sglang 0.2.11__py3-none-any.whl → 0.2.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/api.py +7 -1
- sglang/bench_latency.py +9 -6
- sglang/bench_serving.py +46 -22
- sglang/global_config.py +1 -1
- sglang/lang/backend/runtime_endpoint.py +60 -49
- sglang/lang/compiler.py +2 -2
- sglang/lang/interpreter.py +4 -2
- sglang/lang/ir.py +16 -7
- sglang/srt/constrained/base_tool_cache.py +1 -1
- sglang/srt/constrained/fsm_cache.py +12 -2
- sglang/srt/constrained/jump_forward.py +13 -2
- sglang/srt/layers/activation.py +32 -0
- sglang/srt/layers/{token_attention.py → decode_attention.py} +9 -5
- sglang/srt/layers/extend_attention.py +9 -2
- sglang/srt/layers/fused_moe/__init__.py +1 -0
- sglang/srt/layers/{fused_moe.py → fused_moe/fused_moe.py} +165 -108
- sglang/srt/layers/fused_moe/layer.py +587 -0
- sglang/srt/layers/layernorm.py +65 -0
- sglang/srt/layers/logits_processor.py +7 -2
- sglang/srt/layers/pooler.py +50 -0
- sglang/srt/layers/{context_flashattention_nopad.py → prefill_attention.py} +5 -0
- sglang/srt/layers/radix_attention.py +40 -16
- sglang/srt/managers/detokenizer_manager.py +31 -9
- sglang/srt/managers/io_struct.py +63 -0
- sglang/srt/managers/policy_scheduler.py +173 -25
- sglang/srt/managers/schedule_batch.py +115 -97
- sglang/srt/managers/tokenizer_manager.py +194 -112
- sglang/srt/managers/tp_worker.py +290 -359
- sglang/srt/mem_cache/{base_cache.py → base_prefix_cache.py} +9 -4
- sglang/srt/mem_cache/chunk_cache.py +43 -20
- sglang/srt/mem_cache/memory_pool.py +2 -2
- sglang/srt/mem_cache/radix_cache.py +74 -40
- sglang/srt/model_executor/cuda_graph_runner.py +71 -25
- sglang/srt/model_executor/forward_batch_info.py +293 -156
- sglang/srt/model_executor/model_runner.py +77 -57
- sglang/srt/models/chatglm.py +2 -2
- sglang/srt/models/commandr.py +1 -1
- sglang/srt/models/deepseek.py +2 -2
- sglang/srt/models/deepseek_v2.py +7 -6
- sglang/srt/models/gemma.py +1 -1
- sglang/srt/models/gemma2.py +11 -6
- sglang/srt/models/grok.py +50 -396
- sglang/srt/models/internlm2.py +2 -7
- sglang/srt/models/llama2.py +4 -4
- sglang/srt/models/llama_embedding.py +88 -0
- sglang/srt/models/minicpm.py +2 -2
- sglang/srt/models/mixtral.py +56 -254
- sglang/srt/models/mixtral_quant.py +1 -4
- sglang/srt/models/qwen.py +2 -2
- sglang/srt/models/qwen2.py +2 -2
- sglang/srt/models/qwen2_moe.py +2 -13
- sglang/srt/models/stablelm.py +1 -1
- sglang/srt/openai_api/adapter.py +187 -48
- sglang/srt/openai_api/protocol.py +37 -1
- sglang/srt/sampling/penaltylib/__init__.py +13 -0
- sglang/srt/sampling/penaltylib/orchestrator.py +357 -0
- sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py +80 -0
- sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py +105 -0
- sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py +79 -0
- sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py +83 -0
- sglang/srt/sampling_params.py +31 -8
- sglang/srt/server.py +91 -29
- sglang/srt/server_args.py +32 -19
- sglang/srt/utils.py +32 -15
- sglang/test/run_eval.py +10 -1
- sglang/test/runners.py +81 -73
- sglang/test/simple_eval_humaneval.py +2 -8
- sglang/test/simple_eval_mgsm.py +203 -0
- sglang/test/srt/sampling/penaltylib/utils.py +337 -0
- sglang/test/test_layernorm.py +60 -0
- sglang/test/test_programs.py +36 -7
- sglang/test/test_utils.py +24 -2
- sglang/utils.py +0 -1
- sglang/version.py +1 -1
- {sglang-0.2.11.dist-info → sglang-0.2.13.dist-info}/METADATA +33 -16
- sglang-0.2.13.dist-info/RECORD +112 -0
- {sglang-0.2.11.dist-info → sglang-0.2.13.dist-info}/WHEEL +1 -1
- sglang/srt/layers/linear.py +0 -884
- sglang/srt/layers/quantization/__init__.py +0 -64
- sglang/srt/layers/quantization/fp8.py +0 -677
- sglang/srt/model_loader/model_loader.py +0 -292
- sglang/srt/model_loader/utils.py +0 -275
- sglang-0.2.11.dist-info/RECORD +0 -102
- {sglang-0.2.11.dist-info → sglang-0.2.13.dist-info}/LICENSE +0 -0
- {sglang-0.2.11.dist-info → sglang-0.2.13.dist-info}/top_level.txt +0 -0
sglang/srt/layers/linear.py
DELETED
@@ -1,884 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
Copyright 2023-2024 SGLang Team
|
3
|
-
Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
you may not use this file except in compliance with the License.
|
5
|
-
You may obtain a copy of the License at
|
6
|
-
|
7
|
-
http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
|
9
|
-
Unless required by applicable law or agreed to in writing, software
|
10
|
-
distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
See the License for the specific language governing permissions and
|
13
|
-
limitations under the License.
|
14
|
-
"""
|
15
|
-
|
16
|
-
# temporarily adapted from https://github.com/vllm-project/vllm/blob/e76466dde2bc9525d55165ceaa600d298c7bf773/vllm/model_executor/layers/linear.py
|
17
|
-
# FIXME: refactor the linear abstraction
|
18
|
-
from abc import abstractmethod
|
19
|
-
from typing import Dict, List, Optional, Tuple
|
20
|
-
|
21
|
-
import torch
|
22
|
-
import torch.nn.functional as F
|
23
|
-
from torch.nn.parameter import Parameter
|
24
|
-
from vllm.distributed import (
|
25
|
-
divide,
|
26
|
-
get_tensor_model_parallel_rank,
|
27
|
-
get_tensor_model_parallel_world_size,
|
28
|
-
split_tensor_along_last_dim,
|
29
|
-
tensor_model_parallel_all_gather,
|
30
|
-
tensor_model_parallel_all_reduce,
|
31
|
-
)
|
32
|
-
from vllm.logger import init_logger
|
33
|
-
from vllm.model_executor.layers.quantization.base_config import (
|
34
|
-
QuantizationConfig,
|
35
|
-
QuantizeMethodBase,
|
36
|
-
)
|
37
|
-
from vllm.model_executor.utils import set_weight_attrs
|
38
|
-
|
39
|
-
logger = init_logger(__name__)
|
40
|
-
|
41
|
-
|
42
|
-
def adjust_marlin_shard(param, shard_size, shard_offset):
|
43
|
-
marlin_tile_size = getattr(param, "marlin_tile_size", None)
|
44
|
-
if marlin_tile_size is None:
|
45
|
-
return shard_size, shard_offset
|
46
|
-
|
47
|
-
return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
|
48
|
-
|
49
|
-
|
50
|
-
def adjust_bitsandbytes_shard(
|
51
|
-
param: Parameter, qkv_offsets: Dict[str, Tuple[int, int]], loaded_shard_id: str
|
52
|
-
) -> Tuple[int, int]:
|
53
|
-
"""Adjust the quantization offsets and sizes for BitsAndBytes sharding."""
|
54
|
-
|
55
|
-
total, _ = qkv_offsets["total"]
|
56
|
-
orig_offset, orig_size = qkv_offsets[loaded_shard_id]
|
57
|
-
|
58
|
-
quantized_total = param.data.shape[0]
|
59
|
-
quantized_offset = orig_offset * quantized_total // total
|
60
|
-
quantized_size = orig_size * quantized_total // total
|
61
|
-
|
62
|
-
return quantized_size, quantized_offset
|
63
|
-
|
64
|
-
|
65
|
-
def adjust_scalar_to_fused_array(param, loaded_weight, shard_id):
|
66
|
-
"""For fused modules (QKV and MLP) we have an array of length
|
67
|
-
N that holds 1 scale for each "logical" matrix. So the param
|
68
|
-
is an array of length N. The loaded_weight corresponds to
|
69
|
-
one of the shards on disk. Here, we slice the param based on
|
70
|
-
the shard_id for loading.
|
71
|
-
"""
|
72
|
-
qkv_idxs = {"q": 0, "k": 1, "v": 2}
|
73
|
-
|
74
|
-
if isinstance(shard_id, str):
|
75
|
-
shard_id = qkv_idxs[shard_id]
|
76
|
-
elif not isinstance(shard_id, int):
|
77
|
-
raise ValueError(f"Unknown Shard Id {shard_id}")
|
78
|
-
|
79
|
-
# AutoFP8 scales do not have a shape
|
80
|
-
# compressed-tensors scales do have a shape
|
81
|
-
if len(loaded_weight.shape) != 0:
|
82
|
-
assert loaded_weight.shape[0] == 1
|
83
|
-
loaded_weight = loaded_weight[0]
|
84
|
-
|
85
|
-
return param[shard_id], loaded_weight
|
86
|
-
|
87
|
-
|
88
|
-
class LinearMethodBase(QuantizeMethodBase):
|
89
|
-
"""Base class for different (maybe quantized) linear methods."""
|
90
|
-
|
91
|
-
@abstractmethod
|
92
|
-
def create_weights(
|
93
|
-
self,
|
94
|
-
layer: torch.nn.Module,
|
95
|
-
input_size_per_partition: int,
|
96
|
-
output_partition_sizes: List[int],
|
97
|
-
input_size: int,
|
98
|
-
output_size: int,
|
99
|
-
params_dtype: torch.dtype,
|
100
|
-
**extra_weight_attrs,
|
101
|
-
):
|
102
|
-
"""Create weights for a linear layer.
|
103
|
-
The weights will be set as attributes of the layer.
|
104
|
-
|
105
|
-
Args:
|
106
|
-
layer: The layer that is using the LinearMethodBase factory.
|
107
|
-
input_size_per_partition: Size of the weight input dim on rank X.
|
108
|
-
output_partition_sizes: Sizes of the output dim of each logical
|
109
|
-
weight on rank X. E.g., output_partition_sizes for QKVLinear
|
110
|
-
is a list contains the width of Wq, Wk, Wv on rank X.
|
111
|
-
input_size: Size of the input dim of the weight across all ranks.
|
112
|
-
output_size: Size of the output dim of the weight across all ranks.
|
113
|
-
params_dtype: Datatype of the parameters.
|
114
|
-
"""
|
115
|
-
raise NotImplementedError
|
116
|
-
|
117
|
-
@abstractmethod
|
118
|
-
def apply(
|
119
|
-
self,
|
120
|
-
layer: torch.nn.Module,
|
121
|
-
x: torch.Tensor,
|
122
|
-
bias: Optional[torch.Tensor] = None,
|
123
|
-
) -> torch.Tensor:
|
124
|
-
"""Apply the weights in layer to the input tensor.
|
125
|
-
Expects create_weights to have been called before on the layer."""
|
126
|
-
raise NotImplementedError
|
127
|
-
|
128
|
-
|
129
|
-
class UnquantizedLinearMethod(LinearMethodBase):
|
130
|
-
"""Linear method without quantization.
|
131
|
-
|
132
|
-
Args:
|
133
|
-
separate_bias_add: If true, add bias separately after matrix
|
134
|
-
multiplication.
|
135
|
-
"""
|
136
|
-
|
137
|
-
def __init__(self, separate_bias_add: bool = False):
|
138
|
-
self.separate_bias_add = separate_bias_add
|
139
|
-
|
140
|
-
def create_weights(
|
141
|
-
self,
|
142
|
-
layer: torch.nn.Module,
|
143
|
-
input_size_per_partition: int,
|
144
|
-
output_partition_sizes: List[int],
|
145
|
-
input_size: int,
|
146
|
-
output_size: int,
|
147
|
-
params_dtype: torch.dtype,
|
148
|
-
**extra_weight_attrs,
|
149
|
-
):
|
150
|
-
weight = Parameter(
|
151
|
-
torch.empty(
|
152
|
-
sum(output_partition_sizes),
|
153
|
-
input_size_per_partition,
|
154
|
-
dtype=params_dtype,
|
155
|
-
),
|
156
|
-
requires_grad=False,
|
157
|
-
)
|
158
|
-
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
|
159
|
-
layer.register_parameter("weight", weight)
|
160
|
-
set_weight_attrs(weight, extra_weight_attrs)
|
161
|
-
|
162
|
-
def apply(
|
163
|
-
self,
|
164
|
-
layer: torch.nn.Module,
|
165
|
-
x: torch.Tensor,
|
166
|
-
bias: Optional[torch.Tensor] = None,
|
167
|
-
) -> torch.Tensor:
|
168
|
-
weight = layer.weight
|
169
|
-
if self.separate_bias_add:
|
170
|
-
if bias is not None:
|
171
|
-
return F.linear(x, weight) + bias
|
172
|
-
return F.linear(x, weight)
|
173
|
-
return F.linear(x, weight, bias)
|
174
|
-
|
175
|
-
|
176
|
-
class LinearBase(torch.nn.Module):
|
177
|
-
"""Base linear layer.
|
178
|
-
|
179
|
-
Args:
|
180
|
-
input_size: input dimension of the linear layer.
|
181
|
-
output_size: output dimension of the linear layer.
|
182
|
-
bias: If true, add bias.
|
183
|
-
skip_bias_add: If true, skip adding bias but instead return it.
|
184
|
-
params_dtype: Data type for the parameters.
|
185
|
-
quant_config: Quantization configure.
|
186
|
-
"""
|
187
|
-
|
188
|
-
def __init__(
|
189
|
-
self,
|
190
|
-
input_size: int,
|
191
|
-
output_size: int,
|
192
|
-
skip_bias_add: bool = False,
|
193
|
-
params_dtype: Optional[torch.dtype] = None,
|
194
|
-
quant_config: Optional[QuantizationConfig] = None,
|
195
|
-
):
|
196
|
-
super().__init__()
|
197
|
-
|
198
|
-
# Keep input parameters
|
199
|
-
self.input_size = input_size
|
200
|
-
self.output_size = output_size
|
201
|
-
self.skip_bias_add = skip_bias_add
|
202
|
-
if params_dtype is None:
|
203
|
-
params_dtype = torch.get_default_dtype()
|
204
|
-
self.params_dtype = params_dtype
|
205
|
-
if quant_config is None:
|
206
|
-
self.quant_method: Optional[QuantizeMethodBase] = UnquantizedLinearMethod()
|
207
|
-
else:
|
208
|
-
self.quant_method = quant_config.get_quant_method(self)
|
209
|
-
|
210
|
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
211
|
-
raise NotImplementedError
|
212
|
-
|
213
|
-
|
214
|
-
class ReplicatedLinear(LinearBase):
|
215
|
-
"""Replicated linear layer.
|
216
|
-
|
217
|
-
Args:
|
218
|
-
input_size: input dimension of the linear layer.
|
219
|
-
output_size: output dimension of the linear layer.
|
220
|
-
bias: If true, add bias.
|
221
|
-
skip_bias_add: If true, skip adding bias but instead return it.
|
222
|
-
params_dtype: Data type for the parameters.
|
223
|
-
quant_config: Quantization configure.
|
224
|
-
"""
|
225
|
-
|
226
|
-
def __init__(
|
227
|
-
self,
|
228
|
-
input_size: int,
|
229
|
-
output_size: int,
|
230
|
-
bias: bool = True,
|
231
|
-
skip_bias_add: bool = False,
|
232
|
-
params_dtype: Optional[torch.dtype] = None,
|
233
|
-
quant_config: Optional[QuantizationConfig] = None,
|
234
|
-
):
|
235
|
-
super().__init__(
|
236
|
-
input_size, output_size, skip_bias_add, params_dtype, quant_config
|
237
|
-
)
|
238
|
-
|
239
|
-
# All the linear layer supports quant method.
|
240
|
-
assert self.quant_method is not None
|
241
|
-
self.quant_method.create_weights(
|
242
|
-
self,
|
243
|
-
self.input_size,
|
244
|
-
[self.output_size],
|
245
|
-
self.input_size,
|
246
|
-
self.output_size,
|
247
|
-
self.params_dtype,
|
248
|
-
)
|
249
|
-
|
250
|
-
if bias:
|
251
|
-
self.bias = Parameter(
|
252
|
-
torch.empty(self.output_size, dtype=self.params_dtype)
|
253
|
-
)
|
254
|
-
set_weight_attrs(self.bias, {"output_dim": 0})
|
255
|
-
else:
|
256
|
-
self.register_parameter("bias", None)
|
257
|
-
|
258
|
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
259
|
-
bias = self.bias if not self.skip_bias_add else None
|
260
|
-
assert self.quant_method is not None
|
261
|
-
output = self.quant_method.apply(self, x, bias)
|
262
|
-
output_bias = self.bias if self.skip_bias_add else None
|
263
|
-
return output, output_bias
|
264
|
-
|
265
|
-
def extra_repr(self) -> str:
|
266
|
-
s = f"in_features={self.input_size}"
|
267
|
-
s += f", output_features={self.output_size}"
|
268
|
-
s += f", bias={self.bias is not None}"
|
269
|
-
return s
|
270
|
-
|
271
|
-
|
272
|
-
class ColumnParallelLinear(LinearBase):
|
273
|
-
"""Linear layer with column parallelism.
|
274
|
-
|
275
|
-
The linear layer is defined as Y = XA + b. A is parallelized along
|
276
|
-
its second dimension as A = [A_1, ..., A_p].
|
277
|
-
|
278
|
-
Args:
|
279
|
-
input_size: first dimension of matrix A.
|
280
|
-
output_size: second dimension of matrix A.
|
281
|
-
bias: If true, add bias.
|
282
|
-
gather_output: If true, call all-gather on output and make Y available
|
283
|
-
to all GPUs, otherwise, every GPU will have its output
|
284
|
-
which is Y_i = XA_i
|
285
|
-
skip_bias_add: This was added to enable performance optimizations where
|
286
|
-
bias can be fused with other element-wise operations. we
|
287
|
-
skip adding bias but instead return it.
|
288
|
-
params_dtype: Data type for the parameters.
|
289
|
-
quant_config: Quantization configure.
|
290
|
-
output_sizes: list of output sizes packed into one output, like for QKV
|
291
|
-
the list would be size 3.
|
292
|
-
"""
|
293
|
-
|
294
|
-
def __init__(
|
295
|
-
self,
|
296
|
-
input_size: int,
|
297
|
-
output_size: int,
|
298
|
-
bias: bool = True,
|
299
|
-
gather_output: bool = False,
|
300
|
-
skip_bias_add: bool = False,
|
301
|
-
params_dtype: Optional[torch.dtype] = None,
|
302
|
-
quant_config: Optional[QuantizationConfig] = None,
|
303
|
-
output_sizes: Optional[List[int]] = None,
|
304
|
-
):
|
305
|
-
super().__init__(
|
306
|
-
input_size, output_size, skip_bias_add, params_dtype, quant_config
|
307
|
-
)
|
308
|
-
|
309
|
-
self.gather_output = gather_output
|
310
|
-
|
311
|
-
# Divide the weight matrix along the last dimension.
|
312
|
-
tp_size = get_tensor_model_parallel_world_size()
|
313
|
-
assert self.quant_method is not None
|
314
|
-
self.output_size_per_partition = divide(self.output_size, tp_size)
|
315
|
-
self.output_partition_sizes = [self.output_size_per_partition]
|
316
|
-
# If QKV or MergedColumn, use output size of each partition.
|
317
|
-
if hasattr(self, "output_sizes"):
|
318
|
-
self.output_partition_sizes = [
|
319
|
-
divide(output_size, tp_size) for output_size in self.output_sizes
|
320
|
-
]
|
321
|
-
|
322
|
-
if output_sizes is None:
|
323
|
-
output_sizes = [output_size]
|
324
|
-
self.quant_method.create_weights(
|
325
|
-
layer=self,
|
326
|
-
input_size_per_partition=self.input_size,
|
327
|
-
output_partition_sizes=self.output_partition_sizes,
|
328
|
-
input_size=self.input_size,
|
329
|
-
output_size=self.output_size,
|
330
|
-
params_dtype=self.params_dtype,
|
331
|
-
weight_loader=self.weight_loader,
|
332
|
-
)
|
333
|
-
if bias:
|
334
|
-
self.bias = Parameter(
|
335
|
-
torch.empty(self.output_size_per_partition, dtype=params_dtype)
|
336
|
-
)
|
337
|
-
set_weight_attrs(
|
338
|
-
self.bias,
|
339
|
-
{
|
340
|
-
"output_dim": 0,
|
341
|
-
"weight_loader": self.weight_loader,
|
342
|
-
},
|
343
|
-
)
|
344
|
-
else:
|
345
|
-
self.register_parameter("bias", None)
|
346
|
-
|
347
|
-
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
348
|
-
if param.data.dtype != loaded_weight.dtype:
|
349
|
-
param.data = torch.empty_like(
|
350
|
-
param.data, dtype=loaded_weight.dtype, device="cuda"
|
351
|
-
)
|
352
|
-
|
353
|
-
tp_rank = get_tensor_model_parallel_rank()
|
354
|
-
output_dim = getattr(param, "output_dim", None)
|
355
|
-
param_data = param.data
|
356
|
-
if output_dim is not None:
|
357
|
-
shard_size = param_data.shape[output_dim]
|
358
|
-
start_idx = tp_rank * shard_size
|
359
|
-
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
|
360
|
-
|
361
|
-
# Special case for loading scales off disk, which often do not
|
362
|
-
# have a shape (such as in the case of AutoFP8).
|
363
|
-
if len(loaded_weight.shape) == 0:
|
364
|
-
loaded_weight = loaded_weight.reshape(1)
|
365
|
-
|
366
|
-
assert param_data.shape == loaded_weight.shape
|
367
|
-
param_data.copy_(loaded_weight)
|
368
|
-
|
369
|
-
def forward(self, input_):
|
370
|
-
bias = self.bias if not self.skip_bias_add else None
|
371
|
-
|
372
|
-
# Matrix multiply.
|
373
|
-
assert self.quant_method is not None
|
374
|
-
output_parallel = self.quant_method.apply(self, input_, bias)
|
375
|
-
if self.gather_output:
|
376
|
-
# All-gather across the partitions.
|
377
|
-
output = tensor_model_parallel_all_gather(output_parallel)
|
378
|
-
else:
|
379
|
-
output = output_parallel
|
380
|
-
output_bias = self.bias if self.skip_bias_add else None
|
381
|
-
return output, output_bias
|
382
|
-
|
383
|
-
def extra_repr(self) -> str:
|
384
|
-
s = f"in_features={self.input_size}"
|
385
|
-
s += f", output_features={self.output_size_per_partition}"
|
386
|
-
s += f", bias={self.bias is not None}"
|
387
|
-
s += f", tp_size={get_tensor_model_parallel_world_size()}"
|
388
|
-
s += f", gather_output={self.gather_output}"
|
389
|
-
return s
|
390
|
-
|
391
|
-
|
392
|
-
class MergedColumnParallelLinear(ColumnParallelLinear):
|
393
|
-
"""Packed linear layers with column parallelism.
|
394
|
-
|
395
|
-
Similar to ColumnParallelLinear, but the weight matrix is concatenated
|
396
|
-
along the output dimension. When the weight matrix is loaded, the
|
397
|
-
different partitions are sharded separately.
|
398
|
-
|
399
|
-
Args:
|
400
|
-
input_size: input dimension of the linear layer.
|
401
|
-
output_sizes: list of output dimensions of the linear layer.
|
402
|
-
bias: If true, add bias.
|
403
|
-
gather_output: If true, call all-gather on output and make the output
|
404
|
-
available to all GPUs, otherwise, every GPU will have
|
405
|
-
its own output.
|
406
|
-
skip_bias_add: This was added to enable performance optimizations where
|
407
|
-
bias can be fused with other element-wise operations. we
|
408
|
-
skip adding bias but instead return it.
|
409
|
-
params_dtype: Data type for the parameters.
|
410
|
-
quant_config: Quantization configure.
|
411
|
-
"""
|
412
|
-
|
413
|
-
def __init__(
|
414
|
-
self,
|
415
|
-
input_size: int,
|
416
|
-
output_sizes: List[int],
|
417
|
-
bias: bool = True,
|
418
|
-
gather_output: bool = False,
|
419
|
-
skip_bias_add: bool = False,
|
420
|
-
params_dtype: Optional[torch.dtype] = None,
|
421
|
-
quant_config: Optional[QuantizationConfig] = None,
|
422
|
-
):
|
423
|
-
self.output_sizes = output_sizes
|
424
|
-
tp_size = get_tensor_model_parallel_world_size()
|
425
|
-
assert all(output_size % tp_size == 0 for output_size in output_sizes)
|
426
|
-
super().__init__(
|
427
|
-
input_size=input_size,
|
428
|
-
output_size=sum(output_sizes),
|
429
|
-
bias=bias,
|
430
|
-
gather_output=gather_output,
|
431
|
-
skip_bias_add=skip_bias_add,
|
432
|
-
params_dtype=params_dtype,
|
433
|
-
quant_config=quant_config,
|
434
|
-
)
|
435
|
-
|
436
|
-
def weight_loader(
|
437
|
-
self,
|
438
|
-
param: Parameter,
|
439
|
-
loaded_weight: torch.Tensor,
|
440
|
-
loaded_shard_id: Optional[int] = None,
|
441
|
-
):
|
442
|
-
if param.data.dtype != loaded_weight.dtype:
|
443
|
-
param.data = torch.empty_like(
|
444
|
-
param.data, dtype=loaded_weight.dtype, device="cuda"
|
445
|
-
)
|
446
|
-
|
447
|
-
param_data = param.data
|
448
|
-
output_dim = getattr(param, "output_dim", None)
|
449
|
-
# Special case for AQLM codebooks.
|
450
|
-
is_metadata = getattr(param, "is_metadata", False)
|
451
|
-
# Special case for per-tensor scale to load scalar into fused array.
|
452
|
-
needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
|
453
|
-
|
454
|
-
if loaded_shard_id is None:
|
455
|
-
# Loaded weight is already fused on disk (qkv/mlp).
|
456
|
-
if output_dim is None:
|
457
|
-
if needs_scalar_to_array is not None:
|
458
|
-
param_data, loaded_weight = adjust_scalar_to_fused_array(
|
459
|
-
param_data, loaded_weight, 0
|
460
|
-
)
|
461
|
-
|
462
|
-
assert param_data.shape == loaded_weight.shape
|
463
|
-
param_data.copy_(loaded_weight)
|
464
|
-
return
|
465
|
-
current_shard_offset = 0
|
466
|
-
shard_offsets: List[Tuple[int, int, int]] = []
|
467
|
-
for i, output_size in enumerate(self.output_sizes):
|
468
|
-
shard_offsets.append((i, current_shard_offset, output_size))
|
469
|
-
current_shard_offset += output_size
|
470
|
-
packed_dim = getattr(param, "packed_dim", None)
|
471
|
-
for shard_id, shard_offset, shard_size in shard_offsets:
|
472
|
-
# Special case for Quantization.
|
473
|
-
# If quantized, we need to adjust the offset and size to account
|
474
|
-
# for the packing.
|
475
|
-
if packed_dim == output_dim:
|
476
|
-
shard_size = shard_size // param.pack_factor
|
477
|
-
shard_offset = shard_offset // param.pack_factor
|
478
|
-
# Special case for Marlin.
|
479
|
-
shard_size, shard_offset = adjust_marlin_shard(
|
480
|
-
param, shard_size, shard_offset
|
481
|
-
)
|
482
|
-
|
483
|
-
loaded_weight_shard = loaded_weight.narrow(
|
484
|
-
output_dim, shard_offset, shard_size
|
485
|
-
)
|
486
|
-
self.weight_loader(param, loaded_weight_shard, shard_id)
|
487
|
-
return
|
488
|
-
|
489
|
-
assert loaded_shard_id < len(self.output_sizes)
|
490
|
-
tp_rank = get_tensor_model_parallel_rank()
|
491
|
-
tp_size = get_tensor_model_parallel_world_size()
|
492
|
-
if output_dim is not None:
|
493
|
-
shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
|
494
|
-
shard_size = self.output_sizes[loaded_shard_id] // tp_size
|
495
|
-
# Special case for quantization.
|
496
|
-
# If quantized, we need to adjust the offset and size to account
|
497
|
-
# for the packing.
|
498
|
-
packed_dim = getattr(param, "packed_dim", None)
|
499
|
-
if packed_dim == output_dim:
|
500
|
-
shard_size = shard_size // param.pack_factor
|
501
|
-
shard_offset = shard_offset // param.pack_factor
|
502
|
-
# Special case for Marlin.
|
503
|
-
shard_size, shard_offset = adjust_marlin_shard(
|
504
|
-
param, shard_size, shard_offset
|
505
|
-
)
|
506
|
-
|
507
|
-
use_bitsandbytes = getattr(param, "use_bitsandbytes", False)
|
508
|
-
if use_bitsandbytes:
|
509
|
-
shard_size = loaded_weight.shape[output_dim]
|
510
|
-
shard_offset = loaded_weight.shape[output_dim] * loaded_shard_id
|
511
|
-
|
512
|
-
param_data = param_data.narrow(output_dim, shard_offset, shard_size)
|
513
|
-
start_idx = tp_rank * shard_size
|
514
|
-
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
|
515
|
-
# Special case for AQLM codebooks.
|
516
|
-
elif is_metadata:
|
517
|
-
# metadata indicates fixed size concatenated along dim 0
|
518
|
-
shard_size = loaded_weight.shape[0]
|
519
|
-
shard_offset = loaded_shard_id * shard_size
|
520
|
-
param_data = param_data.narrow(0, shard_offset, shard_size)
|
521
|
-
|
522
|
-
# Special case for per-tensor scales in fused case.
|
523
|
-
elif needs_scalar_to_array:
|
524
|
-
param_data, loaded_weight = adjust_scalar_to_fused_array(
|
525
|
-
param_data, loaded_weight, loaded_shard_id
|
526
|
-
)
|
527
|
-
|
528
|
-
else:
|
529
|
-
ignore_warning = getattr(param, "ignore_warning", False)
|
530
|
-
if not ignore_warning:
|
531
|
-
logger.warning(
|
532
|
-
"Loading a weight without `output_dim` attribute in "
|
533
|
-
"MergedColumnParallelLinear, assume the weight is "
|
534
|
-
"the same for all partitions."
|
535
|
-
)
|
536
|
-
|
537
|
-
assert param_data.shape == loaded_weight.shape
|
538
|
-
param_data.copy_(loaded_weight)
|
539
|
-
|
540
|
-
|
541
|
-
class QKVParallelLinear(ColumnParallelLinear):
|
542
|
-
"""Linear layers for the attention's QKV transformation.
|
543
|
-
|
544
|
-
Linear layers for the linear transformation of the query, key, and value
|
545
|
-
vectors in the attention layer. The weight matrix is concatenated along
|
546
|
-
the output dimension. The layer is parallelized along the head dimension.
|
547
|
-
When the number of key/value heads is smaller than the number of query
|
548
|
-
heads (e.g., multi-query/grouped-query attention), the key/value head may
|
549
|
-
be replicated while the query heads are partitioned.
|
550
|
-
|
551
|
-
Args:
|
552
|
-
hidden_size: input hidden state size of the transformer.
|
553
|
-
head_size: size of each attention head.
|
554
|
-
total_num_heads: total number of attention query heads.
|
555
|
-
total_num_kv_heads: total number of attention key/value heads. If
|
556
|
-
None, assume total_num_kv_heads = total_num_heads.
|
557
|
-
bias: If true, add bias.
|
558
|
-
skip_bias_add: This was added to enable performance optimizations where
|
559
|
-
bias can be fused with other element-wise operations. we
|
560
|
-
skip adding bias but instead return it.
|
561
|
-
params_dtype: Data type for the parameters.
|
562
|
-
quant_config: Quantization configure.
|
563
|
-
"""
|
564
|
-
|
565
|
-
def __init__(
|
566
|
-
self,
|
567
|
-
hidden_size: int,
|
568
|
-
head_size: int,
|
569
|
-
total_num_heads: int,
|
570
|
-
total_num_kv_heads: Optional[int] = None,
|
571
|
-
bias: bool = True,
|
572
|
-
skip_bias_add: bool = False,
|
573
|
-
params_dtype: Optional[torch.dtype] = None,
|
574
|
-
quant_config: Optional[QuantizationConfig] = None,
|
575
|
-
):
|
576
|
-
self.hidden_size = hidden_size
|
577
|
-
self.head_size = head_size
|
578
|
-
self.total_num_heads = total_num_heads
|
579
|
-
if total_num_kv_heads is None:
|
580
|
-
total_num_kv_heads = total_num_heads
|
581
|
-
self.total_num_kv_heads = total_num_kv_heads
|
582
|
-
# Divide the weight matrix along the last dimension.
|
583
|
-
tp_size = get_tensor_model_parallel_world_size()
|
584
|
-
self.num_heads = divide(self.total_num_heads, tp_size)
|
585
|
-
if tp_size >= self.total_num_kv_heads:
|
586
|
-
self.num_kv_heads = 1
|
587
|
-
self.num_kv_head_replicas = divide(tp_size, self.total_num_kv_heads)
|
588
|
-
else:
|
589
|
-
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
|
590
|
-
self.num_kv_head_replicas = 1
|
591
|
-
input_size = self.hidden_size
|
592
|
-
output_size = (
|
593
|
-
(self.num_heads + 2 * self.num_kv_heads) * tp_size * self.head_size
|
594
|
-
)
|
595
|
-
self.output_sizes = [
|
596
|
-
self.num_heads * self.head_size * tp_size, # q_proj
|
597
|
-
self.num_kv_heads * self.head_size * tp_size, # k_proj
|
598
|
-
self.num_kv_heads * self.head_size * tp_size, # v_proj
|
599
|
-
]
|
600
|
-
|
601
|
-
super().__init__(
|
602
|
-
input_size=input_size,
|
603
|
-
output_size=output_size,
|
604
|
-
bias=bias,
|
605
|
-
gather_output=False,
|
606
|
-
skip_bias_add=skip_bias_add,
|
607
|
-
params_dtype=params_dtype,
|
608
|
-
quant_config=quant_config,
|
609
|
-
)
|
610
|
-
|
611
|
-
def weight_loader(
|
612
|
-
self,
|
613
|
-
param: Parameter,
|
614
|
-
loaded_weight: torch.Tensor,
|
615
|
-
loaded_shard_id: Optional[str] = None,
|
616
|
-
):
|
617
|
-
if param.data.dtype != loaded_weight.dtype:
|
618
|
-
param.data = torch.empty_like(
|
619
|
-
param.data, dtype=loaded_weight.dtype, device="cuda"
|
620
|
-
)
|
621
|
-
|
622
|
-
param_data = param.data
|
623
|
-
output_dim = getattr(param, "output_dim", None)
|
624
|
-
# Special case for AQLM codebooks.
|
625
|
-
is_metadata = getattr(param, "is_metadata", False)
|
626
|
-
|
627
|
-
# Special case for per-tensor scales in fused case.
|
628
|
-
needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)
|
629
|
-
|
630
|
-
if loaded_shard_id is None:
|
631
|
-
# Loaded weight is already fused on disk (qkv/mlp).
|
632
|
-
if output_dim is None:
|
633
|
-
if needs_scalar_to_array is not None:
|
634
|
-
param_data, loaded_weight = adjust_scalar_to_fused_array(
|
635
|
-
param_data, loaded_weight, 0
|
636
|
-
)
|
637
|
-
|
638
|
-
assert param_data.shape == loaded_weight.shape
|
639
|
-
param_data.copy_(loaded_weight)
|
640
|
-
return
|
641
|
-
shard_offsets = [
|
642
|
-
# (shard_id, shard_offset, shard_size)
|
643
|
-
("q", 0, self.total_num_heads * self.head_size),
|
644
|
-
(
|
645
|
-
"k",
|
646
|
-
self.total_num_heads * self.head_size,
|
647
|
-
self.total_num_kv_heads * self.head_size,
|
648
|
-
),
|
649
|
-
(
|
650
|
-
"v",
|
651
|
-
(self.total_num_heads + self.total_num_kv_heads) * self.head_size,
|
652
|
-
self.total_num_kv_heads * self.head_size,
|
653
|
-
),
|
654
|
-
]
|
655
|
-
packed_dim = getattr(param, "packed_dim", None)
|
656
|
-
for shard_id, shard_offset, shard_size in shard_offsets:
|
657
|
-
# Special case for Quantized Weights.
|
658
|
-
# If quantized, we need to adjust the offset and size to account
|
659
|
-
# for the packing.
|
660
|
-
if packed_dim == output_dim:
|
661
|
-
shard_size = shard_size // param.pack_factor
|
662
|
-
shard_offset = shard_offset // param.pack_factor
|
663
|
-
|
664
|
-
# Special case for Marlin.
|
665
|
-
shard_size, shard_offset = adjust_marlin_shard(
|
666
|
-
param, shard_size, shard_offset
|
667
|
-
)
|
668
|
-
|
669
|
-
loaded_weight_shard = loaded_weight.narrow(
|
670
|
-
output_dim, shard_offset, shard_size
|
671
|
-
)
|
672
|
-
self.weight_loader(param, loaded_weight_shard, shard_id)
|
673
|
-
return
|
674
|
-
|
675
|
-
tp_rank = get_tensor_model_parallel_rank()
|
676
|
-
assert loaded_shard_id in ["q", "k", "v"]
|
677
|
-
|
678
|
-
# If output dim is defined, use the default loading process.
|
679
|
-
if output_dim is not None:
|
680
|
-
if loaded_shard_id == "q":
|
681
|
-
shard_offset = 0
|
682
|
-
shard_size = self.num_heads * self.head_size
|
683
|
-
elif loaded_shard_id == "k":
|
684
|
-
shard_offset = self.num_heads * self.head_size
|
685
|
-
shard_size = self.num_kv_heads * self.head_size
|
686
|
-
elif loaded_shard_id == "v":
|
687
|
-
shard_offset = (self.num_heads + self.num_kv_heads) * self.head_size
|
688
|
-
shard_size = self.num_kv_heads * self.head_size
|
689
|
-
# Special case for Quantized Weights.
|
690
|
-
# If quantized, we need to adjust the offset and size to account
|
691
|
-
# for the packing.
|
692
|
-
packed_dim = getattr(param, "packed_dim", None)
|
693
|
-
if packed_dim == output_dim:
|
694
|
-
shard_size = shard_size // param.pack_factor
|
695
|
-
shard_offset = shard_offset // param.pack_factor
|
696
|
-
|
697
|
-
# Special case for Marlin.
|
698
|
-
shard_size, shard_offset = adjust_marlin_shard(
|
699
|
-
param, shard_size, shard_offset
|
700
|
-
)
|
701
|
-
|
702
|
-
use_bitsandbytes = getattr(param, "use_bitsandbytes", False)
|
703
|
-
if use_bitsandbytes:
|
704
|
-
orig_qkv_offsets = {
|
705
|
-
"q": (0, self.num_heads * self.head_size),
|
706
|
-
"k": (
|
707
|
-
self.num_heads * self.head_size,
|
708
|
-
self.num_kv_heads * self.head_size,
|
709
|
-
),
|
710
|
-
"v": (
|
711
|
-
(self.num_heads + self.num_kv_heads) * self.head_size,
|
712
|
-
self.num_kv_heads * self.head_size,
|
713
|
-
),
|
714
|
-
"total": (
|
715
|
-
(self.num_heads + 2 * self.num_kv_heads) * self.head_size,
|
716
|
-
0,
|
717
|
-
),
|
718
|
-
}
|
719
|
-
shard_size, shard_offset = adjust_bitsandbytes_shard(
|
720
|
-
param, orig_qkv_offsets, loaded_shard_id
|
721
|
-
)
|
722
|
-
|
723
|
-
param_data = param_data.narrow(output_dim, shard_offset, shard_size)
|
724
|
-
if loaded_shard_id == "q":
|
725
|
-
shard_id = tp_rank
|
726
|
-
else:
|
727
|
-
shard_id = tp_rank // self.num_kv_head_replicas
|
728
|
-
start_idx = shard_id * shard_size
|
729
|
-
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
|
730
|
-
# Special case for for AQLM codebooks.
|
731
|
-
elif is_metadata:
|
732
|
-
# metadata indicates fixed size concatenated along dim 0
|
733
|
-
shard_size = loaded_weight.shape[0]
|
734
|
-
shard_index = ["q", "k", "v"].index(loaded_shard_id)
|
735
|
-
param_data = param_data.narrow(0, shard_index * shard_size, shard_size)
|
736
|
-
# Special case for per-tensor scales in fused case.
|
737
|
-
elif needs_scalar_to_array:
|
738
|
-
param_data, loaded_weight = adjust_scalar_to_fused_array(
|
739
|
-
param_data, loaded_weight, loaded_shard_id
|
740
|
-
)
|
741
|
-
else:
|
742
|
-
ignore_warning = getattr(param, "ignore_warning", False)
|
743
|
-
if not ignore_warning:
|
744
|
-
logger.warning(
|
745
|
-
"Loading a weight without `output_dim` attribute in "
|
746
|
-
"QKVParallelLinear, assume the weight is the same "
|
747
|
-
"for all partitions."
|
748
|
-
)
|
749
|
-
|
750
|
-
assert param_data.shape == loaded_weight.shape
|
751
|
-
param_data.copy_(loaded_weight)
|
752
|
-
|
753
|
-
|
754
|
-
class RowParallelLinear(LinearBase):
|
755
|
-
"""Linear layer with row parallelism.
|
756
|
-
|
757
|
-
The linear layer is defined as Y = XA + b. A is parallelized along
|
758
|
-
its first dimension and X along its second dimension as:
|
759
|
-
- -
|
760
|
-
| A_1 |
|
761
|
-
| . |
|
762
|
-
A = | . | X = [X_1, ..., X_p]
|
763
|
-
| . |
|
764
|
-
| A_p |
|
765
|
-
- -
|
766
|
-
Arguments:
|
767
|
-
input_size: first dimension of matrix A.
|
768
|
-
output_size: second dimension of matrix A.
|
769
|
-
bias: If true, add bias. Note that bias is not parallelized.
|
770
|
-
input_is_parallel: If true, we assume that the input is already
|
771
|
-
split across the GPUs and we do not split
|
772
|
-
again.
|
773
|
-
skip_bias_add: This was added to enable performance optimization where
|
774
|
-
bias can be fused with other element-wise operations.
|
775
|
-
We skip adding bias but instead return it.
|
776
|
-
params_dtype: Data type for the parameters.
|
777
|
-
quant_config: Quantization configure.
|
778
|
-
"""
|
779
|
-
|
780
|
-
def __init__(
|
781
|
-
self,
|
782
|
-
input_size: int,
|
783
|
-
output_size: int,
|
784
|
-
bias: bool = True,
|
785
|
-
input_is_parallel: bool = True,
|
786
|
-
skip_bias_add: bool = False,
|
787
|
-
params_dtype: Optional[torch.dtype] = None,
|
788
|
-
reduce_results: bool = True,
|
789
|
-
quant_config: Optional[QuantizationConfig] = None,
|
790
|
-
):
|
791
|
-
super().__init__(
|
792
|
-
input_size, output_size, skip_bias_add, params_dtype, quant_config
|
793
|
-
)
|
794
|
-
|
795
|
-
self.input_is_parallel = input_is_parallel
|
796
|
-
self.reduce_results = reduce_results
|
797
|
-
|
798
|
-
# Divide the weight matrix along the last dimension.
|
799
|
-
self.tp_size = get_tensor_model_parallel_world_size()
|
800
|
-
self.input_size_per_partition = divide(input_size, self.tp_size)
|
801
|
-
assert self.quant_method is not None
|
802
|
-
self.quant_method.create_weights(
|
803
|
-
layer=self,
|
804
|
-
input_size_per_partition=self.input_size_per_partition,
|
805
|
-
output_partition_sizes=[self.output_size],
|
806
|
-
input_size=self.input_size,
|
807
|
-
output_size=self.output_size,
|
808
|
-
params_dtype=self.params_dtype,
|
809
|
-
weight_loader=self.weight_loader,
|
810
|
-
)
|
811
|
-
if not reduce_results and (bias and not skip_bias_add):
|
812
|
-
raise ValueError(
|
813
|
-
"When not reduce the results, adding bias to the "
|
814
|
-
"results can lead to incorrect results"
|
815
|
-
)
|
816
|
-
|
817
|
-
if bias:
|
818
|
-
self.bias = Parameter(torch.empty(self.output_size, dtype=params_dtype))
|
819
|
-
set_weight_attrs(
|
820
|
-
self.bias,
|
821
|
-
{
|
822
|
-
"output_dim": 0,
|
823
|
-
"weight_loader": self.weight_loader,
|
824
|
-
},
|
825
|
-
)
|
826
|
-
else:
|
827
|
-
self.register_parameter("bias", None)
|
828
|
-
|
829
|
-
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
830
|
-
if param.data.dtype != loaded_weight.dtype:
|
831
|
-
param.data = torch.empty_like(
|
832
|
-
param.data, dtype=loaded_weight.dtype, device="cuda"
|
833
|
-
)
|
834
|
-
|
835
|
-
param_data = param.data
|
836
|
-
tp_rank = get_tensor_model_parallel_rank()
|
837
|
-
input_dim = getattr(param, "input_dim", None)
|
838
|
-
if input_dim is not None:
|
839
|
-
shard_size = param.data.shape[input_dim]
|
840
|
-
start_idx = tp_rank * shard_size
|
841
|
-
loaded_weight = loaded_weight.narrow(input_dim, start_idx, shard_size)
|
842
|
-
|
843
|
-
# Special case for loading scales off disk, which often do not
|
844
|
-
# have a shape (such as in the case of AutoFP8).
|
845
|
-
if len(loaded_weight.shape) == 0:
|
846
|
-
loaded_weight = loaded_weight.reshape(1)
|
847
|
-
|
848
|
-
assert param_data.shape == loaded_weight.shape
|
849
|
-
param_data.copy_(loaded_weight)
|
850
|
-
|
851
|
-
def forward(self, input_):
|
852
|
-
# Set up backprop all-reduce.
|
853
|
-
if self.input_is_parallel:
|
854
|
-
input_parallel = input_
|
855
|
-
else:
|
856
|
-
tp_rank = get_tensor_model_parallel_rank()
|
857
|
-
splitted_input = split_tensor_along_last_dim(
|
858
|
-
input_, num_partitions=self.tp_size
|
859
|
-
)
|
860
|
-
input_parallel = splitted_input[tp_rank].contiguous()
|
861
|
-
|
862
|
-
# Matrix multiply.
|
863
|
-
assert self.quant_method is not None
|
864
|
-
output_parallel = self.quant_method.apply(self, input_parallel)
|
865
|
-
if self.reduce_results and self.tp_size > 1:
|
866
|
-
output_ = tensor_model_parallel_all_reduce(output_parallel)
|
867
|
-
else:
|
868
|
-
output_ = output_parallel
|
869
|
-
|
870
|
-
if not self.skip_bias_add:
|
871
|
-
output = output_ + self.bias if self.bias is not None else output_
|
872
|
-
output_bias = None
|
873
|
-
else:
|
874
|
-
output = output_
|
875
|
-
output_bias = self.bias
|
876
|
-
return output, output_bias
|
877
|
-
|
878
|
-
def extra_repr(self) -> str:
|
879
|
-
s = f"input_features={self.input_size_per_partition}"
|
880
|
-
s += f", output_features={self.output_size}"
|
881
|
-
s += f", bias={self.bias is not None}"
|
882
|
-
s += f", tp_size={self.tp_size}"
|
883
|
-
s += f", reduce_results={self.reduce_results}"
|
884
|
-
return s
|