sglang 0.2.13__py3-none-any.whl → 0.2.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (74) hide show
  1. sglang/api.py +6 -0
  2. sglang/bench_latency.py +7 -3
  3. sglang/bench_serving.py +50 -26
  4. sglang/check_env.py +15 -0
  5. sglang/lang/chat_template.py +10 -5
  6. sglang/lang/compiler.py +4 -0
  7. sglang/lang/interpreter.py +1 -0
  8. sglang/lang/ir.py +9 -0
  9. sglang/launch_server.py +8 -1
  10. sglang/srt/conversation.py +50 -1
  11. sglang/srt/hf_transformers_utils.py +22 -23
  12. sglang/srt/layers/activation.py +24 -1
  13. sglang/srt/layers/decode_attention.py +338 -50
  14. sglang/srt/layers/fused_moe/layer.py +2 -2
  15. sglang/srt/layers/layernorm.py +3 -0
  16. sglang/srt/layers/logits_processor.py +60 -23
  17. sglang/srt/layers/radix_attention.py +3 -4
  18. sglang/srt/layers/sampler.py +154 -0
  19. sglang/srt/managers/controller_multi.py +2 -8
  20. sglang/srt/managers/controller_single.py +7 -10
  21. sglang/srt/managers/detokenizer_manager.py +20 -9
  22. sglang/srt/managers/io_struct.py +44 -11
  23. sglang/srt/managers/policy_scheduler.py +5 -2
  24. sglang/srt/managers/schedule_batch.py +52 -167
  25. sglang/srt/managers/tokenizer_manager.py +192 -83
  26. sglang/srt/managers/tp_worker.py +130 -43
  27. sglang/srt/mem_cache/memory_pool.py +82 -8
  28. sglang/srt/mm_utils.py +79 -7
  29. sglang/srt/model_executor/cuda_graph_runner.py +49 -11
  30. sglang/srt/model_executor/forward_batch_info.py +59 -27
  31. sglang/srt/model_executor/model_runner.py +210 -61
  32. sglang/srt/models/chatglm.py +4 -12
  33. sglang/srt/models/commandr.py +5 -1
  34. sglang/srt/models/dbrx.py +5 -1
  35. sglang/srt/models/deepseek.py +5 -1
  36. sglang/srt/models/deepseek_v2.py +5 -1
  37. sglang/srt/models/gemma.py +5 -1
  38. sglang/srt/models/gemma2.py +15 -7
  39. sglang/srt/models/gpt_bigcode.py +5 -1
  40. sglang/srt/models/grok.py +16 -2
  41. sglang/srt/models/internlm2.py +5 -1
  42. sglang/srt/models/llama2.py +7 -3
  43. sglang/srt/models/llama_classification.py +2 -2
  44. sglang/srt/models/llama_embedding.py +4 -0
  45. sglang/srt/models/llava.py +176 -59
  46. sglang/srt/models/minicpm.py +5 -1
  47. sglang/srt/models/mixtral.py +5 -1
  48. sglang/srt/models/mixtral_quant.py +5 -1
  49. sglang/srt/models/qwen.py +5 -2
  50. sglang/srt/models/qwen2.py +13 -3
  51. sglang/srt/models/qwen2_moe.py +5 -14
  52. sglang/srt/models/stablelm.py +5 -1
  53. sglang/srt/openai_api/adapter.py +117 -37
  54. sglang/srt/sampling/sampling_batch_info.py +209 -0
  55. sglang/srt/{sampling_params.py → sampling/sampling_params.py} +18 -0
  56. sglang/srt/server.py +84 -56
  57. sglang/srt/server_args.py +43 -15
  58. sglang/srt/utils.py +26 -16
  59. sglang/test/runners.py +23 -31
  60. sglang/test/simple_eval_common.py +9 -10
  61. sglang/test/simple_eval_gpqa.py +2 -1
  62. sglang/test/simple_eval_humaneval.py +2 -2
  63. sglang/test/simple_eval_math.py +2 -1
  64. sglang/test/simple_eval_mmlu.py +2 -1
  65. sglang/test/test_activation.py +55 -0
  66. sglang/test/test_utils.py +36 -53
  67. sglang/version.py +1 -1
  68. {sglang-0.2.13.dist-info → sglang-0.2.14.dist-info}/METADATA +92 -25
  69. sglang-0.2.14.dist-info/RECORD +114 -0
  70. {sglang-0.2.13.dist-info → sglang-0.2.14.dist-info}/WHEEL +1 -1
  71. sglang/launch_server_llavavid.py +0 -29
  72. sglang-0.2.13.dist-info/RECORD +0 -112
  73. {sglang-0.2.13.dist-info → sglang-0.2.14.dist-info}/LICENSE +0 -0
  74. {sglang-0.2.13.dist-info → sglang-0.2.14.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: sglang
3
- Version: 0.2.13
3
+ Version: 0.2.14
4
4
  Summary: SGLang is yet another fast serving framework for large language models and vision language models.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -231,6 +231,7 @@ Requires-Dist: openai>=1.0; extra == "openai"
231
231
  Requires-Dist: tiktoken; extra == "openai"
232
232
  Provides-Extra: srt
233
233
  Requires-Dist: aiohttp; extra == "srt"
234
+ Requires-Dist: decord; extra == "srt"
234
235
  Requires-Dist: fastapi; extra == "srt"
235
236
  Requires-Dist: hf-transfer; extra == "srt"
236
237
  Requires-Dist: huggingface-hub; extra == "srt"
@@ -244,12 +245,14 @@ Requires-Dist: torch; extra == "srt"
244
245
  Requires-Dist: uvicorn; extra == "srt"
245
246
  Requires-Dist: uvloop; extra == "srt"
246
247
  Requires-Dist: zmq; extra == "srt"
247
- Requires-Dist: vllm==0.5.4; extra == "srt"
248
+ Requires-Dist: vllm==0.5.5; extra == "srt"
248
249
  Requires-Dist: outlines>=0.0.44; extra == "srt"
249
250
  Provides-Extra: test
250
251
  Requires-Dist: jsonlines; extra == "test"
251
252
  Requires-Dist: matplotlib; extra == "test"
252
253
  Requires-Dist: pandas; extra == "test"
254
+ Requires-Dist: sentence-transformers; extra == "test"
255
+ Requires-Dist: accelerate; extra == "test"
253
256
 
254
257
  <div align="center">
255
258
  <img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
@@ -270,17 +273,18 @@ SGLang is a fast serving framework for large language models and vision language
270
273
  It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
271
274
 
272
275
  The core features include:
273
- - **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, flashinfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
276
+ - **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
274
277
  - **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
275
278
 
276
279
  ## News
277
280
  - [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
278
- - [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
281
+ - [2024/08] 🔥 LLaVA-OneVision with single-image, multi-image and video are supported ([blog](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)).
279
282
  - [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
280
283
 
281
284
  <details>
282
285
  <summary>More</summary>
283
286
 
287
+ - [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
284
288
  - [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
285
289
  - [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
286
290
 
@@ -308,7 +312,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
308
312
  ### Method 2: From source
309
313
  ```
310
314
  # Use the last release branch
311
- git clone -b v0.2.13 https://github.com/sgl-project/sglang.git
315
+ git clone -b v0.2.14 https://github.com/sgl-project/sglang.git
312
316
  cd sglang
313
317
 
314
318
  pip install --upgrade pip
@@ -334,11 +338,55 @@ docker run --gpus all \
334
338
 
335
339
  ### Method 4: Using docker compose
336
340
 
341
+ <details>
342
+
337
343
  > This method is recommended if you plan to serve it as a service.
338
344
  > A better approach is to use the [k8s-sglang-service.yaml](./docker/k8s-sglang-service.yaml).
339
345
 
340
346
  1. Copy the [compose.yml](./docker/compose.yaml) to your local machine
341
347
  2. Execute the command `docker compose up -d` in your terminal.
348
+ </details>
349
+
350
+ ### Method 5: Run on Kubernetes or Clouds with SkyPilot
351
+
352
+ <details>
353
+
354
+ To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).
355
+
356
+ 1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
357
+ 2. Deploy on your own infra with a single command and get the HTTP API endpoint:
358
+ <details>
359
+ <summary>SkyPilot YAML: <code>sglang.yaml</code></summary>
360
+
361
+ ```yaml
362
+ # sglang.yaml
363
+ envs:
364
+ HF_TOKEN: null
365
+
366
+ resources:
367
+ image_id: docker:lmsysorg/sglang:latest
368
+ accelerators: A100
369
+ ports: 30000
370
+
371
+ run: |
372
+ conda deactivate
373
+ python3 -m sglang.launch_server \
374
+ --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \
375
+ --host 0.0.0.0 \
376
+ --port 30000
377
+ ```
378
+ </details>
379
+
380
+ ```bash
381
+ # Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
382
+ HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml
383
+
384
+ # Get the HTTP API endpoint
385
+ sky status --endpoint 30000 sglang
386
+ ```
387
+ 3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
388
+ </details>
389
+
342
390
 
343
391
  ### Common Notes
344
392
  - [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is currently one of the dependencies that must be installed for SGLang. If you are using NVIDIA GPU devices below sm80, such as T4, you can't use SGLang for the time being. We expect to resolve this issue soon, so please stay tuned. If you encounter any FlashInfer-related issues on sm80+ devices (e.g., A100, L40S, H100), consider using Triton's kernel by `--disable-flashinfer --disable-flashinfer-sampling` and raise a issue.
@@ -395,6 +443,13 @@ response = client.chat.completions.create(
395
443
  max_tokens=64,
396
444
  )
397
445
  print(response)
446
+
447
+ # Text embedding
448
+ response = client.embeddings.create(
449
+ model="default",
450
+ input="How are you today",
451
+ )
452
+ print(response)
398
453
  ```
399
454
 
400
455
  It supports streaming, vision, and most features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
@@ -431,19 +486,21 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
431
486
 
432
487
  ### Supported Models
433
488
 
489
+ **Generative Models**
490
+
434
491
  - Llama / Llama 2 / Llama 3 / Llama 3.1
435
492
  - Mistral / Mixtral / Mistral NeMo
436
493
  - Gemma / Gemma 2
437
494
  - Qwen / Qwen 2 / Qwen 2 MoE
438
495
  - DeepSeek / DeepSeek 2
439
- - LLaVA 1.5 / 1.6
440
- - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
441
- - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-vicuna-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --chat-template vicuna_v1.1 --port 30000`
442
- - `python -m sglang.launch_server --model-path liuhaotian/llava-v1.6-34b --tokenizer-path liuhaotian/llava-v1.6-34b-tokenizer --port 30000`
443
- - LLaVA-NeXT-Video
444
- - see [examples/usage/llava_video](examples/usage/llava_video)
496
+ - [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
497
+ - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava --chunked-prefill-size=16384`
498
+ - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
499
+ - LLaVA 1.5 / 1.6 / NeXT
500
+ - `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
501
+ - `python -m sglang.launch_server --model-path lmms-lab/llava-next-72b --port=30000 --tp-size=8 --chat-template=chatml-llava`
502
+ - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
445
503
  - Yi-VL
446
- - see [srt_example_yi_vl.py](examples/quick_start/srt_example_yi_vl.py).
447
504
  - StableLM
448
505
  - Command-R
449
506
  - DBRX
@@ -451,34 +508,45 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
451
508
  - ChatGLM
452
509
  - InternLM 2
453
510
 
511
+ **Embedding Models**
512
+
513
+ - e5-mistral
514
+ - gte-Qwen2
515
+ - `python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --is-embedding`
516
+
454
517
  Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
455
518
 
456
519
  #### Use Models From ModelScope
457
- To use model from [ModelScope](https://www.modelscope.cn), setting environment variable SGLANG_USE_MODELSCOPE.
520
+ <details>
521
+
522
+ To use a model from [ModelScope](https://www.modelscope.cn), set the environment variable SGLANG_USE_MODELSCOPE.
458
523
  ```
459
524
  export SGLANG_USE_MODELSCOPE=true
460
525
  ```
461
526
  Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
462
527
  ```
463
528
  SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
464
- ```
529
+ ```
530
+
531
+ </details>
465
532
 
466
533
  #### Run Llama 3.1 405B
534
+ <details>
467
535
 
468
536
  ```bash
469
- ## Run 405B (fp8) on a single node
537
+ # Run 405B (fp8) on a single node
470
538
  python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8
471
539
 
472
- ## Run 405B (fp16) on two nodes
473
- # replace the `172.16.4.52:20000` with your own first node ip address and port, disable CUDA Graph temporarily
540
+ # Run 405B (fp16) on two nodes
541
+ ## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
542
+ GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph
474
543
 
475
- # on the first node
476
- GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph --mem-frac 0.75
477
-
478
- # on the second
479
- GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph --mem-frac 0.75
544
+ ## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
545
+ GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph
480
546
  ```
481
547
 
548
+ </details>
549
+
482
550
  ### Benchmark Performance
483
551
 
484
552
  - Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`. Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle. A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, consider using `sglang.bench_serving`.
@@ -614,7 +682,7 @@ def tip_suggestion(s):
614
682
  s += "In summary" + sgl.gen("summary")
615
683
  ```
616
684
 
617
- #### Multi Modality
685
+ #### Multi-Modality
618
686
  Use `sgl.image` to pass an image as input.
619
687
 
620
688
  ```python
@@ -668,7 +736,7 @@ def character_gen(s, name):
668
736
  s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
669
737
  ```
670
738
 
671
- See also [json_decode.py](examples/usage/json_decode.py) for an additional example on specifying formats with Pydantic models.
739
+ See also [json_decode.py](examples/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
672
740
 
673
741
  #### Batching
674
742
  Use `run_batch` to run a batch of requests with continuous batching.
@@ -730,7 +798,6 @@ def chat_example(s):
730
798
  - The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
731
799
  - The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
732
800
 
733
-
734
801
  ## Benchmark And Performance
735
802
  ![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
736
803
  ![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
@@ -0,0 +1,114 @@
1
+ sglang/__init__.py,sha256=T8MYdFfKFPZcgFKHMBpOCIlFbhjwmr77Nqm6mdE6bCY,1590
2
+ sglang/api.py,sha256=8B_ADgLN2fjo9Ej123hInfHA4wmpUkV0yyErSiRnfAA,6408
3
+ sglang/bench_latency.py,sha256=VEdGBX5vZSngS8AeOdJJRW65BIJsZXhKwAK5z20SZoI,16344
4
+ sglang/bench_serving.py,sha256=J_mMwnmDn0Jt07mzdGAuYOxpockHPLYJFL-kwoaqASY,36527
5
+ sglang/check_env.py,sha256=rGRABCgt-0SfUrow4px28b2P59aMn8eVTnN5eZc_a8s,5397
6
+ sglang/global_config.py,sha256=nwOjUflwqLQySPUMvk8Hk63TIS6mknh_ODSW3CZ1rJw,1704
7
+ sglang/launch_server.py,sha256=FODfO0DW546dh-u1qDlWtrhsmj6hxkarXXv3cIdgkj8,549
8
+ sglang/utils.py,sha256=zFYGkC4vOUR3sTv1TmQXcsOLZDtDBR3wnjqnDp3xMIs,8352
9
+ sglang/version.py,sha256=3fSLgeJpZq4cUgzAH_CdFzXwJEO3NH_VVDv2pQnmwN0,23
10
+ sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ sglang/lang/chat_template.py,sha256=uqI_I9zIKXGXg7-W-yjqvx1ZeS_TuwFCms6wkmC2QmY,13411
12
+ sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
13
+ sglang/lang/compiler.py,sha256=o1C6G3TzhjSlsH-doTPy5oiVehr57dxNTa5oZw5TTAI,7639
14
+ sglang/lang/interpreter.py,sha256=-9VjAb5JqlxtBuQUDT08Cj2BW8VbLxTmJACe2cqza-s,30215
15
+ sglang/lang/ir.py,sha256=GRcPsEjnR4k5q5Kf-Rb2YgDBseCTGQoasclhjmQtL8Y,17511
16
+ sglang/lang/tracer.py,sha256=borJmlSJOhg1RUndGRnilnR60eEZz2Y9aU7BpftsOxU,8287
17
+ sglang/lang/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
+ sglang/lang/backend/anthropic.py,sha256=EXRX7xJgA5KZszX7toSLVnKzFQ5EO0Loj-YjHFtxSxg,2081
19
+ sglang/lang/backend/base_backend.py,sha256=Q5HdiDtyBewQeoYH0kDtBRVL8KFiEPNq9dw7XmauHQ8,1985
20
+ sglang/lang/backend/litellm.py,sha256=ugmL7sfUxkUHVbHtwNzHgdQAEd4UCjNQboFuE3KThcY,2450
21
+ sglang/lang/backend/openai.py,sha256=qM7eVH_kMxnDd2rpxOH0v76KxtOJFlAwgLgWIKvFGCI,15060
22
+ sglang/lang/backend/runtime_endpoint.py,sha256=SDlp03EuQEK1eGK4_IaFySWgxlp4wCs3EPewZ6O640E,9549
23
+ sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
24
+ sglang/srt/conversation.py,sha256=Ze2_dTHG6jc04ti7vuOEnoEe1ehvhxCJRpa4EYD0T_8,18494
25
+ sglang/srt/hf_transformers_utils.py,sha256=OP5uBwnWiam6h9QvkBaG-nrDgkEUEwLXy1IWvW7rrRo,11737
26
+ sglang/srt/mm_utils.py,sha256=zox644S3IHUWmADdK4MnIbdTS2DWHOy0_Dq0gCU38QQ,12273
27
+ sglang/srt/model_config.py,sha256=k4OfRV-szWkFaJMIC40JoJGJ75AfYQ2hf4M1dS1aQ-o,6366
28
+ sglang/srt/server.py,sha256=KM6fq1RXbnBr0nWj8IO54T-K14o0iscgdFR4z3uU5C4,19572
29
+ sglang/srt/server_args.py,sha256=GiDyPWCvYA_98mSE9LuvUoEodo9gRnNPPIPn0nFkxUs,18259
30
+ sglang/srt/utils.py,sha256=x9MdBu0e8HAgaNIGuxiMVL7_nh03kl_rWuMnLas_Dgo,24327
31
+ sglang/srt/constrained/__init__.py,sha256=NLpZGj9RIx83ejDrM_pfaRtqGgaPq_ggJszPQENUJ2E,2037
32
+ sglang/srt/constrained/base_tool_cache.py,sha256=5sazBMHHDpHMoqOjuY6itCxwTmIFCflIWEDXMtmrPVs,2006
33
+ sglang/srt/constrained/fsm_cache.py,sha256=QTrBFoZCp2FeigtIakz2MCgQLtvQFXgl2lDPQaGtu9M,2784
34
+ sglang/srt/constrained/jump_forward.py,sha256=9_HxmXtWjr5S6a5e0cBimbY3ZhiLiJC74V6jIqDXfuo,6575
35
+ sglang/srt/layers/activation.py,sha256=4RIgqvAIXPpZV4q0YVbAPVygz_YFAbpI4x47p7LcOw4,1911
36
+ sglang/srt/layers/decode_attention.py,sha256=TPD_608ZX9fQ_HDImifkxG_qcEYmimbEYY8lCBIjFuM,16628
37
+ sglang/srt/layers/extend_attention.py,sha256=h4O0R7PJpAVKS3Vx_583zhrFPD0vv6XqzvOcHBI3zoc,14268
38
+ sglang/srt/layers/layernorm.py,sha256=sI_oveGW4uyFI2LOtWF2yd77wH2k5LGAvUIZuoOn2Oo,2227
39
+ sglang/srt/layers/logits_processor.py,sha256=Zx4eFAkFlThPrmz_-HuCN9SqGLanARm0wdZSVDyASAc,13085
40
+ sglang/srt/layers/pooler.py,sha256=qNMG3Ycvt2yf9mk1Lcs-2K7oPeCuVeDYoHAxkMu9b_Q,1610
41
+ sglang/srt/layers/prefill_attention.py,sha256=y7vdcuX8lMa9Qf_jQYNDvQO9PVCBQSs3hb5LV2DFgpU,5256
42
+ sglang/srt/layers/radix_attention.py,sha256=o5a8r3XQ-oRwaxBlAgzJGv7p3dMbu0LrYsDc4uvpPgA,8338
43
+ sglang/srt/layers/sampler.py,sha256=YVzlrXE6uJoDwFHaZcUyxgUOUdR5a5myZvrRL6qckoA,5544
44
+ sglang/srt/layers/fused_moe/__init__.py,sha256=bWCrDdOy2ANEXTb8CHYO63O3Iu3eZnn0PJbgl0z5vvE,75
45
+ sglang/srt/layers/fused_moe/fused_moe.py,sha256=1WM2cObWXcFWtqh_utGJFPnrT344rORwuQ9hJDaH2s0,23104
46
+ sglang/srt/layers/fused_moe/layer.py,sha256=GT3r2UPx_PAufJd0SUMOXyh76ymAeYDubd0SM0H71bo,20977
47
+ sglang/srt/managers/controller_multi.py,sha256=R45ST6oBlIwfUwuibMw0sgTk8iqphb_rFyIdW048JA4,6472
48
+ sglang/srt/managers/controller_single.py,sha256=tnc71OTe8KDYouMdfqgwBT4lX5nZt6Rak9t2GmKtAME,5119
49
+ sglang/srt/managers/detokenizer_manager.py,sha256=yQkL5gLomLiy1qc6e9HNz8hcj7JQFHm1AfIrzpXaWJE,6852
50
+ sglang/srt/managers/io_struct.py,sha256=4Cs655K4n_F_usu6R3YE5_RdcE0XO9AXQNk5vl2II2c,10534
51
+ sglang/srt/managers/policy_scheduler.py,sha256=7HNUxBKJE444s_bHcPpbnHCygsnH-NIXYNSC2q6mRmc,8584
52
+ sglang/srt/managers/schedule_batch.py,sha256=yW7fkBi31vytfNEkFzs1Z3xzEzLMevXvoCyuoubut3M,25920
53
+ sglang/srt/managers/tokenizer_manager.py,sha256=aaZV7G3-m35pba1meRapqO7bdPjM2Cmkue5lbR_Jv3M,28836
54
+ sglang/srt/managers/tp_worker.py,sha256=DBrrd3QbjzAAvANvPs0zdYogsaFlusGx-IjpDVCP8RA,35976
55
+ sglang/srt/mem_cache/base_prefix_cache.py,sha256=qEQwEkG4E5rab2ZoTqcesf5pR_J4nV2jBxIHsBJHtIM,924
56
+ sglang/srt/mem_cache/chunk_cache.py,sha256=CjZZYlqQzq7mYOiBMLWA5XNb6HIyh5lIMdY-K0OUZEc,2368
57
+ sglang/srt/mem_cache/flush_cache.py,sha256=pTLKPRB17U6vl5RFJJvuJ4jCL2SyomgkUBNlkDpGRqo,978
58
+ sglang/srt/mem_cache/memory_pool.py,sha256=4br3Ea2bfA-YsF_sPOVHlF2zQzYGd8fVaYTp197yZsE,7871
59
+ sglang/srt/mem_cache/radix_cache.py,sha256=0AVr1BKKDOtTyybUkwxrz6PT8khDx-DpzgN5MgL27IE,10088
60
+ sglang/srt/model_executor/cuda_graph_runner.py,sha256=ba4WZhBbkJyZjronzwoDJmoh7l8oz0s5oj_i_3PLzSY,12662
61
+ sglang/srt/model_executor/forward_batch_info.py,sha256=MUcquCqmK-Jc1WNEciREmPj4iZu39tJk0axpexfyEXg,15775
62
+ sglang/srt/model_executor/model_runner.py,sha256=9L0cvNK2ELNfE4L6Hq9-K74ltXYenkFl4UVnY9d9JkU,24205
63
+ sglang/srt/models/chatglm.py,sha256=EaZKaRlsAbSP5rob6vUGqDuJLAY1HC2Oh-jgEUS4ZVY,13634
64
+ sglang/srt/models/commandr.py,sha256=k86ykwWOlxLGaBbGUoMSaXngUxCbMVRbY5AoMOWpbU8,14377
65
+ sglang/srt/models/dbrx.py,sha256=goLJ9Yt-9vxkwhCUFBidvP41H_dYTFsvrMZ4xm4FqGA,14875
66
+ sglang/srt/models/deepseek.py,sha256=aYP6HUgxQbhcQGQEF4vX0ronBF8AirqIFG98EQn0YzY,16220
67
+ sglang/srt/models/deepseek_v2.py,sha256=kzqfZvidRe6uydaMJI40qh_Qg7-gI0oBVH0rdWp7ONg,27218
68
+ sglang/srt/models/gemma.py,sha256=iC424guGOdsYC43xke5_uul9UIY0j6t7lUsDcB_uqa8,12492
69
+ sglang/srt/models/gemma2.py,sha256=JQvM6rYvjmLqdhQIQ9mRAAO1MhnIqTb32CqdL8X0o80,16798
70
+ sglang/srt/models/gpt_bigcode.py,sha256=jaolXlRp1PRHNEQPT-ZZ_cWAQ2us5DiNheSaNQ4Es_c,10418
71
+ sglang/srt/models/grok.py,sha256=FF_eURzXYXe1b39AbGtEPv2yYNzWarjmBsjkgutOkek,15019
72
+ sglang/srt/models/internlm2.py,sha256=VtWATs2eLIqbadYXTPY_vycFIstVk4zg3kxycA9H0Qw,12416
73
+ sglang/srt/models/llama2.py,sha256=JZPvaLSPiFMN-4qlOUBXZxsUsz6XtTGD-bB_fidxcfU,14516
74
+ sglang/srt/models/llama_classification.py,sha256=2zhBJtO9uieVj4Cd94KNiA8M_IdLuILDeTv1rePVJXw,4934
75
+ sglang/srt/models/llama_embedding.py,sha256=NQCQ3MnK3iRohL-UdY5UWxW4LlZ3RQZ7w4mlFOnpVrM,3696
76
+ sglang/srt/models/llava.py,sha256=iuXLJVDWBiYo8zJuDPSSjt2LYqbkg2MAcOFUZO1fOX4,24353
77
+ sglang/srt/models/llavavid.py,sha256=MX7YpqYh5J4BoOnV7vVAIfoOlBFQXYpp8Kpe7WK0ejk,13562
78
+ sglang/srt/models/minicpm.py,sha256=7RZEJ2TCqBL1JmMFVJ3J9DmZHRw0q90st49Wkh-sdL4,14039
79
+ sglang/srt/models/mistral.py,sha256=jlrWBVNXbAUziAaIdHAjFcOJnKtn9Bl8rBd65ypJM-I,819
80
+ sglang/srt/models/mixtral.py,sha256=StnGKdRhoweY46M2b2pv-vrfXaNqbhaVU4iKhEkMEfM,13837
81
+ sglang/srt/models/mixtral_quant.py,sha256=O_97UKDYZokFhIBnamWfw0HLhln9_BUk_KfQ-sQnd8s,14286
82
+ sglang/srt/models/qwen.py,sha256=geK88AyEyPbbDvMHJNY8XMSNpsCeu8g9kxnKyiJBpK4,10168
83
+ sglang/srt/models/qwen2.py,sha256=B1qfqukSA3_02Q3tvIxqIg-6kmxdJ36Roxn0WFmnVxQ,12776
84
+ sglang/srt/models/qwen2_moe.py,sha256=JZRd8AzvJgjVlHww1eCMPdF8rzC93X_1rgk3PEWE70M,17499
85
+ sglang/srt/models/stablelm.py,sha256=9feHoiDEXSIe0WCrt4AfWXqxliJwRvr8w4XSnk6ipSI,11573
86
+ sglang/srt/models/yivl.py,sha256=p4s_D_m4H2exP4b91Y-CTkq8T-eIG3DJsFy9pB0e7TM,4932
87
+ sglang/srt/openai_api/adapter.py,sha256=KaIYqkeguuVNHhpfSBvL7M0wRPhcivRAtuG-DsyXExI,46654
88
+ sglang/srt/openai_api/protocol.py,sha256=knf-nds0XO2LYg-hPM-Ho1f1y2XZIV_Gvg3xcCKLfgQ,9411
89
+ sglang/srt/sampling/sampling_batch_info.py,sha256=encziVWrUDswoay0qfFVALHx_96Vra2mzD6_GHthZ3s,7771
90
+ sglang/srt/sampling/sampling_params.py,sha256=dmjUlTY4VfuRtyc_sR59zMzhkjiTzHmljyTIogCFd0k,5411
91
+ sglang/srt/sampling/penaltylib/__init__.py,sha256=5vQw0Y5DSzmsoFg1IdMIKLwFVhYZ5ArADHVBYbSmOec,513
92
+ sglang/srt/sampling/penaltylib/orchestrator.py,sha256=WkTNeDhj9H9rtp2ZZeX6MS2sdKSGlLboE6FcuKrwUo0,10815
93
+ sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py,sha256=IvYioX53Vq_ji-0Zhcz_r5mUa3T3GaIydVS6K4FhWfE,2557
94
+ sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py,sha256=XJZP0C4NFyXgcODbIWXxrgVEjmRgqLdZuVAtoN-LveY,3565
95
+ sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py,sha256=0PlANTrR959foTA3Nj5qBE7ndaOZgG-9X6LhzlmEUc8,2533
96
+ sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=v9jOgA0-I31WcrhIydiFbpy2ZJPLytFLGM98NRPd2sU,2820
97
+ sglang/test/run_eval.py,sha256=NWxeLWmInBgkCvC9Jr_QzF7GfAiBve3Gf1JQrEOlNlU,3899
98
+ sglang/test/runners.py,sha256=IOaaNJ4y3GSbUCsnbKZrbZDoBR2_us2zWKWxccfrGlk,7687
99
+ sglang/test/simple_eval_common.py,sha256=r0G-9QLycs2ax3RMc44T_61fzMxlpTzv6pececC7lyY,12379
100
+ sglang/test/simple_eval_gpqa.py,sha256=8Xt9Bw05c7SZTYrCZgB68OZUqUbLo69ywiyx0bTvSUk,3220
101
+ sglang/test/simple_eval_humaneval.py,sha256=7lTi841NT58smNOtRwCedrdX9IWWypdLkOtaQOBy-GI,5687
102
+ sglang/test/simple_eval_math.py,sha256=6kGKNwNbLN-Af3Wj8WTimWhH-Xp3enDmSvvSjsgWUpk,2550
103
+ sglang/test/simple_eval_mgsm.py,sha256=wfbqJW9Rkc66vzq2fEMF6jchmoA8mw1OUiGU55cZ2B0,10261
104
+ sglang/test/simple_eval_mmlu.py,sha256=FkwamjGMjueTixymkedF-YiPloSLiy4ftILFUrKZ9XI,4357
105
+ sglang/test/test_activation.py,sha256=jkdNRzJnbd5OgZliQaIXpxovlcky17UrweomcOcMxoE,1442
106
+ sglang/test/test_layernorm.py,sha256=VDdoeqGvebUa-l3rDiid6cC7wZq0Phpbm5fxxD0-cpg,1910
107
+ sglang/test/test_programs.py,sha256=V_-Bx3lLkw37P6gDyA7mZCqxlyNMaFLBkRrPMQQQqn4,14909
108
+ sglang/test/test_utils.py,sha256=HD-9rcj7EFS_NX1GQFU5613ITQlZaTK2l9RmqA0F7x4,14380
109
+ sglang/test/srt/sampling/penaltylib/utils.py,sha256=-0p0rV-P4lNo7xAe3rQSBHTubc50a-DFyOQmLGAkgkQ,12515
110
+ sglang-0.2.14.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
111
+ sglang-0.2.14.dist-info/METADATA,sha256=V3t6L-QOiHsJYTihE9W1YeR_YyRC_ZPZwlWjw0Mymsg,37161
112
+ sglang-0.2.14.dist-info/WHEEL,sha256=Mdi9PDNwEZptOjTlUcAth7XJDFtKrHYaQMPulZeBCiQ,91
113
+ sglang-0.2.14.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
114
+ sglang-0.2.14.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (72.2.0)
2
+ Generator: setuptools (73.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,29 +0,0 @@
1
- """Launch the inference server for Llava-video model."""
2
-
3
- import argparse
4
-
5
- from sglang.srt.server import ServerArgs, launch_server
6
-
7
- if __name__ == "__main__":
8
- model_overide_args = {}
9
-
10
- model_overide_args["mm_spatial_pool_stride"] = 2
11
- model_overide_args["architectures"] = ["LlavaVidForCausalLM"]
12
- model_overide_args["num_frames"] = 16
13
- model_overide_args["model_type"] = "llavavid"
14
- if model_overide_args["num_frames"] == 32:
15
- model_overide_args["rope_scaling"] = {"factor": 2.0, "type": "linear"}
16
- model_overide_args["max_sequence_length"] = 4096 * 2
17
- model_overide_args["tokenizer_model_max_length"] = 4096 * 2
18
- model_overide_args["model_max_length"] = 4096 * 2
19
-
20
- parser = argparse.ArgumentParser()
21
- ServerArgs.add_cli_args(parser)
22
- args = parser.parse_args()
23
-
24
- if "34b" in args.model_path.lower():
25
- model_overide_args["image_token_index"] = 64002
26
-
27
- server_args = ServerArgs.from_cli_args(args)
28
-
29
- launch_server(server_args, model_overide_args, None)
@@ -1,112 +0,0 @@
1
- sglang/__init__.py,sha256=T8MYdFfKFPZcgFKHMBpOCIlFbhjwmr77Nqm6mdE6bCY,1590
2
- sglang/api.py,sha256=sRuA17JzayE9SFOhaZFqKFJDb_aRpNlcyKiMA5BzsDk,6258
3
- sglang/bench_latency.py,sha256=UM5noYvFb6hc7wS82WAFeWTx3u83vkg9pfhyW0KdvY4,16234
4
- sglang/bench_serving.py,sha256=sS-fawAyzngrOVbPE3N1FBxPojoPd9vj9XQDsWpIYTQ,35798
5
- sglang/check_env.py,sha256=oU8VmjjPK2SviRhr41cF1953soBu-eTT5E0Hf04zMzo,4974
6
- sglang/global_config.py,sha256=nwOjUflwqLQySPUMvk8Hk63TIS6mknh_ODSW3CZ1rJw,1704
7
- sglang/launch_server.py,sha256=Gg8CwNlTCCfg1dF65ZT9ePLxOT9LKtY79GhIPG6PCrU,358
8
- sglang/launch_server_llavavid.py,sha256=40uaazMsavKuk6YXFa5v37kdUpFGuealgJJeph1g8gU,1025
9
- sglang/utils.py,sha256=zFYGkC4vOUR3sTv1TmQXcsOLZDtDBR3wnjqnDp3xMIs,8352
10
- sglang/version.py,sha256=C0atO05M0rfDTTHt02NxNa4jt0eSqXM4AxShEhb2epA,23
11
- sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
- sglang/lang/chat_template.py,sha256=psIlhaDo70twgLrx5Lgln03metLEA3-FZuixeI0Y7Ao,13309
13
- sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
14
- sglang/lang/compiler.py,sha256=1Tc6MQs4RsIfrNmmO7PMSUEHIqvNqKOp_HxaYqonwFE,7533
15
- sglang/lang/interpreter.py,sha256=8QiLvjUgVJrtzIjS9lCUR01k7BeZWZQsmRAwLMz-cmA,30194
16
- sglang/lang/ir.py,sha256=WOZdRbONMhhSeD75bvUeQRv4gObxVMtkvzmalRrVdkM,17261
17
- sglang/lang/tracer.py,sha256=borJmlSJOhg1RUndGRnilnR60eEZz2Y9aU7BpftsOxU,8287
18
- sglang/lang/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
- sglang/lang/backend/anthropic.py,sha256=EXRX7xJgA5KZszX7toSLVnKzFQ5EO0Loj-YjHFtxSxg,2081
20
- sglang/lang/backend/base_backend.py,sha256=Q5HdiDtyBewQeoYH0kDtBRVL8KFiEPNq9dw7XmauHQ8,1985
21
- sglang/lang/backend/litellm.py,sha256=ugmL7sfUxkUHVbHtwNzHgdQAEd4UCjNQboFuE3KThcY,2450
22
- sglang/lang/backend/openai.py,sha256=qM7eVH_kMxnDd2rpxOH0v76KxtOJFlAwgLgWIKvFGCI,15060
23
- sglang/lang/backend/runtime_endpoint.py,sha256=SDlp03EuQEK1eGK4_IaFySWgxlp4wCs3EPewZ6O640E,9549
24
- sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
25
- sglang/srt/conversation.py,sha256=V5YuoeO6-aLqGv0p3J2qx8TnBJbN1oTopYFutNul3GQ,16491
26
- sglang/srt/hf_transformers_utils.py,sha256=Tf_RplcW7llVXsigRvSGqmeAUxBeAL8rPCkzuqWfZ8U,11925
27
- sglang/srt/mm_utils.py,sha256=n7_GmbOM_0IWVXovpM34rKIBw0Py9yb_NXSQw27u4OA,9454
28
- sglang/srt/model_config.py,sha256=k4OfRV-szWkFaJMIC40JoJGJ75AfYQ2hf4M1dS1aQ-o,6366
29
- sglang/srt/sampling_params.py,sha256=CIrM-OLAjUJ8oSQfhXetjv50BAseexWYOV5Wr6LXYeY,4739
30
- sglang/srt/server.py,sha256=gSGC6MJLLXsuusizKzTxJaaWiaQjsa-Zm5hxV2fYHb8,18845
31
- sglang/srt/server_args.py,sha256=YoTVFzt65w1vjypyh0a4FV7BNreVGS49d8uf6TPrM_w,17083
32
- sglang/srt/utils.py,sha256=MIDD53BT4ukaHO-zmEQZD5l7Xco_gefO0co4FJsMsn4,24053
33
- sglang/srt/constrained/__init__.py,sha256=NLpZGj9RIx83ejDrM_pfaRtqGgaPq_ggJszPQENUJ2E,2037
34
- sglang/srt/constrained/base_tool_cache.py,sha256=5sazBMHHDpHMoqOjuY6itCxwTmIFCflIWEDXMtmrPVs,2006
35
- sglang/srt/constrained/fsm_cache.py,sha256=QTrBFoZCp2FeigtIakz2MCgQLtvQFXgl2lDPQaGtu9M,2784
36
- sglang/srt/constrained/jump_forward.py,sha256=9_HxmXtWjr5S6a5e0cBimbY3ZhiLiJC74V6jIqDXfuo,6575
37
- sglang/srt/layers/activation.py,sha256=j2zQmY1snfB5DqrYr5KqRUEkMXQn6LVnkeur60FfMCU,1175
38
- sglang/srt/layers/decode_attention.py,sha256=Vgxd2rWzSZkNFp0bjZRAUAusG4bz6iy3D0CULnN-cdk,8904
39
- sglang/srt/layers/extend_attention.py,sha256=h4O0R7PJpAVKS3Vx_583zhrFPD0vv6XqzvOcHBI3zoc,14268
40
- sglang/srt/layers/layernorm.py,sha256=RzN4eESN9S8mw32r2Nxarq7wKFdeG1yhxPmehUMx79s,2073
41
- sglang/srt/layers/logits_processor.py,sha256=wBgo6IVxWgV4vYRQesnuE2qA8ynB2oFtv0COZSAMIeA,11374
42
- sglang/srt/layers/pooler.py,sha256=qNMG3Ycvt2yf9mk1Lcs-2K7oPeCuVeDYoHAxkMu9b_Q,1610
43
- sglang/srt/layers/prefill_attention.py,sha256=y7vdcuX8lMa9Qf_jQYNDvQO9PVCBQSs3hb5LV2DFgpU,5256
44
- sglang/srt/layers/radix_attention.py,sha256=EA7rc73ZGnle2tQlslF9Ri_VEY07jD0e0cPiKcsqOyA,8473
45
- sglang/srt/layers/fused_moe/__init__.py,sha256=bWCrDdOy2ANEXTb8CHYO63O3Iu3eZnn0PJbgl0z5vvE,75
46
- sglang/srt/layers/fused_moe/fused_moe.py,sha256=1WM2cObWXcFWtqh_utGJFPnrT344rORwuQ9hJDaH2s0,23104
47
- sglang/srt/layers/fused_moe/layer.py,sha256=ByNlMmmXsckcsjI12rhlg_IH0KvO6zWJoOYuk7i4ogY,20947
48
- sglang/srt/managers/controller_multi.py,sha256=LYI-XE9h57DW8Uh4gpd8upsC3p2dd5weKzddEH274jg,6626
49
- sglang/srt/managers/controller_single.py,sha256=CdQ9_XPZdcWF5jArDmVR8K-WZ9_8Gpgk4SwANKxTX-Y,5112
50
- sglang/srt/managers/detokenizer_manager.py,sha256=OXufjdCt2ebt-S7MDndjY9Ew16rP4fhualGgj6YEKp0,6295
51
- sglang/srt/managers/io_struct.py,sha256=Xvfl6DNZ2Ek2S4qlRzpVo3foc-aC-1-N-5odcJ4gdq4,9446
52
- sglang/srt/managers/policy_scheduler.py,sha256=KRFaZwjCAkPQDX3W8lbzrxYqgOe7LKFDj2BPlcmlnR8,8379
53
- sglang/srt/managers/schedule_batch.py,sha256=L9kBQZBfsy-2Arzkx4ZjKjNL-zN1BErnv9LqRi3CQNI,30657
54
- sglang/srt/managers/tokenizer_manager.py,sha256=4cf7JyuMGvLVp6Dv8pWG6c9285O6zuD2Ja0eEePUCNg,24857
55
- sglang/srt/managers/tp_worker.py,sha256=TPtWHcLM-bh7GGdA7-8c-zdNLFeLxWNnl3iqODKwYWw,32583
56
- sglang/srt/mem_cache/base_prefix_cache.py,sha256=qEQwEkG4E5rab2ZoTqcesf5pR_J4nV2jBxIHsBJHtIM,924
57
- sglang/srt/mem_cache/chunk_cache.py,sha256=CjZZYlqQzq7mYOiBMLWA5XNb6HIyh5lIMdY-K0OUZEc,2368
58
- sglang/srt/mem_cache/flush_cache.py,sha256=pTLKPRB17U6vl5RFJJvuJ4jCL2SyomgkUBNlkDpGRqo,978
59
- sglang/srt/mem_cache/memory_pool.py,sha256=eXDCstd5Mvu1CbHt1y9z27Eq60QYwW45FsKbZspu4yw,5310
60
- sglang/srt/mem_cache/radix_cache.py,sha256=0AVr1BKKDOtTyybUkwxrz6PT8khDx-DpzgN5MgL27IE,10088
61
- sglang/srt/model_executor/cuda_graph_runner.py,sha256=xvhFptAJKonqnEjeVYaIiKwhEM4NzbSeF9YvC6YqVc8,11364
62
- sglang/srt/model_executor/forward_batch_info.py,sha256=tcWwiKBU2W2USg19ASRlx-9utvYL6PTO0NPNyK5frJk,14272
63
- sglang/srt/model_executor/model_runner.py,sha256=QpNzsV1WiH4_1T0klmM6GjivWI-fKLATC5E67C1LSYk,18158
64
- sglang/srt/models/chatglm.py,sha256=aoEgA2nflcOCIKtZojhUoboqxSP6i5IrrvuDOpzNPnE,13844
65
- sglang/srt/models/commandr.py,sha256=2rAXRZRb4PkJZ4NWEqP_rIgsjxbdZyHpuoMOarqTWzQ,14163
66
- sglang/srt/models/dbrx.py,sha256=N_0Ku_p1NCsc29NktUBNqPv7Z33XhYxOZK5xN7nzW4s,14661
67
- sglang/srt/models/deepseek.py,sha256=7UJgde1EV9ey6d-CKRcEyTKh1_WhZdatpZiltIuqpik,16006
68
- sglang/srt/models/deepseek_v2.py,sha256=uk--2a1e83H6U9wTx_wd3UvkS3VrSRSkjCOjky0R0uo,27004
69
- sglang/srt/models/gemma.py,sha256=3orOUznoGt2NxVKO5c8AjD_ue0gWqwb7LnKbhlcS5Vg,12276
70
- sglang/srt/models/gemma2.py,sha256=IUXKjwO11dpnhevmapS9jz_qPZvzSKrHhYHIXnBR9AU,16475
71
- sglang/srt/models/gpt_bigcode.py,sha256=OKk9UP67as3T5bePlTRGHTCD-1wqaUEk92AowXPm6dg,10204
72
- sglang/srt/models/grok.py,sha256=TrYcCQZhV7f5SUntU4Lo4ZDC8uBi0Vg0SWtyYiZxdqs,14530
73
- sglang/srt/models/internlm2.py,sha256=6j7JH0p3yib8GZDH8Cmrs-pgwfH3eOlAK6V3Cq64O7w,12202
74
- sglang/srt/models/llama2.py,sha256=HmzE1I8OnesmrdPY5b56l7okhWH_lRvWAg16K-UwKHg,14300
75
- sglang/srt/models/llama_classification.py,sha256=Dvzy3PfETiJtnKFOk8qDDLUoZECf_cpSrNeA60PaDo4,4932
76
- sglang/srt/models/llama_embedding.py,sha256=e2lpZ6GHKrHT1rr7_5gHGoCpfqdOBMusZCz34n62lec,3542
77
- sglang/srt/models/llava.py,sha256=-ysi192vpBDxNaMS8qaLOhC34lXQyRtbG_0niVaceSo,18436
78
- sglang/srt/models/llavavid.py,sha256=MX7YpqYh5J4BoOnV7vVAIfoOlBFQXYpp8Kpe7WK0ejk,13562
79
- sglang/srt/models/minicpm.py,sha256=ioqCsTCE_oF8xqGF5fm5cK9dclK5Y0EQ1UJfyteIDDo,13825
80
- sglang/srt/models/mistral.py,sha256=jlrWBVNXbAUziAaIdHAjFcOJnKtn9Bl8rBd65ypJM-I,819
81
- sglang/srt/models/mixtral.py,sha256=cZK-1kGXQC8ZC0tFNmbAoqWlyrrvv5omumpDdEwzzss,13623
82
- sglang/srt/models/mixtral_quant.py,sha256=wMACJq78OTWj7HlqPDRNEh8cjrVAjKqJEsOG3CO5xow,14072
83
- sglang/srt/models/qwen.py,sha256=ssdSgVuhT1Ei0JPa0xwqzrwwPNwkCHRJA4q70hK-Z7E,9988
84
- sglang/srt/models/qwen2.py,sha256=eeah76x-OYZiy6Bb1SDNVk8m_xXHYuh-P58GXjEFZ4w,12266
85
- sglang/srt/models/qwen2_moe.py,sha256=-Ijn_H2IGCjQAYA-9teS9IXKTPMBWSkkPp0Nox6MCuQ,17729
86
- sglang/srt/models/stablelm.py,sha256=30ngpc0Xq3VxzXJlf6svP1oax8Q3krMJkxM8PVKtZWU,11359
87
- sglang/srt/models/yivl.py,sha256=p4s_D_m4H2exP4b91Y-CTkq8T-eIG3DJsFy9pB0e7TM,4932
88
- sglang/srt/openai_api/adapter.py,sha256=C53adcpLGfIUm_B259iWnOCQ3B3VjJbqFseqP8Vo-t8,43064
89
- sglang/srt/openai_api/protocol.py,sha256=knf-nds0XO2LYg-hPM-Ho1f1y2XZIV_Gvg3xcCKLfgQ,9411
90
- sglang/srt/sampling/penaltylib/__init__.py,sha256=5vQw0Y5DSzmsoFg1IdMIKLwFVhYZ5ArADHVBYbSmOec,513
91
- sglang/srt/sampling/penaltylib/orchestrator.py,sha256=WkTNeDhj9H9rtp2ZZeX6MS2sdKSGlLboE6FcuKrwUo0,10815
92
- sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py,sha256=IvYioX53Vq_ji-0Zhcz_r5mUa3T3GaIydVS6K4FhWfE,2557
93
- sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py,sha256=XJZP0C4NFyXgcODbIWXxrgVEjmRgqLdZuVAtoN-LveY,3565
94
- sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py,sha256=0PlANTrR959foTA3Nj5qBE7ndaOZgG-9X6LhzlmEUc8,2533
95
- sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=v9jOgA0-I31WcrhIydiFbpy2ZJPLytFLGM98NRPd2sU,2820
96
- sglang/test/run_eval.py,sha256=NWxeLWmInBgkCvC9Jr_QzF7GfAiBve3Gf1JQrEOlNlU,3899
97
- sglang/test/runners.py,sha256=J4XfBSPhZvLiHLrDsHUuIKjX3kzbMrD7fFEPr07SUkU,7975
98
- sglang/test/simple_eval_common.py,sha256=HL1bfgkTAKP7sk-kShg73WTeADhuBD6xSsuLbV_9C3s,12359
99
- sglang/test/simple_eval_gpqa.py,sha256=CaRAuHdZj0m4mRm4tH9k7cB0kQxe0LHwlz7Vn1qyKps,3189
100
- sglang/test/simple_eval_humaneval.py,sha256=iCtN2LBL6j3nxMDjRJ--m0MCNPAwDo81gJ2whE-2Rt0,5674
101
- sglang/test/simple_eval_math.py,sha256=EQblQmtUt-kl558drzhP7c6KhpDNgr1EJhhKx5eeHM4,2519
102
- sglang/test/simple_eval_mgsm.py,sha256=wfbqJW9Rkc66vzq2fEMF6jchmoA8mw1OUiGU55cZ2B0,10261
103
- sglang/test/simple_eval_mmlu.py,sha256=KqSSdSu2qfoKQ870ttxev1NJ7c90xv2mvKOQsSODtAw,4326
104
- sglang/test/test_layernorm.py,sha256=VDdoeqGvebUa-l3rDiid6cC7wZq0Phpbm5fxxD0-cpg,1910
105
- sglang/test/test_programs.py,sha256=V_-Bx3lLkw37P6gDyA7mZCqxlyNMaFLBkRrPMQQQqn4,14909
106
- sglang/test/test_utils.py,sha256=Fw606sa8sTX6HJ7OCuyDUH8LQr9PvtwBKYnyZj2SLWU,14741
107
- sglang/test/srt/sampling/penaltylib/utils.py,sha256=-0p0rV-P4lNo7xAe3rQSBHTubc50a-DFyOQmLGAkgkQ,12515
108
- sglang-0.2.13.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
109
- sglang-0.2.13.dist-info/METADATA,sha256=oy69SBbn-iEZE0JRzPkHuhzRlAjNj6v8twSXrjsOWXs,34892
110
- sglang-0.2.13.dist-info/WHEEL,sha256=HiCZjzuy6Dw0hdX5R3LCFPDmFS4BWl8H-8W39XfmgX4,91
111
- sglang-0.2.13.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
112
- sglang-0.2.13.dist-info/RECORD,,