sglang 0.2.14__py3-none-any.whl → 0.2.14.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/srt/constrained/fsm_cache.py +11 -2
- sglang/srt/constrained/jump_forward.py +1 -0
- sglang/srt/layers/activation.py +83 -7
- sglang/srt/layers/layernorm.py +0 -3
- sglang/srt/layers/logits_processor.py +4 -4
- sglang/srt/layers/sampler.py +15 -68
- sglang/srt/managers/schedule_batch.py +15 -20
- sglang/srt/managers/tp_worker.py +40 -33
- sglang/srt/model_executor/cuda_graph_runner.py +17 -31
- sglang/srt/model_executor/forward_batch_info.py +1 -8
- sglang/srt/model_executor/model_runner.py +5 -11
- sglang/srt/models/chatglm.py +12 -4
- sglang/srt/models/commandr.py +1 -5
- sglang/srt/models/dbrx.py +1 -5
- sglang/srt/models/deepseek.py +1 -5
- sglang/srt/models/deepseek_v2.py +1 -5
- sglang/srt/models/gemma.py +1 -5
- sglang/srt/models/gemma2.py +1 -5
- sglang/srt/models/gpt_bigcode.py +2 -6
- sglang/srt/models/grok.py +1 -5
- sglang/srt/models/internlm2.py +1 -5
- sglang/srt/models/llama2.py +3 -7
- sglang/srt/models/llama_classification.py +2 -2
- sglang/srt/models/minicpm.py +1 -5
- sglang/srt/models/mixtral.py +1 -5
- sglang/srt/models/mixtral_quant.py +1 -5
- sglang/srt/models/qwen.py +2 -5
- sglang/srt/models/qwen2.py +2 -6
- sglang/srt/models/qwen2_moe.py +14 -5
- sglang/srt/models/stablelm.py +1 -5
- sglang/srt/openai_api/adapter.py +85 -4
- sglang/srt/openai_api/protocol.py +2 -0
- sglang/srt/sampling/sampling_batch_info.py +1 -74
- sglang/srt/sampling/sampling_params.py +4 -0
- sglang/srt/server.py +8 -1
- sglang/test/runners.py +1 -1
- sglang/version.py +1 -1
- {sglang-0.2.14.dist-info → sglang-0.2.14.post1.dist-info}/METADATA +10 -4
- {sglang-0.2.14.dist-info → sglang-0.2.14.post1.dist-info}/RECORD +42 -42
- {sglang-0.2.14.dist-info → sglang-0.2.14.post1.dist-info}/WHEEL +1 -1
- {sglang-0.2.14.dist-info → sglang-0.2.14.post1.dist-info}/LICENSE +0 -0
- {sglang-0.2.14.dist-info → sglang-0.2.14.post1.dist-info}/top_level.txt +0 -0
@@ -15,6 +15,8 @@ limitations under the License.
|
|
15
15
|
|
16
16
|
"""Cache for the compressed finite state machine."""
|
17
17
|
|
18
|
+
from outlines.fsm.json_schema import build_regex_from_schema
|
19
|
+
|
18
20
|
from sglang.srt.constrained import RegexGuide, TransformerTokenizer
|
19
21
|
from sglang.srt.constrained.base_tool_cache import BaseToolCache
|
20
22
|
|
@@ -26,9 +28,12 @@ class FSMCache(BaseToolCache):
|
|
26
28
|
tokenizer_args_dict,
|
27
29
|
enable=True,
|
28
30
|
skip_tokenizer_init=False,
|
31
|
+
json_schema_mode=False,
|
29
32
|
):
|
30
33
|
super().__init__(enable=enable)
|
31
34
|
|
35
|
+
self.json_schema_mode = json_schema_mode
|
36
|
+
|
32
37
|
if (
|
33
38
|
skip_tokenizer_init
|
34
39
|
or tokenizer_path.endswith(".json")
|
@@ -72,5 +77,9 @@ class FSMCache(BaseToolCache):
|
|
72
77
|
tokenizer_path, **tokenizer_args_dict
|
73
78
|
)
|
74
79
|
|
75
|
-
def init_value(self,
|
76
|
-
|
80
|
+
def init_value(self, value):
|
81
|
+
if self.json_schema_mode:
|
82
|
+
regex = build_regex_from_schema(value)
|
83
|
+
return RegexGuide(regex, self.outlines_tokenizer), regex
|
84
|
+
else:
|
85
|
+
return RegexGuide(value, self.outlines_tokenizer)
|
sglang/srt/layers/activation.py
CHANGED
@@ -13,25 +13,28 @@ limitations under the License.
|
|
13
13
|
|
14
14
|
"""Fused operators for activation layers."""
|
15
15
|
|
16
|
+
from typing import Optional
|
17
|
+
|
16
18
|
import torch
|
19
|
+
import torch.nn as nn
|
17
20
|
import torch.nn.functional as F
|
18
21
|
from flashinfer.activation import gelu_tanh_and_mul, silu_and_mul
|
22
|
+
from vllm.distributed import (
|
23
|
+
divide,
|
24
|
+
get_tensor_model_parallel_rank,
|
25
|
+
get_tensor_model_parallel_world_size,
|
26
|
+
)
|
19
27
|
from vllm.model_executor.custom_op import CustomOp
|
28
|
+
from vllm.model_executor.layers.quantization import QuantizationConfig
|
29
|
+
from vllm.model_executor.utils import set_weight_attrs
|
20
30
|
|
21
31
|
|
22
32
|
class SiluAndMul(CustomOp):
|
23
|
-
def __init__(self, **kwargs):
|
24
|
-
super().__init__()
|
25
|
-
self.is_lower_sm80 = torch.cuda.get_device_capability()[0] < 8
|
26
|
-
|
27
33
|
def forward_native(self, x: torch.Tensor) -> torch.Tensor:
|
28
34
|
d = x.shape[-1] // 2
|
29
35
|
return F.silu(x[..., :d]) * x[..., d:]
|
30
36
|
|
31
37
|
def forward_cuda(self, x: torch.Tensor) -> torch.Tensor:
|
32
|
-
if self.is_lower_sm80:
|
33
|
-
return self.forward_native(x)
|
34
|
-
|
35
38
|
d = x.shape[-1] // 2
|
36
39
|
output_shape = x.shape[:-1] + (d,)
|
37
40
|
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
@@ -53,3 +56,76 @@ class GeluAndMul(CustomOp):
|
|
53
56
|
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
54
57
|
gelu_tanh_and_mul(x, out)
|
55
58
|
return out
|
59
|
+
|
60
|
+
|
61
|
+
class ScaledActivation(nn.Module):
|
62
|
+
"""An activation function with post-scale parameters.
|
63
|
+
|
64
|
+
This is used for some quantization methods like AWQ.
|
65
|
+
"""
|
66
|
+
|
67
|
+
def __init__(
|
68
|
+
self,
|
69
|
+
act_module: nn.Module,
|
70
|
+
intermediate_size: int,
|
71
|
+
input_is_parallel: bool = True,
|
72
|
+
params_dtype: Optional[torch.dtype] = None,
|
73
|
+
):
|
74
|
+
super().__init__()
|
75
|
+
self.act = act_module
|
76
|
+
self.input_is_parallel = input_is_parallel
|
77
|
+
if input_is_parallel:
|
78
|
+
tp_size = get_tensor_model_parallel_world_size()
|
79
|
+
intermediate_size_per_partition = divide(intermediate_size, tp_size)
|
80
|
+
else:
|
81
|
+
intermediate_size_per_partition = intermediate_size
|
82
|
+
if params_dtype is None:
|
83
|
+
params_dtype = torch.get_default_dtype()
|
84
|
+
self.scales = nn.Parameter(
|
85
|
+
torch.empty(intermediate_size_per_partition, dtype=params_dtype)
|
86
|
+
)
|
87
|
+
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})
|
88
|
+
|
89
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
90
|
+
return self.act(x) / self.scales
|
91
|
+
|
92
|
+
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
|
93
|
+
param_data = param.data
|
94
|
+
if self.input_is_parallel:
|
95
|
+
tp_rank = get_tensor_model_parallel_rank()
|
96
|
+
shard_size = param_data.shape[0]
|
97
|
+
start_idx = tp_rank * shard_size
|
98
|
+
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
|
99
|
+
assert param_data.shape == loaded_weight.shape
|
100
|
+
param_data.copy_(loaded_weight)
|
101
|
+
|
102
|
+
|
103
|
+
_ACTIVATION_REGISTRY = {
|
104
|
+
"gelu": nn.GELU(),
|
105
|
+
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
|
106
|
+
}
|
107
|
+
|
108
|
+
|
109
|
+
def get_act_fn(
|
110
|
+
act_fn_name: str,
|
111
|
+
quant_config: Optional[QuantizationConfig] = None,
|
112
|
+
intermediate_size: Optional[int] = None,
|
113
|
+
input_is_parallel: bool = True,
|
114
|
+
params_dtype: Optional[torch.dtype] = None,
|
115
|
+
) -> nn.Module:
|
116
|
+
"""Get an activation function by name."""
|
117
|
+
act_fn_name = act_fn_name.lower()
|
118
|
+
if act_fn_name not in _ACTIVATION_REGISTRY:
|
119
|
+
raise ValueError(f"Activation function {act_fn_name!r} is not supported.")
|
120
|
+
|
121
|
+
act_fn = _ACTIVATION_REGISTRY[act_fn_name]
|
122
|
+
if quant_config is not None and act_fn_name in quant_config.get_scaled_act_names():
|
123
|
+
if intermediate_size is None:
|
124
|
+
raise ValueError(
|
125
|
+
"intermediate_size must be specified for scaled "
|
126
|
+
"activation functions."
|
127
|
+
)
|
128
|
+
return ScaledActivation(
|
129
|
+
act_fn, intermediate_size, input_is_parallel, params_dtype
|
130
|
+
)
|
131
|
+
return act_fn
|
sglang/srt/layers/layernorm.py
CHANGED
@@ -32,15 +32,12 @@ class RMSNorm(CustomOp):
|
|
32
32
|
super().__init__()
|
33
33
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
34
34
|
self.variance_epsilon = eps
|
35
|
-
self.is_lower_sm80 = torch.cuda.get_device_capability()[0] < 8
|
36
35
|
|
37
36
|
def forward_cuda(
|
38
37
|
self,
|
39
38
|
x: torch.Tensor,
|
40
39
|
residual: Optional[torch.Tensor] = None,
|
41
40
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
42
|
-
if self.is_lower_sm80:
|
43
|
-
return self.forward_native(x, residual)
|
44
41
|
|
45
42
|
if residual is not None:
|
46
43
|
fused_add_rmsnorm(x, residual, self.weight.data, self.variance_epsilon)
|
@@ -29,7 +29,7 @@ from sglang.srt.model_executor.forward_batch_info import ForwardMode, InputMetad
|
|
29
29
|
|
30
30
|
|
31
31
|
@dataclasses.dataclass
|
32
|
-
class
|
32
|
+
class LogitProcessorOutput:
|
33
33
|
# The logits of the next tokens. shape: [#seq, vocab_size]
|
34
34
|
next_token_logits: torch.Tensor
|
35
35
|
# The logprobs of the next tokens. shape: [#seq, vocab_size]
|
@@ -185,7 +185,7 @@ class LogitsProcessor(nn.Module):
|
|
185
185
|
|
186
186
|
# Return only last_logits if logprob is not requested
|
187
187
|
if not logits_metadata.return_logprob:
|
188
|
-
return
|
188
|
+
return LogitProcessorOutput(
|
189
189
|
next_token_logits=last_logits,
|
190
190
|
next_token_logprobs=None,
|
191
191
|
normalized_prompt_logprobs=None,
|
@@ -209,7 +209,7 @@ class LogitsProcessor(nn.Module):
|
|
209
209
|
else:
|
210
210
|
output_top_logprobs = None
|
211
211
|
|
212
|
-
return
|
212
|
+
return LogitProcessorOutput(
|
213
213
|
next_token_logits=last_logits,
|
214
214
|
next_token_logprobs=last_logprobs,
|
215
215
|
normalized_prompt_logprobs=None,
|
@@ -278,7 +278,7 @@ class LogitsProcessor(nn.Module):
|
|
278
278
|
# Remove the last token logprob for the prefill tokens.
|
279
279
|
input_token_logprobs = input_token_logprobs[:-1]
|
280
280
|
|
281
|
-
return
|
281
|
+
return LogitProcessorOutput(
|
282
282
|
next_token_logits=last_logits,
|
283
283
|
next_token_logprobs=last_logprobs,
|
284
284
|
normalized_prompt_logprobs=normalized_prompt_logprobs,
|
sglang/srt/layers/sampler.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1
|
-
import dataclasses
|
2
1
|
import logging
|
3
|
-
from typing import Union
|
4
2
|
|
5
3
|
import torch
|
6
4
|
from flashinfer.sampling import (
|
@@ -11,8 +9,6 @@ from flashinfer.sampling import (
|
|
11
9
|
)
|
12
10
|
from vllm.model_executor.custom_op import CustomOp
|
13
11
|
|
14
|
-
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
|
15
|
-
|
16
12
|
# TODO: move this dict to another place
|
17
13
|
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
18
14
|
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
|
@@ -20,71 +16,30 @@ from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
|
|
20
16
|
logger = logging.getLogger(__name__)
|
21
17
|
|
22
18
|
|
23
|
-
@dataclasses.dataclass
|
24
|
-
class SampleOutput:
|
25
|
-
success: torch.Tensor
|
26
|
-
probs: torch.Tensor
|
27
|
-
batch_next_token_ids: torch.Tensor
|
28
|
-
|
29
|
-
|
30
19
|
class Sampler(CustomOp):
|
31
20
|
def __init__(self):
|
32
21
|
super().__init__()
|
33
22
|
|
34
|
-
def
|
35
|
-
# min-token, presence, frequency
|
36
|
-
if sampling_info.linear_penalties is not None:
|
37
|
-
logits += sampling_info.linear_penalties
|
38
|
-
|
39
|
-
# repetition
|
40
|
-
if sampling_info.scaling_penalties is not None:
|
41
|
-
logits = torch.where(
|
42
|
-
logits > 0,
|
43
|
-
logits / sampling_info.scaling_penalties,
|
44
|
-
logits * sampling_info.scaling_penalties,
|
45
|
-
)
|
46
|
-
|
47
|
-
return logits
|
48
|
-
|
49
|
-
def _get_probs(
|
50
|
-
self,
|
51
|
-
logits: torch.Tensor,
|
52
|
-
sampling_info: SamplingBatchInfo,
|
53
|
-
is_torch_compile: bool = False,
|
54
|
-
):
|
23
|
+
def forward_cuda(self, logits: torch.Tensor, sampling_info: SamplingBatchInfo):
|
55
24
|
# Post process logits
|
56
25
|
logits = logits.contiguous()
|
57
26
|
logits.div_(sampling_info.temperatures)
|
58
|
-
if is_torch_compile:
|
59
|
-
# FIXME: Temporary workaround for unknown bugs in torch.compile
|
60
|
-
logits.add_(0)
|
61
|
-
|
62
27
|
if sampling_info.logit_bias is not None:
|
63
28
|
logits.add_(sampling_info.logit_bias)
|
64
29
|
|
65
30
|
if sampling_info.vocab_mask is not None:
|
66
31
|
logits = logits.masked_fill(~sampling_info.vocab_mask, float("-inf"))
|
67
32
|
|
68
|
-
logits =
|
33
|
+
logits = sampling_info.penalizer_orchestrator.apply(logits)
|
69
34
|
|
70
|
-
|
71
|
-
|
72
|
-
def forward_cuda(
|
73
|
-
self,
|
74
|
-
logits: Union[torch.Tensor, LogitsProcessorOutput],
|
75
|
-
sampling_info: SamplingBatchInfo,
|
76
|
-
):
|
77
|
-
if isinstance(logits, LogitsProcessorOutput):
|
78
|
-
logits = logits.next_token_logits
|
79
|
-
|
80
|
-
probs = self._get_probs(logits, sampling_info)
|
35
|
+
probs = torch.softmax(logits, dim=-1)
|
81
36
|
|
82
37
|
if not global_server_args_dict["disable_flashinfer_sampling"]:
|
83
38
|
max_top_k_round, batch_size = 32, probs.shape[0]
|
84
39
|
uniform_samples = torch.rand(
|
85
40
|
(max_top_k_round, batch_size), device=probs.device
|
86
41
|
)
|
87
|
-
if sampling_info.
|
42
|
+
if sampling_info.min_ps.any():
|
88
43
|
probs = top_k_renorm_prob(probs, sampling_info.top_ks)
|
89
44
|
probs = top_p_renorm_prob(probs, sampling_info.top_ps)
|
90
45
|
batch_next_token_ids, success = min_p_sampling_from_probs(
|
@@ -100,23 +55,18 @@ class Sampler(CustomOp):
|
|
100
55
|
probs, sampling_info.top_ks, sampling_info.top_ps, sampling_info.min_ps
|
101
56
|
)
|
102
57
|
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
if isinstance(logits, LogitsProcessorOutput):
|
111
|
-
logits = logits.next_token_logits
|
112
|
-
|
113
|
-
probs = self._get_probs(logits, sampling_info, is_torch_compile=True)
|
58
|
+
if not torch.all(success):
|
59
|
+
logging.warning("Sampling failed, fallback to top_k=1 strategy")
|
60
|
+
probs = probs.masked_fill(torch.isnan(probs), 0.0)
|
61
|
+
argmax_ids = torch.argmax(probs, dim=-1)
|
62
|
+
batch_next_token_ids = torch.where(
|
63
|
+
success, batch_next_token_ids, argmax_ids
|
64
|
+
)
|
114
65
|
|
115
|
-
batch_next_token_ids
|
116
|
-
probs, sampling_info.top_ks, sampling_info.top_ps, sampling_info.min_ps
|
117
|
-
)
|
66
|
+
return batch_next_token_ids
|
118
67
|
|
119
|
-
|
68
|
+
def forward_native():
|
69
|
+
raise NotImplementedError("Native forward is not implemented yet.")
|
120
70
|
|
121
71
|
|
122
72
|
def top_k_top_p_min_p_sampling_from_probs_torch(
|
@@ -137,10 +87,7 @@ def top_k_top_p_min_p_sampling_from_probs_torch(
|
|
137
87
|
probs_sort[probs_sort < min_p_thresholds.view(-1, 1)] = 0.0
|
138
88
|
probs_sort.div_(probs_sort.max(dim=-1, keepdim=True)[0])
|
139
89
|
try:
|
140
|
-
|
141
|
-
sampled_index = torch.multinomial(probs_sort, num_samples=2, replacement=True)[
|
142
|
-
:, :1
|
143
|
-
]
|
90
|
+
sampled_index = torch.multinomial(probs_sort, num_samples=1)
|
144
91
|
except RuntimeError as e:
|
145
92
|
logger.warning(f"Sampling error: {e}")
|
146
93
|
batch_next_token_ids = torch.zeros(
|
@@ -1,5 +1,3 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
|
3
1
|
"""
|
4
2
|
Copyright 2023-2024 SGLang Team
|
5
3
|
Licensed under the Apache License, Version 2.0 (the "License");
|
@@ -19,7 +17,7 @@ limitations under the License.
|
|
19
17
|
|
20
18
|
import logging
|
21
19
|
from dataclasses import dataclass
|
22
|
-
from typing import
|
20
|
+
from typing import List, Optional, Union
|
23
21
|
|
24
22
|
import torch
|
25
23
|
|
@@ -31,10 +29,6 @@ from sglang.srt.mem_cache.chunk_cache import ChunkCache
|
|
31
29
|
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
|
32
30
|
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
|
33
31
|
|
34
|
-
if TYPE_CHECKING:
|
35
|
-
from sglang.srt.layers.sampler import SampleOutput
|
36
|
-
|
37
|
-
|
38
32
|
INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5
|
39
33
|
|
40
34
|
# Put some global args for easy access
|
@@ -268,7 +262,14 @@ class Req:
|
|
268
262
|
|
269
263
|
all_text = self.origin_input_text + self.decoded_text + jump_forward_str
|
270
264
|
all_ids = self.tokenizer.encode(all_text)
|
265
|
+
if not all_ids:
|
266
|
+
logger.warning("Encoded all_text resulted in empty all_ids")
|
267
|
+
return False
|
268
|
+
|
271
269
|
prompt_tokens = len(self.origin_input_ids_unpadded)
|
270
|
+
if prompt_tokens > len(all_ids):
|
271
|
+
logger.warning("prompt_tokens is larger than encoded all_ids")
|
272
|
+
return False
|
272
273
|
|
273
274
|
if all_ids[prompt_tokens - 1] != self.origin_input_ids_unpadded[-1]:
|
274
275
|
# TODO(lsyin): fix token fusion
|
@@ -677,17 +678,11 @@ class ScheduleBatch:
|
|
677
678
|
self.top_logprobs_nums.extend(other.top_logprobs_nums)
|
678
679
|
self.return_logprob = any(req.return_logprob for req in self.reqs)
|
679
680
|
|
680
|
-
def
|
681
|
-
|
682
|
-
|
683
|
-
|
684
|
-
|
685
|
-
|
686
|
-
argmax_ids = torch.argmax(probs, dim=-1)
|
687
|
-
batch_next_token_ids = torch.where(
|
688
|
-
sample_output.success, batch_next_token_ids, argmax_ids
|
689
|
-
)
|
690
|
-
sample_output.probs = probs
|
691
|
-
sample_output.batch_next_token_ids = batch_next_token_ids
|
681
|
+
def sample(self, logits: torch.Tensor):
|
682
|
+
from sglang.srt.layers.sampler import Sampler
|
683
|
+
|
684
|
+
sampler = Sampler()
|
685
|
+
|
686
|
+
batch_next_token_ids = sampler(logits, self.sampling_info)
|
692
687
|
|
693
|
-
return
|
688
|
+
return batch_next_token_ids
|
sglang/srt/managers/tp_worker.py
CHANGED
@@ -31,7 +31,7 @@ from sglang.global_config import global_config
|
|
31
31
|
from sglang.srt.constrained.fsm_cache import FSMCache
|
32
32
|
from sglang.srt.constrained.jump_forward import JumpForwardCache
|
33
33
|
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
|
34
|
-
from sglang.srt.layers.logits_processor import
|
34
|
+
from sglang.srt.layers.logits_processor import LogitProcessorOutput
|
35
35
|
from sglang.srt.managers.io_struct import (
|
36
36
|
AbortReq,
|
37
37
|
BatchEmbeddingOut,
|
@@ -197,6 +197,16 @@ class ModelTpServer:
|
|
197
197
|
"trust_remote_code": server_args.trust_remote_code,
|
198
198
|
},
|
199
199
|
skip_tokenizer_init=server_args.skip_tokenizer_init,
|
200
|
+
json_schema_mode=False,
|
201
|
+
)
|
202
|
+
self.json_fsm_cache = FSMCache(
|
203
|
+
server_args.tokenizer_path,
|
204
|
+
{
|
205
|
+
"tokenizer_mode": server_args.tokenizer_mode,
|
206
|
+
"trust_remote_code": server_args.trust_remote_code,
|
207
|
+
},
|
208
|
+
skip_tokenizer_init=server_args.skip_tokenizer_init,
|
209
|
+
json_schema_mode=True,
|
200
210
|
)
|
201
211
|
self.jump_forward_cache = JumpForwardCache()
|
202
212
|
|
@@ -349,8 +359,17 @@ class ModelTpServer:
|
|
349
359
|
req.top_logprobs_num = recv_req.top_logprobs_num
|
350
360
|
req.stream = recv_req.stream
|
351
361
|
|
362
|
+
# Init regex fsm fron json
|
363
|
+
if req.sampling_params.json_schema is not None:
|
364
|
+
req.regex_fsm, computed_regex_string = self.json_fsm_cache.query(
|
365
|
+
req.sampling_params.json_schema
|
366
|
+
)
|
367
|
+
if not self.disable_regex_jump_forward:
|
368
|
+
req.jump_forward_map = self.jump_forward_cache.query(
|
369
|
+
computed_regex_string
|
370
|
+
)
|
352
371
|
# Init regex fsm
|
353
|
-
|
372
|
+
elif req.sampling_params.regex is not None:
|
354
373
|
req.regex_fsm = self.regex_fsm_cache.query(req.sampling_params.regex)
|
355
374
|
if not self.disable_regex_jump_forward:
|
356
375
|
req.jump_forward_map = self.jump_forward_cache.query(
|
@@ -486,29 +505,21 @@ class ModelTpServer:
|
|
486
505
|
if self.model_runner.is_generation:
|
487
506
|
# Forward and sample the next tokens
|
488
507
|
if batch.extend_num_tokens != 0:
|
489
|
-
|
490
|
-
|
491
|
-
)
|
492
|
-
next_token_ids = batch.check_sample_results(sample_output)
|
508
|
+
output = self.model_runner.forward(batch, ForwardMode.EXTEND)
|
509
|
+
next_token_ids = batch.sample(output.next_token_logits)
|
493
510
|
batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
|
494
511
|
next_token_ids
|
495
512
|
)
|
496
513
|
|
497
514
|
# Move logprobs to cpu
|
498
|
-
if
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
505
|
-
|
506
|
-
)
|
507
|
-
logits_output.input_token_logprobs = (
|
508
|
-
logits_output.input_token_logprobs.tolist()
|
509
|
-
)
|
510
|
-
logits_output.normalized_prompt_logprobs = (
|
511
|
-
logits_output.normalized_prompt_logprobs.tolist()
|
515
|
+
if output.next_token_logprobs is not None:
|
516
|
+
output.next_token_logprobs = output.next_token_logprobs[
|
517
|
+
torch.arange(len(next_token_ids), device=next_token_ids.device),
|
518
|
+
next_token_ids,
|
519
|
+
].tolist()
|
520
|
+
output.input_token_logprobs = output.input_token_logprobs.tolist()
|
521
|
+
output.normalized_prompt_logprobs = (
|
522
|
+
output.normalized_prompt_logprobs.tolist()
|
512
523
|
)
|
513
524
|
|
514
525
|
next_token_ids = next_token_ids.tolist()
|
@@ -547,14 +558,12 @@ class ModelTpServer:
|
|
547
558
|
self.req_to_token_pool.free(req.req_pool_idx)
|
548
559
|
|
549
560
|
if req.return_logprob:
|
550
|
-
self.add_logprob_return_values(
|
551
|
-
i, req, pt, next_token_ids, logits_output
|
552
|
-
)
|
561
|
+
self.add_logprob_return_values(i, req, pt, next_token_ids, output)
|
553
562
|
pt += req.extend_input_len
|
554
563
|
else:
|
555
564
|
assert batch.extend_num_tokens != 0
|
556
|
-
|
557
|
-
embeddings =
|
565
|
+
output = self.model_runner.forward(batch, ForwardMode.EXTEND)
|
566
|
+
embeddings = output.embeddings.tolist()
|
558
567
|
|
559
568
|
# Check finish conditions
|
560
569
|
for i, req in enumerate(batch.reqs):
|
@@ -582,7 +591,7 @@ class ModelTpServer:
|
|
582
591
|
req: Req,
|
583
592
|
pt: int,
|
584
593
|
next_token_ids: List[int],
|
585
|
-
output:
|
594
|
+
output: LogitProcessorOutput,
|
586
595
|
):
|
587
596
|
if req.normalized_prompt_logprob is None:
|
588
597
|
req.normalized_prompt_logprob = output.normalized_prompt_logprobs[i]
|
@@ -664,17 +673,15 @@ class ModelTpServer:
|
|
664
673
|
batch.prepare_for_decode()
|
665
674
|
|
666
675
|
# Forward and sample the next tokens
|
667
|
-
|
668
|
-
|
669
|
-
)
|
670
|
-
next_token_ids = batch.check_sample_results(sample_output)
|
676
|
+
output = self.model_runner.forward(batch, ForwardMode.DECODE)
|
677
|
+
next_token_ids = batch.sample(output.next_token_logits)
|
671
678
|
batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
|
672
679
|
next_token_ids
|
673
680
|
)
|
674
681
|
|
675
682
|
# Move logprobs to cpu
|
676
|
-
if
|
677
|
-
next_token_logprobs =
|
683
|
+
if output.next_token_logprobs is not None:
|
684
|
+
next_token_logprobs = output.next_token_logprobs[
|
678
685
|
torch.arange(len(next_token_ids), device=next_token_ids.device),
|
679
686
|
next_token_ids,
|
680
687
|
].tolist()
|
@@ -700,7 +707,7 @@ class ModelTpServer:
|
|
700
707
|
(next_token_logprobs[i], next_token_id)
|
701
708
|
)
|
702
709
|
if req.top_logprobs_num > 0:
|
703
|
-
req.output_top_logprobs.append(
|
710
|
+
req.output_top_logprobs.append(output.output_top_logprobs[i])
|
704
711
|
|
705
712
|
self.handle_finished_requests(batch)
|
706
713
|
|