sglang 0.2.14.post2__py3-none-any.whl → 0.2.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/api.py +2 -0
- sglang/bench_latency.py +39 -28
- sglang/lang/interpreter.py +3 -0
- sglang/lang/ir.py +5 -0
- sglang/launch_server_llavavid.py +12 -12
- sglang/srt/configs/__init__.py +5 -0
- sglang/srt/configs/exaone.py +195 -0
- sglang/srt/constrained/fsm_cache.py +1 -1
- sglang/srt/conversation.py +24 -2
- sglang/srt/hf_transformers_utils.py +11 -11
- sglang/srt/layers/extend_attention.py +13 -8
- sglang/srt/layers/logits_processor.py +4 -4
- sglang/srt/layers/sampler.py +69 -16
- sglang/srt/managers/controller_multi.py +5 -5
- sglang/srt/managers/controller_single.py +5 -5
- sglang/srt/managers/io_struct.py +6 -1
- sglang/srt/managers/schedule_batch.py +20 -8
- sglang/srt/managers/tokenizer_manager.py +2 -2
- sglang/srt/managers/tp_worker.py +38 -26
- sglang/srt/model_config.py +3 -3
- sglang/srt/model_executor/cuda_graph_runner.py +24 -9
- sglang/srt/model_executor/forward_batch_info.py +68 -23
- sglang/srt/model_executor/model_runner.py +14 -12
- sglang/srt/models/chatglm.py +4 -12
- sglang/srt/models/commandr.py +5 -1
- sglang/srt/models/dbrx.py +5 -1
- sglang/srt/models/deepseek.py +5 -1
- sglang/srt/models/deepseek_v2.py +57 -25
- sglang/srt/models/exaone.py +399 -0
- sglang/srt/models/gemma.py +5 -1
- sglang/srt/models/gemma2.py +5 -1
- sglang/srt/models/gpt_bigcode.py +5 -1
- sglang/srt/models/grok.py +5 -1
- sglang/srt/models/internlm2.py +5 -1
- sglang/srt/models/llama2.py +7 -3
- sglang/srt/models/llama_classification.py +2 -2
- sglang/srt/models/minicpm.py +5 -1
- sglang/srt/models/mixtral.py +6 -2
- sglang/srt/models/mixtral_quant.py +5 -1
- sglang/srt/models/qwen.py +5 -2
- sglang/srt/models/qwen2.py +6 -2
- sglang/srt/models/qwen2_moe.py +5 -14
- sglang/srt/models/stablelm.py +5 -1
- sglang/srt/openai_api/adapter.py +16 -1
- sglang/srt/openai_api/protocol.py +5 -5
- sglang/srt/sampling/sampling_batch_info.py +79 -6
- sglang/srt/server.py +6 -6
- sglang/srt/utils.py +0 -3
- sglang/test/runners.py +1 -1
- sglang/version.py +1 -1
- {sglang-0.2.14.post2.dist-info → sglang-0.2.15.dist-info}/METADATA +7 -7
- {sglang-0.2.14.post2.dist-info → sglang-0.2.15.dist-info}/RECORD +55 -52
- {sglang-0.2.14.post2.dist-info → sglang-0.2.15.dist-info}/LICENSE +0 -0
- {sglang-0.2.14.post2.dist-info → sglang-0.2.15.dist-info}/WHEEL +0 -0
- {sglang-0.2.14.post2.dist-info → sglang-0.2.15.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,399 @@
|
|
1
|
+
"""
|
2
|
+
Copyright 2024 The LGcns AI Engineering Team
|
3
|
+
Copyright 2023-2024 SGLang Team
|
4
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
you may not use this file except in compliance with the License.
|
6
|
+
You may obtain a copy of the License at
|
7
|
+
|
8
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
|
10
|
+
Unless required by applicable law or agreed to in writing, software
|
11
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
See the License for the specific language governing permissions and
|
14
|
+
limitations under the License.
|
15
|
+
"""
|
16
|
+
|
17
|
+
# Adapted from llama2.py
|
18
|
+
"""Inference-only Exaone model compatible with HuggingFace weights."""
|
19
|
+
|
20
|
+
from typing import Any, Dict, Iterable, Optional, Tuple
|
21
|
+
|
22
|
+
import torch
|
23
|
+
from torch import nn
|
24
|
+
from vllm.config import CacheConfig
|
25
|
+
from vllm.distributed import get_tensor_model_parallel_world_size
|
26
|
+
from vllm.model_executor.layers.linear import (
|
27
|
+
MergedColumnParallelLinear,
|
28
|
+
QKVParallelLinear,
|
29
|
+
RowParallelLinear,
|
30
|
+
)
|
31
|
+
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
32
|
+
from vllm.model_executor.layers.rotary_embedding import get_rope
|
33
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
34
|
+
ParallelLMHead,
|
35
|
+
VocabParallelEmbedding,
|
36
|
+
)
|
37
|
+
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
38
|
+
|
39
|
+
from sglang.srt.layers.activation import SiluAndMul
|
40
|
+
from sglang.srt.layers.layernorm import RMSNorm
|
41
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
|
42
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
43
|
+
from sglang.srt.layers.sampler import Sampler
|
44
|
+
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
45
|
+
|
46
|
+
|
47
|
+
class ExaoneGatedMLP(nn.Module):
|
48
|
+
def __init__(
|
49
|
+
self,
|
50
|
+
hidden_size: int,
|
51
|
+
intermediate_size: int,
|
52
|
+
hidden_act: str,
|
53
|
+
quant_config: Optional[QuantizationConfig] = None,
|
54
|
+
prefix: str = "",
|
55
|
+
) -> None:
|
56
|
+
super().__init__()
|
57
|
+
self.gate_up_proj = MergedColumnParallelLinear(
|
58
|
+
hidden_size,
|
59
|
+
[intermediate_size] * 2,
|
60
|
+
bias=False,
|
61
|
+
quant_config=quant_config,
|
62
|
+
prefix=f"{prefix}.gate_up_proj",
|
63
|
+
)
|
64
|
+
self.c_proj = RowParallelLinear(
|
65
|
+
intermediate_size,
|
66
|
+
hidden_size,
|
67
|
+
bias=False,
|
68
|
+
quant_config=quant_config,
|
69
|
+
prefix=f"{prefix}.c_proj",
|
70
|
+
)
|
71
|
+
if hidden_act != "silu":
|
72
|
+
raise ValueError(
|
73
|
+
f"Unsupported activation: {hidden_act}. "
|
74
|
+
"Only silu is supported for now."
|
75
|
+
)
|
76
|
+
self.act_fn = SiluAndMul()
|
77
|
+
|
78
|
+
def forward(self, x):
|
79
|
+
gate_up, _ = self.gate_up_proj(x)
|
80
|
+
x = self.act_fn(gate_up)
|
81
|
+
x, _ = self.c_proj(x)
|
82
|
+
return x
|
83
|
+
|
84
|
+
|
85
|
+
class ExaoneAttention(nn.Module):
|
86
|
+
def __init__(
|
87
|
+
self,
|
88
|
+
config,
|
89
|
+
hidden_size: int,
|
90
|
+
num_heads: int,
|
91
|
+
num_kv_heads: int,
|
92
|
+
layer_id: int = 0,
|
93
|
+
rope_theta: float = 500000,
|
94
|
+
rope_scaling: Optional[Dict[str, Any]] = None,
|
95
|
+
rope_is_neox_style: bool = True,
|
96
|
+
max_position_embeddings: int = 4096,
|
97
|
+
quant_config: Optional[QuantizationConfig] = None,
|
98
|
+
prefix: str = "",
|
99
|
+
) -> None:
|
100
|
+
super().__init__()
|
101
|
+
self.hidden_size = hidden_size
|
102
|
+
tp_size = get_tensor_model_parallel_world_size()
|
103
|
+
self.total_num_heads = num_heads
|
104
|
+
assert self.total_num_heads % tp_size == 0
|
105
|
+
self.num_heads = self.total_num_heads // tp_size
|
106
|
+
self.total_num_kv_heads = num_kv_heads
|
107
|
+
if self.total_num_kv_heads >= tp_size:
|
108
|
+
# Number of KV heads is greater than TP size, so we partition
|
109
|
+
# the KV heads across multiple tensor parallel GPUs.
|
110
|
+
assert self.total_num_kv_heads % tp_size == 0
|
111
|
+
else:
|
112
|
+
# Number of KV heads is less than TP size, so we replicate
|
113
|
+
# the KV heads across multiple tensor parallel GPUs.
|
114
|
+
assert tp_size % self.total_num_kv_heads == 0
|
115
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
116
|
+
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
117
|
+
self.head_dim = getattr(
|
118
|
+
config, "head_dim", self.hidden_size // self.total_num_heads
|
119
|
+
)
|
120
|
+
self.rotary_dim = int(
|
121
|
+
self.head_dim * getattr(config, "partial_rotary_factor", 1)
|
122
|
+
)
|
123
|
+
self.q_size = self.num_heads * self.head_dim
|
124
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
125
|
+
self.scaling = self.head_dim**-0.5
|
126
|
+
self.rope_theta = rope_theta
|
127
|
+
self.max_position_embeddings = max_position_embeddings
|
128
|
+
|
129
|
+
self.qkv_proj = QKVParallelLinear(
|
130
|
+
hidden_size,
|
131
|
+
self.head_dim,
|
132
|
+
self.total_num_heads,
|
133
|
+
self.total_num_kv_heads,
|
134
|
+
bias=False,
|
135
|
+
quant_config=quant_config,
|
136
|
+
prefix=f"{prefix}.qkv_proj",
|
137
|
+
)
|
138
|
+
self.out_proj = RowParallelLinear(
|
139
|
+
self.total_num_heads * self.head_dim,
|
140
|
+
hidden_size,
|
141
|
+
bias=False,
|
142
|
+
quant_config=quant_config,
|
143
|
+
prefix=f"{prefix}.out_proj",
|
144
|
+
)
|
145
|
+
|
146
|
+
self.rotary_emb = get_rope(
|
147
|
+
self.head_dim,
|
148
|
+
rotary_dim=self.rotary_dim,
|
149
|
+
max_position=max_position_embeddings,
|
150
|
+
base=rope_theta,
|
151
|
+
rope_scaling=rope_scaling,
|
152
|
+
is_neox_style=rope_is_neox_style,
|
153
|
+
)
|
154
|
+
self.attn = RadixAttention(
|
155
|
+
self.num_heads,
|
156
|
+
self.head_dim,
|
157
|
+
self.scaling,
|
158
|
+
num_kv_heads=self.num_kv_heads,
|
159
|
+
layer_id=layer_id,
|
160
|
+
)
|
161
|
+
|
162
|
+
def forward(
|
163
|
+
self,
|
164
|
+
positions: torch.Tensor,
|
165
|
+
hidden_states: torch.Tensor,
|
166
|
+
input_metadata: InputMetadata,
|
167
|
+
) -> torch.Tensor:
|
168
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
169
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
170
|
+
q, k = self.rotary_emb(positions, q, k)
|
171
|
+
attn_output = self.attn(q, k, v, input_metadata)
|
172
|
+
output, _ = self.out_proj(attn_output)
|
173
|
+
return output
|
174
|
+
|
175
|
+
|
176
|
+
class ExaoneDecoderLayer(nn.Module):
|
177
|
+
def __init__(
|
178
|
+
self,
|
179
|
+
config,
|
180
|
+
layer_id: int = 0,
|
181
|
+
quant_config: Optional[QuantizationConfig] = None,
|
182
|
+
prefix: str = "",
|
183
|
+
) -> None:
|
184
|
+
super().__init__()
|
185
|
+
self.hidden_size = config.hidden_size
|
186
|
+
rope_theta = getattr(config, "rope_theta", 500000)
|
187
|
+
rope_scaling = getattr(config, "rope_scaling", None)
|
188
|
+
if rope_scaling is not None and getattr(
|
189
|
+
config, "original_max_position_embeddings", None
|
190
|
+
):
|
191
|
+
rope_scaling["original_max_position_embeddings"] = (
|
192
|
+
config.original_max_position_embeddings
|
193
|
+
)
|
194
|
+
rope_is_neox_style = getattr(config, "rope_is_neox_style", True)
|
195
|
+
max_position_embeddings = getattr(config, "max_position_embeddings", 4096)
|
196
|
+
self.self_attn = ExaoneAttention(
|
197
|
+
config=config,
|
198
|
+
hidden_size=self.hidden_size,
|
199
|
+
num_heads=config.num_attention_heads,
|
200
|
+
num_kv_heads=config.num_key_value_heads,
|
201
|
+
layer_id=layer_id,
|
202
|
+
rope_theta=rope_theta,
|
203
|
+
rope_scaling=rope_scaling,
|
204
|
+
rope_is_neox_style=rope_is_neox_style,
|
205
|
+
max_position_embeddings=max_position_embeddings,
|
206
|
+
quant_config=quant_config,
|
207
|
+
prefix=f"{prefix}.self_attn",
|
208
|
+
)
|
209
|
+
self.mlp = ExaoneGatedMLP(
|
210
|
+
hidden_size=self.hidden_size,
|
211
|
+
intermediate_size=config.intermediate_size,
|
212
|
+
hidden_act=config.activation_function,
|
213
|
+
quant_config=quant_config,
|
214
|
+
prefix=f"{prefix}.mlp",
|
215
|
+
)
|
216
|
+
rms_norm_eps = config.layer_norm_epsilon
|
217
|
+
self.ln_1 = RMSNorm(config.hidden_size, eps=rms_norm_eps)
|
218
|
+
self.ln_2 = RMSNorm(config.hidden_size, eps=rms_norm_eps)
|
219
|
+
|
220
|
+
def forward(
|
221
|
+
self,
|
222
|
+
positions: torch.Tensor,
|
223
|
+
hidden_states: torch.Tensor,
|
224
|
+
input_metadata: InputMetadata,
|
225
|
+
residual: Optional[torch.Tensor],
|
226
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
227
|
+
# Self Attention
|
228
|
+
if residual is None:
|
229
|
+
residual = hidden_states
|
230
|
+
hidden_states = self.ln_1(hidden_states)
|
231
|
+
else:
|
232
|
+
hidden_states, residual = self.ln_1(hidden_states, residual)
|
233
|
+
hidden_states = self.self_attn(
|
234
|
+
positions=positions,
|
235
|
+
hidden_states=hidden_states,
|
236
|
+
input_metadata=input_metadata,
|
237
|
+
)
|
238
|
+
|
239
|
+
# Fully Connected
|
240
|
+
hidden_states, residual = self.ln_2(hidden_states, residual)
|
241
|
+
hidden_states = self.mlp(hidden_states)
|
242
|
+
return hidden_states, residual
|
243
|
+
|
244
|
+
|
245
|
+
class ExaoneModel(nn.Module):
|
246
|
+
def __init__(
|
247
|
+
self,
|
248
|
+
config,
|
249
|
+
quant_config: Optional[QuantizationConfig] = None,
|
250
|
+
) -> None:
|
251
|
+
super().__init__()
|
252
|
+
self.config = config
|
253
|
+
self.padding_idx = config.pad_token_id
|
254
|
+
self.vocab_size = config.vocab_size
|
255
|
+
self.wte = VocabParallelEmbedding(
|
256
|
+
config.vocab_size,
|
257
|
+
config.hidden_size,
|
258
|
+
)
|
259
|
+
self.h = nn.ModuleList(
|
260
|
+
[
|
261
|
+
ExaoneDecoderLayer(
|
262
|
+
config, i, quant_config=quant_config, prefix=f"model.h.{i}"
|
263
|
+
)
|
264
|
+
for i in range(config.num_hidden_layers)
|
265
|
+
]
|
266
|
+
)
|
267
|
+
rms_norm_eps = config.layer_norm_epsilon
|
268
|
+
self.ln_f = RMSNorm(config.hidden_size, eps=rms_norm_eps)
|
269
|
+
|
270
|
+
def forward(
|
271
|
+
self,
|
272
|
+
input_ids: torch.Tensor,
|
273
|
+
positions: torch.Tensor,
|
274
|
+
input_metadata: InputMetadata,
|
275
|
+
input_embeds: torch.Tensor = None,
|
276
|
+
) -> torch.Tensor:
|
277
|
+
if input_embeds is None:
|
278
|
+
hidden_states = self.wte(input_ids)
|
279
|
+
else:
|
280
|
+
hidden_states = input_embeds
|
281
|
+
residual = None
|
282
|
+
for i in range(len(self.h)):
|
283
|
+
layer = self.h[i]
|
284
|
+
hidden_states, residual = layer(
|
285
|
+
positions,
|
286
|
+
hidden_states,
|
287
|
+
input_metadata,
|
288
|
+
residual,
|
289
|
+
)
|
290
|
+
hidden_states, _ = self.ln_f(hidden_states, residual)
|
291
|
+
return hidden_states
|
292
|
+
|
293
|
+
|
294
|
+
class ExaoneForCausalLM(nn.Module):
|
295
|
+
def __init__(
|
296
|
+
self,
|
297
|
+
config,
|
298
|
+
quant_config: Optional[QuantizationConfig] = None,
|
299
|
+
cache_config: Optional[CacheConfig] = None,
|
300
|
+
efficient_weight_load=False,
|
301
|
+
) -> None:
|
302
|
+
super().__init__()
|
303
|
+
self.config = config
|
304
|
+
self.quant_config = quant_config
|
305
|
+
self.transformer = ExaoneModel(config, quant_config=quant_config)
|
306
|
+
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
307
|
+
self.logits_processor = LogitsProcessor(config)
|
308
|
+
self.sampler = Sampler()
|
309
|
+
|
310
|
+
@torch.no_grad()
|
311
|
+
def forward(
|
312
|
+
self,
|
313
|
+
input_ids: torch.Tensor,
|
314
|
+
positions: torch.Tensor,
|
315
|
+
input_metadata: InputMetadata,
|
316
|
+
input_embeds: torch.Tensor = None,
|
317
|
+
) -> LogitsProcessorOutput:
|
318
|
+
hidden_states = self.transformer(
|
319
|
+
input_ids, positions, input_metadata, input_embeds
|
320
|
+
)
|
321
|
+
logits_output = self.logits_processor(
|
322
|
+
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
323
|
+
)
|
324
|
+
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
325
|
+
return sample_output, logits_output
|
326
|
+
|
327
|
+
def get_module_name(self, name):
|
328
|
+
stacked_params_mapping = [
|
329
|
+
# (param_name, shard_name, shard_id, num_shard)
|
330
|
+
("qkv_proj", "q_proj", "q", 3),
|
331
|
+
("qkv_proj", "k_proj", "k", 3),
|
332
|
+
("qkv_proj", "v_proj", "v", 3),
|
333
|
+
("gate_up_proj", "c_fc_0", 0, 2),
|
334
|
+
("gate_up_proj", "c_fc_1", 1, 2),
|
335
|
+
]
|
336
|
+
for param_name, weight_name, shard_id, num_shard in stacked_params_mapping:
|
337
|
+
if weight_name in name:
|
338
|
+
return (
|
339
|
+
name.replace(weight_name, param_name)[: -len(".weight")],
|
340
|
+
num_shard,
|
341
|
+
)
|
342
|
+
return name[: -len(".weight")], 1
|
343
|
+
|
344
|
+
def get_num_params(self):
|
345
|
+
params_dict = dict(self.named_parameters())
|
346
|
+
return len(params_dict)
|
347
|
+
|
348
|
+
def load_weights(
|
349
|
+
self, weights: Iterable[Tuple[str, torch.Tensor]], name=None, loaded_weight=None
|
350
|
+
):
|
351
|
+
stacked_params_mapping = [
|
352
|
+
# (param_name, shard_name, shard_id)
|
353
|
+
("qkv_proj", "q_proj", "q"),
|
354
|
+
("qkv_proj", "k_proj", "k"),
|
355
|
+
("qkv_proj", "v_proj", "v"),
|
356
|
+
("gate_up_proj", "c_fc_0", 0),
|
357
|
+
("gate_up_proj", "c_fc_1", 1),
|
358
|
+
]
|
359
|
+
params_dict = dict(self.named_parameters())
|
360
|
+
|
361
|
+
def load_weights_per_param(name, loaded_weight):
|
362
|
+
if "rotary_emb.inv_freq" in name or "projector" in name:
|
363
|
+
return
|
364
|
+
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
365
|
+
# Models trained using ColossalAI may include these tensors in
|
366
|
+
# the checkpoint. Skip them.
|
367
|
+
return
|
368
|
+
if name.startswith("model.vision_tower") and name not in params_dict:
|
369
|
+
return
|
370
|
+
|
371
|
+
for param_name, weight_name, shard_id in stacked_params_mapping:
|
372
|
+
if weight_name not in name:
|
373
|
+
continue
|
374
|
+
name = name.replace(weight_name, param_name)
|
375
|
+
# Skip loading extra bias for GPTQ models.
|
376
|
+
if name.endswith(".bias") and name not in params_dict:
|
377
|
+
continue
|
378
|
+
param = params_dict[name]
|
379
|
+
weight_loader = param.weight_loader
|
380
|
+
weight_loader(param, loaded_weight, shard_id)
|
381
|
+
break
|
382
|
+
else:
|
383
|
+
# Skip loading extra bias for GPTQ models.
|
384
|
+
if name.endswith(".bias") and name not in params_dict:
|
385
|
+
return
|
386
|
+
param = params_dict[name]
|
387
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
388
|
+
weight_loader(param, loaded_weight)
|
389
|
+
|
390
|
+
if name is None or loaded_weight is None:
|
391
|
+
for name, loaded_weight in weights:
|
392
|
+
name = name.replace("attn.attention", "self_attn")
|
393
|
+
load_weights_per_param(name, loaded_weight)
|
394
|
+
else:
|
395
|
+
name = name.replace("attn.attention", "self_attn")
|
396
|
+
load_weights_per_param(name, loaded_weight)
|
397
|
+
|
398
|
+
|
399
|
+
EntryClass = ExaoneForCausalLM
|
sglang/srt/models/gemma.py
CHANGED
@@ -37,6 +37,7 @@ from sglang.srt.layers.activation import GeluAndMul
|
|
37
37
|
from sglang.srt.layers.layernorm import RMSNorm
|
38
38
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
39
39
|
from sglang.srt.layers.radix_attention import RadixAttention
|
40
|
+
from sglang.srt.layers.sampler import Sampler
|
40
41
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
41
42
|
|
42
43
|
|
@@ -287,6 +288,7 @@ class GemmaForCausalLM(nn.Module):
|
|
287
288
|
self.quant_config = quant_config
|
288
289
|
self.model = GemmaModel(config, quant_config=quant_config)
|
289
290
|
self.logits_processor = LogitsProcessor(config)
|
291
|
+
self.sampler = Sampler()
|
290
292
|
|
291
293
|
@torch.no_grad()
|
292
294
|
def forward(
|
@@ -297,9 +299,11 @@ class GemmaForCausalLM(nn.Module):
|
|
297
299
|
input_embeds: torch.Tensor = None,
|
298
300
|
) -> torch.Tensor:
|
299
301
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
300
|
-
|
302
|
+
logits_output = self.logits_processor(
|
301
303
|
input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
|
302
304
|
)
|
305
|
+
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
306
|
+
return (sample_output, logits_output)
|
303
307
|
|
304
308
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
305
309
|
stacked_params_mapping = [
|
sglang/srt/models/gemma2.py
CHANGED
@@ -37,6 +37,7 @@ from sglang.srt.layers.activation import GeluAndMul
|
|
37
37
|
from sglang.srt.layers.layernorm import GemmaRMSNorm
|
38
38
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
39
39
|
from sglang.srt.layers.radix_attention import RadixAttention
|
40
|
+
from sglang.srt.layers.sampler import Sampler
|
40
41
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
41
42
|
|
42
43
|
|
@@ -346,6 +347,7 @@ class Gemma2ForCausalLM(nn.Module):
|
|
346
347
|
self.quant_config = quant_config
|
347
348
|
self.model = Gemma2Model(config, cache_config, quant_config)
|
348
349
|
self.logits_processor = LogitsProcessor(config)
|
350
|
+
self.sampler = Sampler()
|
349
351
|
|
350
352
|
@torch.no_grad()
|
351
353
|
def forward(
|
@@ -356,9 +358,11 @@ class Gemma2ForCausalLM(nn.Module):
|
|
356
358
|
input_embeds: torch.Tensor = None,
|
357
359
|
) -> torch.Tensor:
|
358
360
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
359
|
-
|
361
|
+
logits_output = self.logits_processor(
|
360
362
|
input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
|
361
363
|
)
|
364
|
+
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
365
|
+
return sample_output, logits_output
|
362
366
|
|
363
367
|
def get_attention_sliding_window_size(self):
|
364
368
|
return get_attention_sliding_window_size(self.config)
|
sglang/srt/models/gpt_bigcode.py
CHANGED
@@ -35,6 +35,7 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
35
35
|
from sglang.srt.layers.activation import get_act_fn
|
36
36
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
37
37
|
from sglang.srt.layers.radix_attention import RadixAttention
|
38
|
+
from sglang.srt.layers.sampler import Sampler
|
38
39
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
39
40
|
|
40
41
|
|
@@ -261,6 +262,7 @@ class GPTBigCodeForCausalLM(nn.Module):
|
|
261
262
|
if lora_config:
|
262
263
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
263
264
|
self.logits_processor = LogitsProcessor(config)
|
265
|
+
self.sampler = Sampler()
|
264
266
|
|
265
267
|
@torch.no_grad()
|
266
268
|
def forward(
|
@@ -270,9 +272,11 @@ class GPTBigCodeForCausalLM(nn.Module):
|
|
270
272
|
input_metadata: InputMetadata,
|
271
273
|
) -> torch.Tensor:
|
272
274
|
hidden_states = self.transformer(input_ids, positions, input_metadata)
|
273
|
-
|
275
|
+
logits_output = self.logits_processor(
|
274
276
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
275
277
|
)
|
278
|
+
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
279
|
+
return sample_output, logits_output
|
276
280
|
|
277
281
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
278
282
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
sglang/srt/models/grok.py
CHANGED
@@ -46,6 +46,7 @@ from sglang.srt.layers.fused_moe import FusedMoE
|
|
46
46
|
from sglang.srt.layers.layernorm import RMSNorm
|
47
47
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
48
48
|
from sglang.srt.layers.radix_attention import RadixAttention
|
49
|
+
from sglang.srt.layers.sampler import Sampler
|
49
50
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
50
51
|
|
51
52
|
|
@@ -297,6 +298,7 @@ class Grok1ForCausalLM(nn.Module):
|
|
297
298
|
self.model = Grok1Model(config, quant_config=quant_config)
|
298
299
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
299
300
|
self.logits_processor = LogitsProcessor(config)
|
301
|
+
self.sampler = Sampler()
|
300
302
|
|
301
303
|
# Monkey patch _prepare_weights to load pre-sharded weights
|
302
304
|
setattr(DefaultModelLoader, "_prepare_weights", _prepare_presharded_weights)
|
@@ -313,9 +315,11 @@ class Grok1ForCausalLM(nn.Module):
|
|
313
315
|
input_embeds: torch.Tensor = None,
|
314
316
|
) -> torch.Tensor:
|
315
317
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
316
|
-
|
318
|
+
logits_output = self.logits_processor(
|
317
319
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
318
320
|
)
|
321
|
+
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
322
|
+
return sample_output, logits_output
|
319
323
|
|
320
324
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
321
325
|
stacked_params_mapping = [
|
sglang/srt/models/internlm2.py
CHANGED
@@ -40,6 +40,7 @@ from sglang.srt.layers.activation import SiluAndMul
|
|
40
40
|
from sglang.srt.layers.layernorm import RMSNorm
|
41
41
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
42
42
|
from sglang.srt.layers.radix_attention import RadixAttention
|
43
|
+
from sglang.srt.layers.sampler import Sampler
|
43
44
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
44
45
|
|
45
46
|
|
@@ -262,6 +263,7 @@ class InternLM2ForCausalLM(nn.Module):
|
|
262
263
|
self.model = InternLM2Model(config, quant_config)
|
263
264
|
self.output = ParallelLMHead(config.vocab_size, config.hidden_size)
|
264
265
|
self.logits_processor = LogitsProcessor(config)
|
266
|
+
self.sampler = Sampler()
|
265
267
|
|
266
268
|
@torch.no_grad()
|
267
269
|
def forward(
|
@@ -272,9 +274,11 @@ class InternLM2ForCausalLM(nn.Module):
|
|
272
274
|
input_embeds: torch.Tensor = None,
|
273
275
|
) -> torch.Tensor:
|
274
276
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
275
|
-
|
277
|
+
logits_output = self.logits_processor(
|
276
278
|
input_ids, hidden_states, self.output.weight, input_metadata
|
277
279
|
)
|
280
|
+
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
281
|
+
return sample_output, logits_output
|
278
282
|
|
279
283
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
280
284
|
stacked_params_mapping = [
|
sglang/srt/models/llama2.py
CHANGED
@@ -39,8 +39,9 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
39
39
|
|
40
40
|
from sglang.srt.layers.activation import SiluAndMul
|
41
41
|
from sglang.srt.layers.layernorm import RMSNorm
|
42
|
-
from sglang.srt.layers.logits_processor import
|
42
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
|
43
43
|
from sglang.srt.layers.radix_attention import RadixAttention
|
44
|
+
from sglang.srt.layers.sampler import Sampler
|
44
45
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
45
46
|
|
46
47
|
|
@@ -302,6 +303,7 @@ class LlamaForCausalLM(nn.Module):
|
|
302
303
|
self.model = LlamaModel(config, quant_config=quant_config)
|
303
304
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
304
305
|
self.logits_processor = LogitsProcessor(config)
|
306
|
+
self.sampler = Sampler()
|
305
307
|
|
306
308
|
@torch.no_grad()
|
307
309
|
def forward(
|
@@ -310,11 +312,13 @@ class LlamaForCausalLM(nn.Module):
|
|
310
312
|
positions: torch.Tensor,
|
311
313
|
input_metadata: InputMetadata,
|
312
314
|
input_embeds: torch.Tensor = None,
|
313
|
-
) ->
|
315
|
+
) -> LogitsProcessorOutput:
|
314
316
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
315
|
-
|
317
|
+
logits_output = self.logits_processor(
|
316
318
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
317
319
|
)
|
320
|
+
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
321
|
+
return sample_output, logits_output
|
318
322
|
|
319
323
|
def get_module_name(self, name):
|
320
324
|
stacked_params_mapping = [
|
@@ -24,7 +24,7 @@ from vllm.distributed import get_tensor_model_parallel_rank
|
|
24
24
|
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
25
25
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
26
26
|
|
27
|
-
from sglang.srt.layers.logits_processor import
|
27
|
+
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
|
28
28
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
29
29
|
from sglang.srt.models.llama2 import LlamaModel
|
30
30
|
|
@@ -65,7 +65,7 @@ class LlamaForClassification(nn.Module):
|
|
65
65
|
(input_metadata.batch_size, self.config.classification_out_size)
|
66
66
|
).to(input_ids.device)
|
67
67
|
|
68
|
-
return
|
68
|
+
return LogitsProcessorOutput(
|
69
69
|
next_token_logits=scores,
|
70
70
|
next_token_logprobs=scores,
|
71
71
|
normalized_prompt_logprobs=scores,
|
sglang/srt/models/minicpm.py
CHANGED
@@ -39,6 +39,7 @@ from sglang.srt.layers.activation import SiluAndMul
|
|
39
39
|
from sglang.srt.layers.layernorm import RMSNorm
|
40
40
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
41
41
|
from sglang.srt.layers.radix_attention import RadixAttention
|
42
|
+
from sglang.srt.layers.sampler import Sampler
|
42
43
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
43
44
|
|
44
45
|
|
@@ -297,6 +298,7 @@ class MiniCPMForCausalLM(nn.Module):
|
|
297
298
|
self.scale_width = self.config.hidden_size / self.config.dim_model_base
|
298
299
|
|
299
300
|
self.logits_processor = LogitsProcessor(config)
|
301
|
+
self.sampler = Sampler()
|
300
302
|
|
301
303
|
@torch.no_grad()
|
302
304
|
def forward(
|
@@ -314,9 +316,11 @@ class MiniCPMForCausalLM(nn.Module):
|
|
314
316
|
lm_head_weight = self.model.embed_tokens.weight
|
315
317
|
else:
|
316
318
|
lm_head_weight = self.lm_head.weight
|
317
|
-
|
319
|
+
logits_output = self.logits_processor(
|
318
320
|
input_ids, hidden_states, lm_head_weight, input_metadata
|
319
321
|
)
|
322
|
+
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
323
|
+
return sample_output, logits_output
|
320
324
|
|
321
325
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
322
326
|
stacked_params_mapping = [
|
sglang/srt/models/mixtral.py
CHANGED
@@ -41,6 +41,7 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
41
41
|
from sglang.srt.layers.layernorm import RMSNorm
|
42
42
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
43
43
|
from sglang.srt.layers.radix_attention import RadixAttention
|
44
|
+
from sglang.srt.layers.sampler import Sampler
|
44
45
|
from sglang.srt.model_executor.forward_batch_info import InputMetadata
|
45
46
|
|
46
47
|
|
@@ -299,6 +300,7 @@ class MixtralForCausalLM(nn.Module):
|
|
299
300
|
self.model = MixtralModel(config, quant_config=quant_config, prefix="model")
|
300
301
|
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
301
302
|
self.logits_processor = LogitsProcessor(config)
|
303
|
+
self.sampler = Sampler()
|
302
304
|
|
303
305
|
def forward(
|
304
306
|
self,
|
@@ -308,9 +310,11 @@ class MixtralForCausalLM(nn.Module):
|
|
308
310
|
input_embeds: torch.Tensor = None,
|
309
311
|
) -> torch.Tensor:
|
310
312
|
hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
|
311
|
-
|
313
|
+
logits_output = self.logits_processor(
|
312
314
|
input_ids, hidden_states, self.lm_head.weight, input_metadata
|
313
315
|
)
|
316
|
+
sample_output = self.sampler(logits_output, input_metadata.sampling_info)
|
317
|
+
return sample_output, logits_output
|
314
318
|
|
315
319
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
316
320
|
stacked_params_mapping = [
|
@@ -358,7 +362,7 @@ class MixtralForCausalLM(nn.Module):
|
|
358
362
|
weight_loader(
|
359
363
|
param,
|
360
364
|
loaded_weight,
|
361
|
-
|
365
|
+
name,
|
362
366
|
shard_id=shard_id,
|
363
367
|
expert_id=expert_id,
|
364
368
|
)
|