens_left, tokens_occupied) in enumerate(self.req_states):
279
+ decode_steps = (
280
+ self.req_states[i + 1][0]
281
+ if i + 1 < len(self.req_states)
282
+ else tokens_left
283
+ )
284
+ bs = len(self.req_states) - i
285
+ if self.total_tokens + tokens_freed - decode_steps * bs <= 0:
286
+ return False
287
+ tokens_freed += tokens_occupied
288
+
289
+ if req.extend_input_len <= self.rem_chunk_tokens:
290
+ self.can_run_list.append(req)
291
+ self._prefill_one_req(
292
+ 0,
293
+ req.extend_input_len,
294
+ min(req.sampling_params.max_new_tokens, CLIP_MAX_NEW_TOKENS),
295
+ )
296
+ else:
297
+ # Chunked prefill
298
+ trunc_len = self.rem_chunk_tokens
299
+ req.extend_input_len = trunc_len
300
+ req.fill_ids = req.fill_ids[:trunc_len]
301
+ self.can_run_list.append(req)
302
+ self.new_inflight_req = req
303
+ self._prefill_one_req(0, trunc_len, 0)
304
+
305
+ return True
306
+
193
307
  def add_one_req(self, req: Req):
308
+ if req.sampling_params.ignore_eos and self.tree_cache.disable:
309
+ return self.add_one_req_ignore_eos(req)
310
+
194
311
  total_tokens = req.extend_input_len + min(
195
312
  req.sampling_params.max_new_tokens, CLIP_MAX_NEW_TOKENS
196
313
  )
@@ -233,4 +350,4 @@ class PrefillAdder:
233
350
  self.tree_cache.inc_lock_ref(req.last_node)
234
351
  self._prefill_one_req(prefix_len, trunc_len, 0)
235
352
 
236
- return True
353
+ return True and not self.no_remaining_tokens()