sglang 0.2.14.post1__py3-none-any.whl → 0.2.14.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/launch_server_llavavid.py +26 -0
- sglang/srt/hf_transformers_utils.py +0 -149
- sglang/srt/layers/activation.py +10 -4
- sglang/srt/layers/layernorm.py +47 -1
- sglang/srt/managers/io_struct.py +5 -4
- sglang/srt/managers/schedule_batch.py +5 -5
- sglang/srt/managers/tokenizer_manager.py +74 -61
- sglang/srt/managers/tp_worker.py +9 -10
- sglang/srt/model_executor/forward_batch_info.py +10 -20
- sglang/srt/model_executor/model_runner.py +15 -6
- sglang/srt/models/chatglm.py +1 -1
- sglang/srt/models/gemma.py +2 -2
- sglang/srt/models/gemma2.py +1 -51
- sglang/srt/models/grok.py +9 -3
- sglang/srt/models/llama2.py +3 -4
- sglang/srt/models/llama_classification.py +0 -4
- sglang/srt/models/llama_embedding.py +3 -4
- sglang/srt/models/llava.py +69 -91
- sglang/srt/models/llavavid.py +40 -86
- sglang/srt/models/qwen2.py +3 -4
- sglang/srt/models/qwen2_moe.py +7 -19
- sglang/srt/models/yivl.py +2 -7
- sglang/srt/server.py +3 -3
- sglang/srt/utils.py +18 -33
- sglang/test/runners.py +1 -1
- sglang/test/test_layernorm.py +53 -1
- sglang/version.py +1 -1
- {sglang-0.2.14.post1.dist-info → sglang-0.2.14.post2.dist-info}/METADATA +3 -3
- {sglang-0.2.14.post1.dist-info → sglang-0.2.14.post2.dist-info}/RECORD +32 -31
- {sglang-0.2.14.post1.dist-info → sglang-0.2.14.post2.dist-info}/LICENSE +0 -0
- {sglang-0.2.14.post1.dist-info → sglang-0.2.14.post2.dist-info}/WHEEL +0 -0
- {sglang-0.2.14.post1.dist-info → sglang-0.2.14.post2.dist-info}/top_level.txt +0 -0
sglang/srt/utils.py
CHANGED
@@ -26,7 +26,7 @@ import struct
|
|
26
26
|
import time
|
27
27
|
from importlib.metadata import PackageNotFoundError, version
|
28
28
|
from io import BytesIO
|
29
|
-
from typing import List, Optional
|
29
|
+
from typing import List, Optional, Union
|
30
30
|
|
31
31
|
import numpy as np
|
32
32
|
import psutil
|
@@ -193,35 +193,16 @@ def allocate_init_ports(
|
|
193
193
|
return ret_ports[0], ret_ports[1:num_ports_needed]
|
194
194
|
|
195
195
|
|
196
|
-
def
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
logit_bias[t_id] = -1e5
|
207
|
-
|
208
|
-
return logit_bias
|
209
|
-
|
210
|
-
|
211
|
-
def is_multimodal_model(model):
|
212
|
-
from sglang.srt.model_config import ModelConfig
|
213
|
-
|
214
|
-
if isinstance(model, str):
|
215
|
-
model = model.lower()
|
216
|
-
return "llava" in model or "yi-vl" in model or "llava-next" in model
|
217
|
-
|
218
|
-
if isinstance(model, ModelConfig):
|
219
|
-
model_path = model.path.lower()
|
220
|
-
return (
|
221
|
-
"llava" in model_path or "yi-vl" in model_path or "llava-next" in model_path
|
222
|
-
)
|
223
|
-
|
224
|
-
raise ValueError("unrecognized type")
|
196
|
+
def is_multimodal_model(model_architectures):
|
197
|
+
if (
|
198
|
+
"LlavaLlamaForCausalLM" in model_architectures
|
199
|
+
or "LlavaQwenForCausalLM" in model_architectures
|
200
|
+
or "LlavaMistralForCausalLM" in model_architectures
|
201
|
+
or "LlavaVidForCausalLM" in model_architectures
|
202
|
+
):
|
203
|
+
return True
|
204
|
+
else:
|
205
|
+
return False
|
225
206
|
|
226
207
|
|
227
208
|
def is_generation_model(model_architectures, is_embedding: bool = False):
|
@@ -317,12 +298,14 @@ def decode_video_base64(video_base64):
|
|
317
298
|
) # Return an empty array and size tuple if no frames were found
|
318
299
|
|
319
300
|
|
320
|
-
def load_image(image_file):
|
301
|
+
def load_image(image_file: Union[str, bytes]):
|
321
302
|
from PIL import Image
|
322
303
|
|
323
304
|
image = image_size = None
|
324
305
|
|
325
|
-
if image_file
|
306
|
+
if isinstance(image_file, bytes):
|
307
|
+
image = Image.open(BytesIO(image_file))
|
308
|
+
elif image_file.startswith("http://") or image_file.startswith("https://"):
|
326
309
|
timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
|
327
310
|
response = requests.get(image_file, timeout=timeout)
|
328
311
|
image = Image.open(BytesIO(response.content))
|
@@ -334,8 +317,10 @@ def load_image(image_file):
|
|
334
317
|
elif image_file.startswith("video:"):
|
335
318
|
image_file = image_file.replace("video:", "")
|
336
319
|
image, image_size = decode_video_base64(image_file)
|
337
|
-
|
320
|
+
elif isinstance(image_file, str):
|
338
321
|
image = Image.open(BytesIO(base64.b64decode(image_file)))
|
322
|
+
else:
|
323
|
+
raise ValueError(f"Invalid image: {image}")
|
339
324
|
|
340
325
|
return image, image_size
|
341
326
|
|
sglang/test/runners.py
CHANGED
@@ -30,7 +30,7 @@ DEFAULT_PROMPTS = [
|
|
30
30
|
# the output of gemma-2-2b from SRT is unstable on the commented prompt
|
31
31
|
# "The capital of France is",
|
32
32
|
"Apple is red. Banana is Yellow. " * 800 + "Apple is",
|
33
|
-
"The capital of the United
|
33
|
+
"The capital of the United Kingdom is",
|
34
34
|
"Today is a sunny day and I like",
|
35
35
|
"AI is a field of computer science focused on",
|
36
36
|
]
|
sglang/test/test_layernorm.py
CHANGED
@@ -3,7 +3,7 @@ import unittest
|
|
3
3
|
|
4
4
|
import torch
|
5
5
|
|
6
|
-
from sglang.srt.layers.layernorm import RMSNorm
|
6
|
+
from sglang.srt.layers.layernorm import GemmaRMSNorm, RMSNorm
|
7
7
|
|
8
8
|
|
9
9
|
class TestRMSNorm(unittest.TestCase):
|
@@ -56,5 +56,57 @@ class TestRMSNorm(unittest.TestCase):
|
|
56
56
|
self._run_rms_norm_test(*params)
|
57
57
|
|
58
58
|
|
59
|
+
class TestGemmaRMSNorm(unittest.TestCase):
|
60
|
+
DTYPES = [torch.half, torch.bfloat16]
|
61
|
+
NUM_TOKENS = [7, 83, 4096]
|
62
|
+
HIDDEN_SIZES = [768, 769, 770, 771, 5120, 5124, 5125, 5126, 8192, 8199]
|
63
|
+
ADD_RESIDUAL = [False, True]
|
64
|
+
SEEDS = [0]
|
65
|
+
|
66
|
+
@classmethod
|
67
|
+
def setUpClass(cls):
|
68
|
+
if not torch.cuda.is_available():
|
69
|
+
raise unittest.SkipTest("CUDA is not available")
|
70
|
+
torch.set_default_device("cuda")
|
71
|
+
|
72
|
+
def _run_gemma_rms_norm_test(
|
73
|
+
self, num_tokens, hidden_size, add_residual, dtype, seed
|
74
|
+
):
|
75
|
+
torch.manual_seed(seed)
|
76
|
+
|
77
|
+
layer = GemmaRMSNorm(hidden_size).to(dtype=dtype)
|
78
|
+
layer.weight.data.normal_(mean=1.0, std=0.1)
|
79
|
+
scale = 1 / (2 * hidden_size)
|
80
|
+
x = torch.randn(num_tokens, hidden_size, dtype=dtype) * scale
|
81
|
+
residual = torch.randn_like(x) * scale if add_residual else None
|
82
|
+
|
83
|
+
with torch.inference_mode():
|
84
|
+
ref_out = layer.forward_native(x, residual)
|
85
|
+
out = layer(x, residual)
|
86
|
+
|
87
|
+
if add_residual:
|
88
|
+
self.assertTrue(torch.allclose(out[0], ref_out[0], atol=1e-3, rtol=1e-3))
|
89
|
+
self.assertTrue(torch.allclose(out[1], ref_out[1], atol=1e-3, rtol=1e-3))
|
90
|
+
else:
|
91
|
+
self.assertTrue(torch.allclose(out, ref_out, atol=1e-3, rtol=1e-3))
|
92
|
+
|
93
|
+
def test_gemma_rms_norm(self):
|
94
|
+
for params in itertools.product(
|
95
|
+
self.NUM_TOKENS,
|
96
|
+
self.HIDDEN_SIZES,
|
97
|
+
self.ADD_RESIDUAL,
|
98
|
+
self.DTYPES,
|
99
|
+
self.SEEDS,
|
100
|
+
):
|
101
|
+
with self.subTest(
|
102
|
+
num_tokens=params[0],
|
103
|
+
hidden_size=params[1],
|
104
|
+
add_residual=params[2],
|
105
|
+
dtype=params[3],
|
106
|
+
seed=params[4],
|
107
|
+
):
|
108
|
+
self._run_gemma_rms_norm_test(*params)
|
109
|
+
|
110
|
+
|
59
111
|
if __name__ == "__main__":
|
60
112
|
unittest.main(verbosity=2)
|
sglang/version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "0.2.14.
|
1
|
+
__version__ = "0.2.14.post2"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: sglang
|
3
|
-
Version: 0.2.14.
|
3
|
+
Version: 0.2.14.post2
|
4
4
|
Summary: SGLang is yet another fast serving framework for large language models and vision language models.
|
5
5
|
License: Apache License
|
6
6
|
Version 2.0, January 2004
|
@@ -312,7 +312,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
|
|
312
312
|
### Method 2: From source
|
313
313
|
```
|
314
314
|
# Use the last release branch
|
315
|
-
git clone -b v0.2.14.
|
315
|
+
git clone -b v0.2.14.post2 https://github.com/sgl-project/sglang.git
|
316
316
|
cd sglang
|
317
317
|
|
318
318
|
pip install --upgrade pip
|
@@ -496,7 +496,7 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
|
|
496
496
|
- Qwen / Qwen 2 / Qwen 2 MoE
|
497
497
|
- DeepSeek / DeepSeek 2
|
498
498
|
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
|
499
|
-
- `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava
|
499
|
+
- `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
|
500
500
|
- Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
|
501
501
|
- LLaVA 1.5 / 1.6 / NeXT
|
502
502
|
- `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
|
@@ -5,8 +5,9 @@ sglang/bench_serving.py,sha256=J_mMwnmDn0Jt07mzdGAuYOxpockHPLYJFL-kwoaqASY,36527
|
|
5
5
|
sglang/check_env.py,sha256=rGRABCgt-0SfUrow4px28b2P59aMn8eVTnN5eZc_a8s,5397
|
6
6
|
sglang/global_config.py,sha256=nwOjUflwqLQySPUMvk8Hk63TIS6mknh_ODSW3CZ1rJw,1704
|
7
7
|
sglang/launch_server.py,sha256=FODfO0DW546dh-u1qDlWtrhsmj6hxkarXXv3cIdgkj8,549
|
8
|
+
sglang/launch_server_llavavid.py,sha256=ZftLtb2XCQfJ-pNCTUPO5Ed1GjuDwHCPiILuu9Yf_kQ,1022
|
8
9
|
sglang/utils.py,sha256=zFYGkC4vOUR3sTv1TmQXcsOLZDtDBR3wnjqnDp3xMIs,8352
|
9
|
-
sglang/version.py,sha256
|
10
|
+
sglang/version.py,sha256=FROfh1JZ6339QTAJubMDMSSLQNViZUIOrsglHiujyro,29
|
10
11
|
sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
11
12
|
sglang/lang/chat_template.py,sha256=uqI_I9zIKXGXg7-W-yjqvx1ZeS_TuwFCms6wkmC2QmY,13411
|
12
13
|
sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
|
@@ -22,20 +23,20 @@ sglang/lang/backend/openai.py,sha256=qM7eVH_kMxnDd2rpxOH0v76KxtOJFlAwgLgWIKvFGCI
|
|
22
23
|
sglang/lang/backend/runtime_endpoint.py,sha256=SDlp03EuQEK1eGK4_IaFySWgxlp4wCs3EPewZ6O640E,9549
|
23
24
|
sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
|
24
25
|
sglang/srt/conversation.py,sha256=Ze2_dTHG6jc04ti7vuOEnoEe1ehvhxCJRpa4EYD0T_8,18494
|
25
|
-
sglang/srt/hf_transformers_utils.py,sha256=
|
26
|
+
sglang/srt/hf_transformers_utils.py,sha256=Mx6SvBICW9954Hu0iLwx6oPnwrcErsL9PsNTcrVs5bs,6034
|
26
27
|
sglang/srt/mm_utils.py,sha256=zox644S3IHUWmADdK4MnIbdTS2DWHOy0_Dq0gCU38QQ,12273
|
27
28
|
sglang/srt/model_config.py,sha256=k4OfRV-szWkFaJMIC40JoJGJ75AfYQ2hf4M1dS1aQ-o,6366
|
28
|
-
sglang/srt/server.py,sha256=
|
29
|
+
sglang/srt/server.py,sha256=QFHU3P1d9c3h2_IAZwd9EXKxq1PiviIc37tqXohzZXA,19840
|
29
30
|
sglang/srt/server_args.py,sha256=GiDyPWCvYA_98mSE9LuvUoEodo9gRnNPPIPn0nFkxUs,18259
|
30
|
-
sglang/srt/utils.py,sha256=
|
31
|
+
sglang/srt/utils.py,sha256=4cFW94lqahjZh9_Hn46ktbRmkAJZpzFWJxnllzBWit8,23866
|
31
32
|
sglang/srt/constrained/__init__.py,sha256=NLpZGj9RIx83ejDrM_pfaRtqGgaPq_ggJszPQENUJ2E,2037
|
32
33
|
sglang/srt/constrained/base_tool_cache.py,sha256=5sazBMHHDpHMoqOjuY6itCxwTmIFCflIWEDXMtmrPVs,2006
|
33
34
|
sglang/srt/constrained/fsm_cache.py,sha256=1gvJzRxt6N_4KM1phlrFGPBquYiOUs_d8XIc7wztVk8,3100
|
34
35
|
sglang/srt/constrained/jump_forward.py,sha256=LWRsmGPQcH6KT87wXwCRqtblU3pcAVCEzO0nWPxevs0,6636
|
35
|
-
sglang/srt/layers/activation.py,sha256=
|
36
|
+
sglang/srt/layers/activation.py,sha256=JEXNTgqxoiU4N-gVm4XMjobhft4JKDcMrgTkfpsRUzM,4856
|
36
37
|
sglang/srt/layers/decode_attention.py,sha256=TPD_608ZX9fQ_HDImifkxG_qcEYmimbEYY8lCBIjFuM,16628
|
37
38
|
sglang/srt/layers/extend_attention.py,sha256=h4O0R7PJpAVKS3Vx_583zhrFPD0vv6XqzvOcHBI3zoc,14268
|
38
|
-
sglang/srt/layers/layernorm.py,sha256=
|
39
|
+
sglang/srt/layers/layernorm.py,sha256=RXuS4UyksatqTF6lSK7VYyEiUEnBiNIBlEn8q4w84UA,3404
|
39
40
|
sglang/srt/layers/logits_processor.py,sha256=1hrxgvV1_qDsHiDak1JH6Vhn-hmkzi3AberLQ6-qkWw,13081
|
40
41
|
sglang/srt/layers/pooler.py,sha256=qNMG3Ycvt2yf9mk1Lcs-2K7oPeCuVeDYoHAxkMu9b_Q,1610
|
41
42
|
sglang/srt/layers/prefill_attention.py,sha256=y7vdcuX8lMa9Qf_jQYNDvQO9PVCBQSs3hb5LV2DFgpU,5256
|
@@ -47,43 +48,43 @@ sglang/srt/layers/fused_moe/layer.py,sha256=GT3r2UPx_PAufJd0SUMOXyh76ymAeYDubd0S
|
|
47
48
|
sglang/srt/managers/controller_multi.py,sha256=R45ST6oBlIwfUwuibMw0sgTk8iqphb_rFyIdW048JA4,6472
|
48
49
|
sglang/srt/managers/controller_single.py,sha256=tnc71OTe8KDYouMdfqgwBT4lX5nZt6Rak9t2GmKtAME,5119
|
49
50
|
sglang/srt/managers/detokenizer_manager.py,sha256=yQkL5gLomLiy1qc6e9HNz8hcj7JQFHm1AfIrzpXaWJE,6852
|
50
|
-
sglang/srt/managers/io_struct.py,sha256=
|
51
|
+
sglang/srt/managers/io_struct.py,sha256=c7CASuSdkCIhYyVAKJ-A8x9lfV4UgwtzMPDID5T_17c,10558
|
51
52
|
sglang/srt/managers/policy_scheduler.py,sha256=7HNUxBKJE444s_bHcPpbnHCygsnH-NIXYNSC2q6mRmc,8584
|
52
|
-
sglang/srt/managers/schedule_batch.py,sha256=
|
53
|
-
sglang/srt/managers/tokenizer_manager.py,sha256=
|
54
|
-
sglang/srt/managers/tp_worker.py,sha256
|
53
|
+
sglang/srt/managers/schedule_batch.py,sha256=ncEsP9T9xag6JXSb_nheoTNzKURytKeF_z5oKCbQJTU,25576
|
54
|
+
sglang/srt/managers/tokenizer_manager.py,sha256=dEFpenfdzdsfKnmaGH5hrBw-37ZfxYBYTM7k-8h9vnc,29432
|
55
|
+
sglang/srt/managers/tp_worker.py,sha256=wVJKQQNFr6pSwFmz0RGejTv-qxsN_atvx_Hk7gqRFUA,36416
|
55
56
|
sglang/srt/mem_cache/base_prefix_cache.py,sha256=qEQwEkG4E5rab2ZoTqcesf5pR_J4nV2jBxIHsBJHtIM,924
|
56
57
|
sglang/srt/mem_cache/chunk_cache.py,sha256=CjZZYlqQzq7mYOiBMLWA5XNb6HIyh5lIMdY-K0OUZEc,2368
|
57
58
|
sglang/srt/mem_cache/flush_cache.py,sha256=pTLKPRB17U6vl5RFJJvuJ4jCL2SyomgkUBNlkDpGRqo,978
|
58
59
|
sglang/srt/mem_cache/memory_pool.py,sha256=4br3Ea2bfA-YsF_sPOVHlF2zQzYGd8fVaYTp197yZsE,7871
|
59
60
|
sglang/srt/mem_cache/radix_cache.py,sha256=0AVr1BKKDOtTyybUkwxrz6PT8khDx-DpzgN5MgL27IE,10088
|
60
61
|
sglang/srt/model_executor/cuda_graph_runner.py,sha256=X4sC6xCnjsYjaM8YStyu2_IDIMbD1Muntd5HO1W-wiw,12011
|
61
|
-
sglang/srt/model_executor/forward_batch_info.py,sha256=
|
62
|
-
sglang/srt/model_executor/model_runner.py,sha256=
|
63
|
-
sglang/srt/models/chatglm.py,sha256=
|
62
|
+
sglang/srt/model_executor/forward_batch_info.py,sha256=9rxhUCztyMdPao4J-H64RJg_vzfAoV7_ipYXk17H2NE,15171
|
63
|
+
sglang/srt/model_executor/model_runner.py,sha256=tmzqUA-0ak0yvsJIBkvrFQSJF1feh491Q9c-2sjJRYc,24437
|
64
|
+
sglang/srt/models/chatglm.py,sha256=eCprAa1AKMcirVuPCqyQtKVXxok_kknNbUncdN1R7o0,13838
|
64
65
|
sglang/srt/models/commandr.py,sha256=2rAXRZRb4PkJZ4NWEqP_rIgsjxbdZyHpuoMOarqTWzQ,14163
|
65
66
|
sglang/srt/models/dbrx.py,sha256=N_0Ku_p1NCsc29NktUBNqPv7Z33XhYxOZK5xN7nzW4s,14661
|
66
67
|
sglang/srt/models/deepseek.py,sha256=7UJgde1EV9ey6d-CKRcEyTKh1_WhZdatpZiltIuqpik,16006
|
67
68
|
sglang/srt/models/deepseek_v2.py,sha256=uk--2a1e83H6U9wTx_wd3UvkS3VrSRSkjCOjky0R0uo,27004
|
68
|
-
sglang/srt/models/gemma.py,sha256=
|
69
|
-
sglang/srt/models/gemma2.py,sha256=
|
69
|
+
sglang/srt/models/gemma.py,sha256=GkwgGFHgGlXgBZN7s7Wooz5tMyCp1YtgLahU2NOo66M,12273
|
70
|
+
sglang/srt/models/gemma2.py,sha256=sFfCNEm0_OOWElRSTDuroRv8wNMX8v_81Uko9m546KA,14923
|
70
71
|
sglang/srt/models/gpt_bigcode.py,sha256=kzHYogeGXZF4KHpkXA-RGqvs016mA-6klWxD2QJTi9E,10195
|
71
|
-
sglang/srt/models/grok.py,sha256=
|
72
|
+
sglang/srt/models/grok.py,sha256=6I4OwQwNyAbh5GF24_SRm12XYBvM9iGWB-T4TSTJ0wU,14929
|
72
73
|
sglang/srt/models/internlm2.py,sha256=6j7JH0p3yib8GZDH8Cmrs-pgwfH3eOlAK6V3Cq64O7w,12202
|
73
|
-
sglang/srt/models/llama2.py,sha256=
|
74
|
-
sglang/srt/models/llama_classification.py,sha256=
|
75
|
-
sglang/srt/models/llama_embedding.py,sha256=
|
76
|
-
sglang/srt/models/llava.py,sha256=
|
77
|
-
sglang/srt/models/llavavid.py,sha256=
|
74
|
+
sglang/srt/models/llama2.py,sha256=gsj52M_H_oGJljvUBT6cSX2WOfK8WtLzcwwha0uMkig,14178
|
75
|
+
sglang/srt/models/llama_classification.py,sha256=zdhkqX7qM-gQCoR-dqdSSwk8B0hjMRW1sFcj00VESxk,4702
|
76
|
+
sglang/srt/models/llama_embedding.py,sha256=Z3FWGNEWrperMxnVqOhxv6vApNpChh-AaahlEqeYOrk,3574
|
77
|
+
sglang/srt/models/llava.py,sha256=ypq0hWprqN73P-VuYfSAZ1_Otm48qDqEPA2YO583goM,23453
|
78
|
+
sglang/srt/models/llavavid.py,sha256=Dx_wED6stC8lTASUrGt6B3c8wQ9lVrX-76-dNyyuVVg,11934
|
78
79
|
sglang/srt/models/minicpm.py,sha256=ioqCsTCE_oF8xqGF5fm5cK9dclK5Y0EQ1UJfyteIDDo,13825
|
79
80
|
sglang/srt/models/mistral.py,sha256=jlrWBVNXbAUziAaIdHAjFcOJnKtn9Bl8rBd65ypJM-I,819
|
80
81
|
sglang/srt/models/mixtral.py,sha256=cZK-1kGXQC8ZC0tFNmbAoqWlyrrvv5omumpDdEwzzss,13623
|
81
82
|
sglang/srt/models/mixtral_quant.py,sha256=wMACJq78OTWj7HlqPDRNEh8cjrVAjKqJEsOG3CO5xow,14072
|
82
83
|
sglang/srt/models/qwen.py,sha256=ssdSgVuhT1Ei0JPa0xwqzrwwPNwkCHRJA4q70hK-Z7E,9988
|
83
|
-
sglang/srt/models/qwen2.py,sha256=
|
84
|
-
sglang/srt/models/qwen2_moe.py,sha256
|
84
|
+
sglang/srt/models/qwen2.py,sha256=meejtj0IHFSk0O7USt5rmnTwn3TcZvindWBLvxWA-rE,12455
|
85
|
+
sglang/srt/models/qwen2_moe.py,sha256=lBaN1d_-yW42zR9eJT1_OpGWoE-PsfgI3T12ZkjyuRE,17316
|
85
86
|
sglang/srt/models/stablelm.py,sha256=30ngpc0Xq3VxzXJlf6svP1oax8Q3krMJkxM8PVKtZWU,11359
|
86
|
-
sglang/srt/models/yivl.py,sha256=
|
87
|
+
sglang/srt/models/yivl.py,sha256=B6MELthWIm5KdSzX3o2tbbpApY8XdjUdmcQSD4dQe_I,4835
|
87
88
|
sglang/srt/openai_api/adapter.py,sha256=5k2YGX6rEwpYlF3LaDs5Qvh6vD25LhAnPKWhcj2vnT0,49385
|
88
89
|
sglang/srt/openai_api/protocol.py,sha256=73i1iFVI0tAJCLMV9QT4rgMzbyYoZ8-iuTIYs_Yx0Xo,9487
|
89
90
|
sglang/srt/sampling/sampling_batch_info.py,sha256=TJLKc-FXqrI3-hHKEf-Bfu-W8NxNOEkmNvPaTN1O-g4,4911
|
@@ -95,7 +96,7 @@ sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py,sha256=XJZP0C4NFyXgc
|
|
95
96
|
sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py,sha256=0PlANTrR959foTA3Nj5qBE7ndaOZgG-9X6LhzlmEUc8,2533
|
96
97
|
sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=v9jOgA0-I31WcrhIydiFbpy2ZJPLytFLGM98NRPd2sU,2820
|
97
98
|
sglang/test/run_eval.py,sha256=NWxeLWmInBgkCvC9Jr_QzF7GfAiBve3Gf1JQrEOlNlU,3899
|
98
|
-
sglang/test/runners.py,sha256=
|
99
|
+
sglang/test/runners.py,sha256=0ttvvAIpYExQ-fmnkog5432B0bttfdxpT7AMKuGCfPU,7687
|
99
100
|
sglang/test/simple_eval_common.py,sha256=r0G-9QLycs2ax3RMc44T_61fzMxlpTzv6pececC7lyY,12379
|
100
101
|
sglang/test/simple_eval_gpqa.py,sha256=8Xt9Bw05c7SZTYrCZgB68OZUqUbLo69ywiyx0bTvSUk,3220
|
101
102
|
sglang/test/simple_eval_humaneval.py,sha256=7lTi841NT58smNOtRwCedrdX9IWWypdLkOtaQOBy-GI,5687
|
@@ -103,12 +104,12 @@ sglang/test/simple_eval_math.py,sha256=6kGKNwNbLN-Af3Wj8WTimWhH-Xp3enDmSvvSjsgWU
|
|
103
104
|
sglang/test/simple_eval_mgsm.py,sha256=wfbqJW9Rkc66vzq2fEMF6jchmoA8mw1OUiGU55cZ2B0,10261
|
104
105
|
sglang/test/simple_eval_mmlu.py,sha256=FkwamjGMjueTixymkedF-YiPloSLiy4ftILFUrKZ9XI,4357
|
105
106
|
sglang/test/test_activation.py,sha256=jkdNRzJnbd5OgZliQaIXpxovlcky17UrweomcOcMxoE,1442
|
106
|
-
sglang/test/test_layernorm.py,sha256=
|
107
|
+
sglang/test/test_layernorm.py,sha256=IacByD5d-stXjzBz8Ypamc7povlcedpKPbb_4JLgo3c,3720
|
107
108
|
sglang/test/test_programs.py,sha256=V_-Bx3lLkw37P6gDyA7mZCqxlyNMaFLBkRrPMQQQqn4,14909
|
108
109
|
sglang/test/test_utils.py,sha256=HD-9rcj7EFS_NX1GQFU5613ITQlZaTK2l9RmqA0F7x4,14380
|
109
110
|
sglang/test/srt/sampling/penaltylib/utils.py,sha256=-0p0rV-P4lNo7xAe3rQSBHTubc50a-DFyOQmLGAkgkQ,12515
|
110
|
-
sglang-0.2.14.
|
111
|
-
sglang-0.2.14.
|
112
|
-
sglang-0.2.14.
|
113
|
-
sglang-0.2.14.
|
114
|
-
sglang-0.2.14.
|
111
|
+
sglang-0.2.14.post2.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
112
|
+
sglang-0.2.14.post2.dist-info/METADATA,sha256=9S2F8SVxiOz_XayLBGLAymw3HmhFEdI0S49DF7xGsU0,37134
|
113
|
+
sglang-0.2.14.post2.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
|
114
|
+
sglang-0.2.14.post2.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
|
115
|
+
sglang-0.2.14.post2.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|