sglang 0.2.14.post1__py3-none-any.whl → 0.2.14.post2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
sglang/srt/utils.py CHANGED
@@ -26,7 +26,7 @@ import struct
26
26
  import time
27
27
  from importlib.metadata import PackageNotFoundError, version
28
28
  from io import BytesIO
29
- from typing import List, Optional
29
+ from typing import List, Optional, Union
30
30
 
31
31
  import numpy as np
32
32
  import psutil
@@ -193,35 +193,16 @@ def allocate_init_ports(
193
193
  return ret_ports[0], ret_ports[1:num_ports_needed]
194
194
 
195
195
 
196
- def get_int_token_logit_bias(tokenizer, vocab_size):
197
- """Get the logit bias for integer-only tokens."""
198
- # a bug when model's vocab size > tokenizer.vocab_size
199
- if tokenizer == None:
200
- return [-1e5] * vocab_size
201
- vocab_size = tokenizer.vocab_size
202
- logit_bias = np.zeros(vocab_size, dtype=np.float32)
203
- for t_id in range(vocab_size):
204
- ss = tokenizer.decode([t_id]).strip()
205
- if not (ss.isdigit() or len(ss) == 0 or t_id == tokenizer.eos_token_id):
206
- logit_bias[t_id] = -1e5
207
-
208
- return logit_bias
209
-
210
-
211
- def is_multimodal_model(model):
212
- from sglang.srt.model_config import ModelConfig
213
-
214
- if isinstance(model, str):
215
- model = model.lower()
216
- return "llava" in model or "yi-vl" in model or "llava-next" in model
217
-
218
- if isinstance(model, ModelConfig):
219
- model_path = model.path.lower()
220
- return (
221
- "llava" in model_path or "yi-vl" in model_path or "llava-next" in model_path
222
- )
223
-
224
- raise ValueError("unrecognized type")
196
+ def is_multimodal_model(model_architectures):
197
+ if (
198
+ "LlavaLlamaForCausalLM" in model_architectures
199
+ or "LlavaQwenForCausalLM" in model_architectures
200
+ or "LlavaMistralForCausalLM" in model_architectures
201
+ or "LlavaVidForCausalLM" in model_architectures
202
+ ):
203
+ return True
204
+ else:
205
+ return False
225
206
 
226
207
 
227
208
  def is_generation_model(model_architectures, is_embedding: bool = False):
@@ -317,12 +298,14 @@ def decode_video_base64(video_base64):
317
298
  ) # Return an empty array and size tuple if no frames were found
318
299
 
319
300
 
320
- def load_image(image_file):
301
+ def load_image(image_file: Union[str, bytes]):
321
302
  from PIL import Image
322
303
 
323
304
  image = image_size = None
324
305
 
325
- if image_file.startswith("http://") or image_file.startswith("https://"):
306
+ if isinstance(image_file, bytes):
307
+ image = Image.open(BytesIO(image_file))
308
+ elif image_file.startswith("http://") or image_file.startswith("https://"):
326
309
  timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
327
310
  response = requests.get(image_file, timeout=timeout)
328
311
  image = Image.open(BytesIO(response.content))
@@ -334,8 +317,10 @@ def load_image(image_file):
334
317
  elif image_file.startswith("video:"):
335
318
  image_file = image_file.replace("video:", "")
336
319
  image, image_size = decode_video_base64(image_file)
337
- else:
320
+ elif isinstance(image_file, str):
338
321
  image = Image.open(BytesIO(base64.b64decode(image_file)))
322
+ else:
323
+ raise ValueError(f"Invalid image: {image}")
339
324
 
340
325
  return image, image_size
341
326
 
sglang/test/runners.py CHANGED
@@ -30,7 +30,7 @@ DEFAULT_PROMPTS = [
30
30
  # the output of gemma-2-2b from SRT is unstable on the commented prompt
31
31
  # "The capital of France is",
32
32
  "Apple is red. Banana is Yellow. " * 800 + "Apple is",
33
- "The capital of the United Kindom is",
33
+ "The capital of the United Kingdom is",
34
34
  "Today is a sunny day and I like",
35
35
  "AI is a field of computer science focused on",
36
36
  ]
@@ -3,7 +3,7 @@ import unittest
3
3
 
4
4
  import torch
5
5
 
6
- from sglang.srt.layers.layernorm import RMSNorm
6
+ from sglang.srt.layers.layernorm import GemmaRMSNorm, RMSNorm
7
7
 
8
8
 
9
9
  class TestRMSNorm(unittest.TestCase):
@@ -56,5 +56,57 @@ class TestRMSNorm(unittest.TestCase):
56
56
  self._run_rms_norm_test(*params)
57
57
 
58
58
 
59
+ class TestGemmaRMSNorm(unittest.TestCase):
60
+ DTYPES = [torch.half, torch.bfloat16]
61
+ NUM_TOKENS = [7, 83, 4096]
62
+ HIDDEN_SIZES = [768, 769, 770, 771, 5120, 5124, 5125, 5126, 8192, 8199]
63
+ ADD_RESIDUAL = [False, True]
64
+ SEEDS = [0]
65
+
66
+ @classmethod
67
+ def setUpClass(cls):
68
+ if not torch.cuda.is_available():
69
+ raise unittest.SkipTest("CUDA is not available")
70
+ torch.set_default_device("cuda")
71
+
72
+ def _run_gemma_rms_norm_test(
73
+ self, num_tokens, hidden_size, add_residual, dtype, seed
74
+ ):
75
+ torch.manual_seed(seed)
76
+
77
+ layer = GemmaRMSNorm(hidden_size).to(dtype=dtype)
78
+ layer.weight.data.normal_(mean=1.0, std=0.1)
79
+ scale = 1 / (2 * hidden_size)
80
+ x = torch.randn(num_tokens, hidden_size, dtype=dtype) * scale
81
+ residual = torch.randn_like(x) * scale if add_residual else None
82
+
83
+ with torch.inference_mode():
84
+ ref_out = layer.forward_native(x, residual)
85
+ out = layer(x, residual)
86
+
87
+ if add_residual:
88
+ self.assertTrue(torch.allclose(out[0], ref_out[0], atol=1e-3, rtol=1e-3))
89
+ self.assertTrue(torch.allclose(out[1], ref_out[1], atol=1e-3, rtol=1e-3))
90
+ else:
91
+ self.assertTrue(torch.allclose(out, ref_out, atol=1e-3, rtol=1e-3))
92
+
93
+ def test_gemma_rms_norm(self):
94
+ for params in itertools.product(
95
+ self.NUM_TOKENS,
96
+ self.HIDDEN_SIZES,
97
+ self.ADD_RESIDUAL,
98
+ self.DTYPES,
99
+ self.SEEDS,
100
+ ):
101
+ with self.subTest(
102
+ num_tokens=params[0],
103
+ hidden_size=params[1],
104
+ add_residual=params[2],
105
+ dtype=params[3],
106
+ seed=params[4],
107
+ ):
108
+ self._run_gemma_rms_norm_test(*params)
109
+
110
+
59
111
  if __name__ == "__main__":
60
112
  unittest.main(verbosity=2)
sglang/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.2.14.post1"
1
+ __version__ = "0.2.14.post2"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: sglang
3
- Version: 0.2.14.post1
3
+ Version: 0.2.14.post2
4
4
  Summary: SGLang is yet another fast serving framework for large language models and vision language models.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -312,7 +312,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
312
312
  ### Method 2: From source
313
313
  ```
314
314
  # Use the last release branch
315
- git clone -b v0.2.14.post1 https://github.com/sgl-project/sglang.git
315
+ git clone -b v0.2.14.post2 https://github.com/sgl-project/sglang.git
316
316
  cd sglang
317
317
 
318
318
  pip install --upgrade pip
@@ -496,7 +496,7 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
496
496
  - Qwen / Qwen 2 / Qwen 2 MoE
497
497
  - DeepSeek / DeepSeek 2
498
498
  - [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
499
- - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava --chunked-prefill-size=16384`
499
+ - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
500
500
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
501
501
  - LLaVA 1.5 / 1.6 / NeXT
502
502
  - `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
@@ -5,8 +5,9 @@ sglang/bench_serving.py,sha256=J_mMwnmDn0Jt07mzdGAuYOxpockHPLYJFL-kwoaqASY,36527
5
5
  sglang/check_env.py,sha256=rGRABCgt-0SfUrow4px28b2P59aMn8eVTnN5eZc_a8s,5397
6
6
  sglang/global_config.py,sha256=nwOjUflwqLQySPUMvk8Hk63TIS6mknh_ODSW3CZ1rJw,1704
7
7
  sglang/launch_server.py,sha256=FODfO0DW546dh-u1qDlWtrhsmj6hxkarXXv3cIdgkj8,549
8
+ sglang/launch_server_llavavid.py,sha256=ZftLtb2XCQfJ-pNCTUPO5Ed1GjuDwHCPiILuu9Yf_kQ,1022
8
9
  sglang/utils.py,sha256=zFYGkC4vOUR3sTv1TmQXcsOLZDtDBR3wnjqnDp3xMIs,8352
9
- sglang/version.py,sha256=-MR2TfhYp1Y9iHDXSv_cRGYS5Mzv-azCfIoLfZjKpgg,29
10
+ sglang/version.py,sha256=FROfh1JZ6339QTAJubMDMSSLQNViZUIOrsglHiujyro,29
10
11
  sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
12
  sglang/lang/chat_template.py,sha256=uqI_I9zIKXGXg7-W-yjqvx1ZeS_TuwFCms6wkmC2QmY,13411
12
13
  sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
@@ -22,20 +23,20 @@ sglang/lang/backend/openai.py,sha256=qM7eVH_kMxnDd2rpxOH0v76KxtOJFlAwgLgWIKvFGCI
22
23
  sglang/lang/backend/runtime_endpoint.py,sha256=SDlp03EuQEK1eGK4_IaFySWgxlp4wCs3EPewZ6O640E,9549
23
24
  sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
24
25
  sglang/srt/conversation.py,sha256=Ze2_dTHG6jc04ti7vuOEnoEe1ehvhxCJRpa4EYD0T_8,18494
25
- sglang/srt/hf_transformers_utils.py,sha256=OP5uBwnWiam6h9QvkBaG-nrDgkEUEwLXy1IWvW7rrRo,11737
26
+ sglang/srt/hf_transformers_utils.py,sha256=Mx6SvBICW9954Hu0iLwx6oPnwrcErsL9PsNTcrVs5bs,6034
26
27
  sglang/srt/mm_utils.py,sha256=zox644S3IHUWmADdK4MnIbdTS2DWHOy0_Dq0gCU38QQ,12273
27
28
  sglang/srt/model_config.py,sha256=k4OfRV-szWkFaJMIC40JoJGJ75AfYQ2hf4M1dS1aQ-o,6366
28
- sglang/srt/server.py,sha256=UE2Vc7abITVe-yhe9WpnCCa_FdeDPUY8462uSpGDutA,19807
29
+ sglang/srt/server.py,sha256=QFHU3P1d9c3h2_IAZwd9EXKxq1PiviIc37tqXohzZXA,19840
29
30
  sglang/srt/server_args.py,sha256=GiDyPWCvYA_98mSE9LuvUoEodo9gRnNPPIPn0nFkxUs,18259
30
- sglang/srt/utils.py,sha256=x9MdBu0e8HAgaNIGuxiMVL7_nh03kl_rWuMnLas_Dgo,24327
31
+ sglang/srt/utils.py,sha256=4cFW94lqahjZh9_Hn46ktbRmkAJZpzFWJxnllzBWit8,23866
31
32
  sglang/srt/constrained/__init__.py,sha256=NLpZGj9RIx83ejDrM_pfaRtqGgaPq_ggJszPQENUJ2E,2037
32
33
  sglang/srt/constrained/base_tool_cache.py,sha256=5sazBMHHDpHMoqOjuY6itCxwTmIFCflIWEDXMtmrPVs,2006
33
34
  sglang/srt/constrained/fsm_cache.py,sha256=1gvJzRxt6N_4KM1phlrFGPBquYiOUs_d8XIc7wztVk8,3100
34
35
  sglang/srt/constrained/jump_forward.py,sha256=LWRsmGPQcH6KT87wXwCRqtblU3pcAVCEzO0nWPxevs0,6636
35
- sglang/srt/layers/activation.py,sha256=CSKmMI2vLwLZL3heWdkbd3vYWzerIdmlvKJGKdu5kgk,4581
36
+ sglang/srt/layers/activation.py,sha256=JEXNTgqxoiU4N-gVm4XMjobhft4JKDcMrgTkfpsRUzM,4856
36
37
  sglang/srt/layers/decode_attention.py,sha256=TPD_608ZX9fQ_HDImifkxG_qcEYmimbEYY8lCBIjFuM,16628
37
38
  sglang/srt/layers/extend_attention.py,sha256=h4O0R7PJpAVKS3Vx_583zhrFPD0vv6XqzvOcHBI3zoc,14268
38
- sglang/srt/layers/layernorm.py,sha256=RzN4eESN9S8mw32r2Nxarq7wKFdeG1yhxPmehUMx79s,2073
39
+ sglang/srt/layers/layernorm.py,sha256=RXuS4UyksatqTF6lSK7VYyEiUEnBiNIBlEn8q4w84UA,3404
39
40
  sglang/srt/layers/logits_processor.py,sha256=1hrxgvV1_qDsHiDak1JH6Vhn-hmkzi3AberLQ6-qkWw,13081
40
41
  sglang/srt/layers/pooler.py,sha256=qNMG3Ycvt2yf9mk1Lcs-2K7oPeCuVeDYoHAxkMu9b_Q,1610
41
42
  sglang/srt/layers/prefill_attention.py,sha256=y7vdcuX8lMa9Qf_jQYNDvQO9PVCBQSs3hb5LV2DFgpU,5256
@@ -47,43 +48,43 @@ sglang/srt/layers/fused_moe/layer.py,sha256=GT3r2UPx_PAufJd0SUMOXyh76ymAeYDubd0S
47
48
  sglang/srt/managers/controller_multi.py,sha256=R45ST6oBlIwfUwuibMw0sgTk8iqphb_rFyIdW048JA4,6472
48
49
  sglang/srt/managers/controller_single.py,sha256=tnc71OTe8KDYouMdfqgwBT4lX5nZt6Rak9t2GmKtAME,5119
49
50
  sglang/srt/managers/detokenizer_manager.py,sha256=yQkL5gLomLiy1qc6e9HNz8hcj7JQFHm1AfIrzpXaWJE,6852
50
- sglang/srt/managers/io_struct.py,sha256=4Cs655K4n_F_usu6R3YE5_RdcE0XO9AXQNk5vl2II2c,10534
51
+ sglang/srt/managers/io_struct.py,sha256=c7CASuSdkCIhYyVAKJ-A8x9lfV4UgwtzMPDID5T_17c,10558
51
52
  sglang/srt/managers/policy_scheduler.py,sha256=7HNUxBKJE444s_bHcPpbnHCygsnH-NIXYNSC2q6mRmc,8584
52
- sglang/srt/managers/schedule_batch.py,sha256=hkCf0IGxZanXLMSwfg5lub0NFNRGuykumAUtCPeryBU,25578
53
- sglang/srt/managers/tokenizer_manager.py,sha256=aaZV7G3-m35pba1meRapqO7bdPjM2Cmkue5lbR_Jv3M,28836
54
- sglang/srt/managers/tp_worker.py,sha256=-icuKdRrfb51hx8BsmQUlBQVpsvWlZ34Z2qIdPZSLrM,36433
53
+ sglang/srt/managers/schedule_batch.py,sha256=ncEsP9T9xag6JXSb_nheoTNzKURytKeF_z5oKCbQJTU,25576
54
+ sglang/srt/managers/tokenizer_manager.py,sha256=dEFpenfdzdsfKnmaGH5hrBw-37ZfxYBYTM7k-8h9vnc,29432
55
+ sglang/srt/managers/tp_worker.py,sha256=wVJKQQNFr6pSwFmz0RGejTv-qxsN_atvx_Hk7gqRFUA,36416
55
56
  sglang/srt/mem_cache/base_prefix_cache.py,sha256=qEQwEkG4E5rab2ZoTqcesf5pR_J4nV2jBxIHsBJHtIM,924
56
57
  sglang/srt/mem_cache/chunk_cache.py,sha256=CjZZYlqQzq7mYOiBMLWA5XNb6HIyh5lIMdY-K0OUZEc,2368
57
58
  sglang/srt/mem_cache/flush_cache.py,sha256=pTLKPRB17U6vl5RFJJvuJ4jCL2SyomgkUBNlkDpGRqo,978
58
59
  sglang/srt/mem_cache/memory_pool.py,sha256=4br3Ea2bfA-YsF_sPOVHlF2zQzYGd8fVaYTp197yZsE,7871
59
60
  sglang/srt/mem_cache/radix_cache.py,sha256=0AVr1BKKDOtTyybUkwxrz6PT8khDx-DpzgN5MgL27IE,10088
60
61
  sglang/srt/model_executor/cuda_graph_runner.py,sha256=X4sC6xCnjsYjaM8YStyu2_IDIMbD1Muntd5HO1W-wiw,12011
61
- sglang/srt/model_executor/forward_batch_info.py,sha256=Pv4vMXvCyJzRku2EHSVaNng28qglZQeska9wVkKUhyE,15544
62
- sglang/srt/model_executor/model_runner.py,sha256=rXyGUQaTZDyi_AU3QLY5mRIf-h0yzJrtJ1PtnCuyxNM,24064
63
- sglang/srt/models/chatglm.py,sha256=aoEgA2nflcOCIKtZojhUoboqxSP6i5IrrvuDOpzNPnE,13844
62
+ sglang/srt/model_executor/forward_batch_info.py,sha256=9rxhUCztyMdPao4J-H64RJg_vzfAoV7_ipYXk17H2NE,15171
63
+ sglang/srt/model_executor/model_runner.py,sha256=tmzqUA-0ak0yvsJIBkvrFQSJF1feh491Q9c-2sjJRYc,24437
64
+ sglang/srt/models/chatglm.py,sha256=eCprAa1AKMcirVuPCqyQtKVXxok_kknNbUncdN1R7o0,13838
64
65
  sglang/srt/models/commandr.py,sha256=2rAXRZRb4PkJZ4NWEqP_rIgsjxbdZyHpuoMOarqTWzQ,14163
65
66
  sglang/srt/models/dbrx.py,sha256=N_0Ku_p1NCsc29NktUBNqPv7Z33XhYxOZK5xN7nzW4s,14661
66
67
  sglang/srt/models/deepseek.py,sha256=7UJgde1EV9ey6d-CKRcEyTKh1_WhZdatpZiltIuqpik,16006
67
68
  sglang/srt/models/deepseek_v2.py,sha256=uk--2a1e83H6U9wTx_wd3UvkS3VrSRSkjCOjky0R0uo,27004
68
- sglang/srt/models/gemma.py,sha256=3orOUznoGt2NxVKO5c8AjD_ue0gWqwb7LnKbhlcS5Vg,12276
69
- sglang/srt/models/gemma2.py,sha256=z-zhvLy3CX6OA_LF-lJSjpbN6dlyqFrHG4Gai7l0eM0,16584
69
+ sglang/srt/models/gemma.py,sha256=GkwgGFHgGlXgBZN7s7Wooz5tMyCp1YtgLahU2NOo66M,12273
70
+ sglang/srt/models/gemma2.py,sha256=sFfCNEm0_OOWElRSTDuroRv8wNMX8v_81Uko9m546KA,14923
70
71
  sglang/srt/models/gpt_bigcode.py,sha256=kzHYogeGXZF4KHpkXA-RGqvs016mA-6klWxD2QJTi9E,10195
71
- sglang/srt/models/grok.py,sha256=mdzd-fz8FirICdcpYLD94vwY3_ca0lxpIze8fAqDbHg,14805
72
+ sglang/srt/models/grok.py,sha256=6I4OwQwNyAbh5GF24_SRm12XYBvM9iGWB-T4TSTJ0wU,14929
72
73
  sglang/srt/models/internlm2.py,sha256=6j7JH0p3yib8GZDH8Cmrs-pgwfH3eOlAK6V3Cq64O7w,12202
73
- sglang/srt/models/llama2.py,sha256=HmzE1I8OnesmrdPY5b56l7okhWH_lRvWAg16K-UwKHg,14300
74
- sglang/srt/models/llama_classification.py,sha256=Dvzy3PfETiJtnKFOk8qDDLUoZECf_cpSrNeA60PaDo4,4932
75
- sglang/srt/models/llama_embedding.py,sha256=NQCQ3MnK3iRohL-UdY5UWxW4LlZ3RQZ7w4mlFOnpVrM,3696
76
- sglang/srt/models/llava.py,sha256=iuXLJVDWBiYo8zJuDPSSjt2LYqbkg2MAcOFUZO1fOX4,24353
77
- sglang/srt/models/llavavid.py,sha256=MX7YpqYh5J4BoOnV7vVAIfoOlBFQXYpp8Kpe7WK0ejk,13562
74
+ sglang/srt/models/llama2.py,sha256=gsj52M_H_oGJljvUBT6cSX2WOfK8WtLzcwwha0uMkig,14178
75
+ sglang/srt/models/llama_classification.py,sha256=zdhkqX7qM-gQCoR-dqdSSwk8B0hjMRW1sFcj00VESxk,4702
76
+ sglang/srt/models/llama_embedding.py,sha256=Z3FWGNEWrperMxnVqOhxv6vApNpChh-AaahlEqeYOrk,3574
77
+ sglang/srt/models/llava.py,sha256=ypq0hWprqN73P-VuYfSAZ1_Otm48qDqEPA2YO583goM,23453
78
+ sglang/srt/models/llavavid.py,sha256=Dx_wED6stC8lTASUrGt6B3c8wQ9lVrX-76-dNyyuVVg,11934
78
79
  sglang/srt/models/minicpm.py,sha256=ioqCsTCE_oF8xqGF5fm5cK9dclK5Y0EQ1UJfyteIDDo,13825
79
80
  sglang/srt/models/mistral.py,sha256=jlrWBVNXbAUziAaIdHAjFcOJnKtn9Bl8rBd65ypJM-I,819
80
81
  sglang/srt/models/mixtral.py,sha256=cZK-1kGXQC8ZC0tFNmbAoqWlyrrvv5omumpDdEwzzss,13623
81
82
  sglang/srt/models/mixtral_quant.py,sha256=wMACJq78OTWj7HlqPDRNEh8cjrVAjKqJEsOG3CO5xow,14072
82
83
  sglang/srt/models/qwen.py,sha256=ssdSgVuhT1Ei0JPa0xwqzrwwPNwkCHRJA4q70hK-Z7E,9988
83
- sglang/srt/models/qwen2.py,sha256=RHzzHfrq3_VoYkjoJu10z0PtyQ_Mit3mHHAO07214q0,12577
84
- sglang/srt/models/qwen2_moe.py,sha256=-Ijn_H2IGCjQAYA-9teS9IXKTPMBWSkkPp0Nox6MCuQ,17729
84
+ sglang/srt/models/qwen2.py,sha256=meejtj0IHFSk0O7USt5rmnTwn3TcZvindWBLvxWA-rE,12455
85
+ sglang/srt/models/qwen2_moe.py,sha256=lBaN1d_-yW42zR9eJT1_OpGWoE-PsfgI3T12ZkjyuRE,17316
85
86
  sglang/srt/models/stablelm.py,sha256=30ngpc0Xq3VxzXJlf6svP1oax8Q3krMJkxM8PVKtZWU,11359
86
- sglang/srt/models/yivl.py,sha256=p4s_D_m4H2exP4b91Y-CTkq8T-eIG3DJsFy9pB0e7TM,4932
87
+ sglang/srt/models/yivl.py,sha256=B6MELthWIm5KdSzX3o2tbbpApY8XdjUdmcQSD4dQe_I,4835
87
88
  sglang/srt/openai_api/adapter.py,sha256=5k2YGX6rEwpYlF3LaDs5Qvh6vD25LhAnPKWhcj2vnT0,49385
88
89
  sglang/srt/openai_api/protocol.py,sha256=73i1iFVI0tAJCLMV9QT4rgMzbyYoZ8-iuTIYs_Yx0Xo,9487
89
90
  sglang/srt/sampling/sampling_batch_info.py,sha256=TJLKc-FXqrI3-hHKEf-Bfu-W8NxNOEkmNvPaTN1O-g4,4911
@@ -95,7 +96,7 @@ sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py,sha256=XJZP0C4NFyXgc
95
96
  sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py,sha256=0PlANTrR959foTA3Nj5qBE7ndaOZgG-9X6LhzlmEUc8,2533
96
97
  sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=v9jOgA0-I31WcrhIydiFbpy2ZJPLytFLGM98NRPd2sU,2820
97
98
  sglang/test/run_eval.py,sha256=NWxeLWmInBgkCvC9Jr_QzF7GfAiBve3Gf1JQrEOlNlU,3899
98
- sglang/test/runners.py,sha256=7bh1ApkK6LCouQJzFXi4s2woFvmIUkh6wDeQA2luGCY,7686
99
+ sglang/test/runners.py,sha256=0ttvvAIpYExQ-fmnkog5432B0bttfdxpT7AMKuGCfPU,7687
99
100
  sglang/test/simple_eval_common.py,sha256=r0G-9QLycs2ax3RMc44T_61fzMxlpTzv6pececC7lyY,12379
100
101
  sglang/test/simple_eval_gpqa.py,sha256=8Xt9Bw05c7SZTYrCZgB68OZUqUbLo69ywiyx0bTvSUk,3220
101
102
  sglang/test/simple_eval_humaneval.py,sha256=7lTi841NT58smNOtRwCedrdX9IWWypdLkOtaQOBy-GI,5687
@@ -103,12 +104,12 @@ sglang/test/simple_eval_math.py,sha256=6kGKNwNbLN-Af3Wj8WTimWhH-Xp3enDmSvvSjsgWU
103
104
  sglang/test/simple_eval_mgsm.py,sha256=wfbqJW9Rkc66vzq2fEMF6jchmoA8mw1OUiGU55cZ2B0,10261
104
105
  sglang/test/simple_eval_mmlu.py,sha256=FkwamjGMjueTixymkedF-YiPloSLiy4ftILFUrKZ9XI,4357
105
106
  sglang/test/test_activation.py,sha256=jkdNRzJnbd5OgZliQaIXpxovlcky17UrweomcOcMxoE,1442
106
- sglang/test/test_layernorm.py,sha256=VDdoeqGvebUa-l3rDiid6cC7wZq0Phpbm5fxxD0-cpg,1910
107
+ sglang/test/test_layernorm.py,sha256=IacByD5d-stXjzBz8Ypamc7povlcedpKPbb_4JLgo3c,3720
107
108
  sglang/test/test_programs.py,sha256=V_-Bx3lLkw37P6gDyA7mZCqxlyNMaFLBkRrPMQQQqn4,14909
108
109
  sglang/test/test_utils.py,sha256=HD-9rcj7EFS_NX1GQFU5613ITQlZaTK2l9RmqA0F7x4,14380
109
110
  sglang/test/srt/sampling/penaltylib/utils.py,sha256=-0p0rV-P4lNo7xAe3rQSBHTubc50a-DFyOQmLGAkgkQ,12515
110
- sglang-0.2.14.post1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
111
- sglang-0.2.14.post1.dist-info/METADATA,sha256=FstugZ3Zw82h3E_xf6fNBN9HjdMPF4kyXiQA_KpQ3ak,37163
112
- sglang-0.2.14.post1.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
113
- sglang-0.2.14.post1.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
114
- sglang-0.2.14.post1.dist-info/RECORD,,
111
+ sglang-0.2.14.post2.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
112
+ sglang-0.2.14.post2.dist-info/METADATA,sha256=9S2F8SVxiOz_XayLBGLAymw3HmhFEdI0S49DF7xGsU0,37134
113
+ sglang-0.2.14.post2.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
114
+ sglang-0.2.14.post2.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
115
+ sglang-0.2.14.post2.dist-info/RECORD,,