sglang 0.2.11__py3-none-any.whl → 0.2.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. sglang/bench_latency.py +6 -4
  2. sglang/bench_serving.py +46 -22
  3. sglang/lang/compiler.py +2 -2
  4. sglang/lang/ir.py +3 -3
  5. sglang/srt/constrained/base_tool_cache.py +1 -1
  6. sglang/srt/constrained/fsm_cache.py +12 -2
  7. sglang/srt/layers/activation.py +33 -0
  8. sglang/srt/layers/{token_attention.py → decode_attention.py} +9 -5
  9. sglang/srt/layers/extend_attention.py +6 -1
  10. sglang/srt/layers/layernorm.py +65 -0
  11. sglang/srt/layers/logits_processor.py +5 -0
  12. sglang/srt/layers/pooler.py +50 -0
  13. sglang/srt/layers/{context_flashattention_nopad.py → prefill_attention.py} +5 -0
  14. sglang/srt/layers/radix_attention.py +2 -2
  15. sglang/srt/managers/detokenizer_manager.py +31 -9
  16. sglang/srt/managers/io_struct.py +63 -0
  17. sglang/srt/managers/policy_scheduler.py +173 -25
  18. sglang/srt/managers/schedule_batch.py +110 -87
  19. sglang/srt/managers/tokenizer_manager.py +193 -111
  20. sglang/srt/managers/tp_worker.py +289 -352
  21. sglang/srt/mem_cache/{base_cache.py → base_prefix_cache.py} +9 -4
  22. sglang/srt/mem_cache/chunk_cache.py +43 -20
  23. sglang/srt/mem_cache/memory_pool.py +2 -2
  24. sglang/srt/mem_cache/radix_cache.py +74 -40
  25. sglang/srt/model_executor/cuda_graph_runner.py +24 -9
  26. sglang/srt/model_executor/forward_batch_info.py +168 -105
  27. sglang/srt/model_executor/model_runner.py +24 -37
  28. sglang/srt/models/gemma2.py +0 -1
  29. sglang/srt/models/internlm2.py +2 -7
  30. sglang/srt/models/llama2.py +4 -4
  31. sglang/srt/models/llama_embedding.py +88 -0
  32. sglang/srt/models/qwen2_moe.py +0 -11
  33. sglang/srt/openai_api/adapter.py +155 -27
  34. sglang/srt/openai_api/protocol.py +37 -1
  35. sglang/srt/sampling/penaltylib/__init__.py +13 -0
  36. sglang/srt/sampling/penaltylib/orchestrator.py +357 -0
  37. sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py +80 -0
  38. sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py +105 -0
  39. sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py +79 -0
  40. sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py +83 -0
  41. sglang/srt/sampling_params.py +31 -4
  42. sglang/srt/server.py +69 -15
  43. sglang/srt/server_args.py +26 -19
  44. sglang/srt/utils.py +31 -13
  45. sglang/test/run_eval.py +10 -1
  46. sglang/test/runners.py +63 -63
  47. sglang/test/simple_eval_humaneval.py +2 -8
  48. sglang/test/simple_eval_mgsm.py +203 -0
  49. sglang/test/srt/sampling/penaltylib/utils.py +337 -0
  50. sglang/test/test_layernorm.py +60 -0
  51. sglang/test/test_programs.py +4 -2
  52. sglang/test/test_utils.py +20 -2
  53. sglang/utils.py +0 -1
  54. sglang/version.py +1 -1
  55. {sglang-0.2.11.dist-info → sglang-0.2.12.dist-info}/METADATA +23 -14
  56. sglang-0.2.12.dist-info/RECORD +112 -0
  57. sglang/srt/layers/linear.py +0 -884
  58. sglang/srt/layers/quantization/__init__.py +0 -64
  59. sglang/srt/layers/quantization/fp8.py +0 -677
  60. sglang-0.2.11.dist-info/RECORD +0 -102
  61. {sglang-0.2.11.dist-info → sglang-0.2.12.dist-info}/LICENSE +0 -0
  62. {sglang-0.2.11.dist-info → sglang-0.2.12.dist-info}/WHEEL +0 -0
  63. {sglang-0.2.11.dist-info → sglang-0.2.12.dist-info}/top_level.txt +0 -0
sglang/test/test_utils.py CHANGED
@@ -12,6 +12,8 @@ from typing import Callable, List, Optional
12
12
 
13
13
  import numpy as np
14
14
  import requests
15
+ import torch
16
+ import torch.nn.functional as F
15
17
 
16
18
  from sglang.global_config import global_config
17
19
  from sglang.lang.backend.openai import OpenAI
@@ -19,6 +21,7 @@ from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
19
21
  from sglang.utils import get_exception_traceback
20
22
 
21
23
  DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Meta-Llama-3.1-8B-Instruct"
24
+ DEFAULT_URL_FOR_TEST = "http://127.0.0.1:8157"
22
25
 
23
26
 
24
27
  def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
@@ -396,6 +399,8 @@ def popen_launch_server(
396
399
  timeout: float,
397
400
  api_key: Optional[str] = None,
398
401
  other_args: tuple = (),
402
+ env: Optional[dict] = None,
403
+ return_stdout_stderr: bool = False,
399
404
  ):
400
405
  _, host, port = base_url.split(":")
401
406
  host = host[2:]
@@ -415,7 +420,16 @@ def popen_launch_server(
415
420
  if api_key:
416
421
  command += ["--api-key", api_key]
417
422
 
418
- process = subprocess.Popen(command, stdout=None, stderr=None)
423
+ if return_stdout_stderr:
424
+ process = subprocess.Popen(
425
+ command,
426
+ stdout=subprocess.PIPE,
427
+ stderr=subprocess.PIPE,
428
+ env=env,
429
+ text=True,
430
+ )
431
+ else:
432
+ process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
419
433
 
420
434
  start_time = time.time()
421
435
  while time.time() - start_time < timeout:
@@ -482,7 +496,7 @@ def run_unittest_files(files: List[str], timeout_per_file: float):
482
496
  p.terminate()
483
497
  time.sleep(5)
484
498
  print(
485
- "\nTimeout after {timeout_per_file} seconds when running {filename}\n"
499
+ f"\nTimeout after {timeout_per_file} seconds when running {filename}\n"
486
500
  )
487
501
  return False
488
502
 
@@ -492,3 +506,7 @@ def run_unittest_files(files: List[str], timeout_per_file: float):
492
506
  print(f"Fail. Time elapsed: {time.time() - tic:.2f}s")
493
507
 
494
508
  return 0 if success else -1
509
+
510
+
511
+ def get_similarities(vec1, vec2):
512
+ return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
sglang/utils.py CHANGED
@@ -6,7 +6,6 @@ import json
6
6
  import logging
7
7
  import signal
8
8
  import sys
9
- import threading
10
9
  import traceback
11
10
  import urllib.request
12
11
  from concurrent.futures import ThreadPoolExecutor
sglang/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "0.2.11"
1
+ __version__ = "0.2.12"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: sglang
3
- Version: 0.2.11
3
+ Version: 0.2.12
4
4
  Summary: SGLang is yet another fast serving framework for large language models and vision language models.
5
5
  License: Apache License
6
6
  Version 2.0, January 2004
@@ -308,7 +308,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
308
308
  ### Method 2: From source
309
309
  ```
310
310
  # Use the last release branch
311
- git clone -b v0.2.11 https://github.com/sgl-project/sglang.git
311
+ git clone -b v0.2.12 https://github.com/sgl-project/sglang.git
312
312
  cd sglang
313
313
 
314
314
  pip install --upgrade pip
@@ -392,23 +392,23 @@ print(response)
392
392
  It supports streaming, vision, and most features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
393
393
 
394
394
  ### Additional Server Arguments
395
- - Add `--tp 2` to enable tensor parallelism. If it indicates `peer access is not supported between these two devices`, add `--enable-p2p-check` option.
395
+ - Add `--tp 2` to enable multi-GPU tensor parallelism. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
396
396
  ```
397
397
  python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
398
398
  ```
399
- - Add `--dp 2` to enable data parallelism. It can also be used together with tp. Data parallelism is better for throughput if there is enough memory.
399
+ - Add `--dp 2` to enable multi-GPU data parallelism. It can also be used together with tensor parallelism. Data parallelism is better for throughput if there is enough memory.
400
400
  ```
401
401
  python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
402
402
  ```
403
- - If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
403
+ - If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
404
404
  ```
405
405
  python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
406
406
  ```
407
- - If you see out-of-memory errors during prefill for long prompts on a model that supports long context, consider using chunked prefill.
407
+ - See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
408
+ - If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
408
409
  ```
409
- python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --chunked-prefill-size 8192
410
+ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --chunked-prefill-size 4096
410
411
  ```
411
- - See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
412
412
  - Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
413
413
  ```
414
414
  # Node 0
@@ -418,13 +418,13 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
418
418
  python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
419
419
  ```
420
420
  - If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
421
- - To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
422
421
  - To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
423
-
422
+ - To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
423
+
424
424
  ### Supported Models
425
425
 
426
426
  - Llama / Llama 2 / Llama 3 / Llama 3.1
427
- - Mistral / Mixtral
427
+ - Mistral / Mixtral / Mistral NeMo
428
428
  - Gemma / Gemma 2
429
429
  - Qwen / Qwen 2 / Qwen 2 MoE
430
430
  - DeepSeek / DeepSeek 2
@@ -442,11 +442,20 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
442
442
  - Grok
443
443
  - ChatGLM
444
444
  - InternLM 2
445
- - Mistral NeMo
446
445
 
447
446
  Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
448
447
 
449
- ### Run Llama 3.1 405B
448
+ #### Use Models From ModelScope
449
+ To use model from [ModelScope](https://www.modelscope.cn), setting environment variable SGLANG_USE_MODELSCOPE.
450
+ ```
451
+ export SGLANG_USE_MODELSCOPE=true
452
+ ```
453
+ Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
454
+ ```
455
+ SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
456
+ ```
457
+
458
+ #### Run Llama 3.1 405B
450
459
 
451
460
  ```bash
452
461
  ## Run 405B (fp8) on a single node
@@ -474,7 +483,7 @@ GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/
474
483
  ```
475
484
 
476
485
  ## Frontend: Structured Generation Language (SGLang)
477
- The frontend language can be used with local models or API models.
486
+ The frontend language can be used with local models or API models. It is an alternative to the OpenAI API. You may found it easier to use for complex prompting workflow.
478
487
 
479
488
  ### Quick Start
480
489
  The example below shows how to use sglang to answer a mulit-turn question.
@@ -0,0 +1,112 @@
1
+ sglang/__init__.py,sha256=T8MYdFfKFPZcgFKHMBpOCIlFbhjwmr77Nqm6mdE6bCY,1590
2
+ sglang/api.py,sha256=gAY9JhqWXjrYoWnMvR-iiuuY1YSN94We-lc1LH0z3cw,6030
3
+ sglang/bench_latency.py,sha256=E-cfuZSjBGonzKL0LgB0zAqMWpiP3qozB_Ht9dH8qvc,16207
4
+ sglang/bench_serving.py,sha256=sS-fawAyzngrOVbPE3N1FBxPojoPd9vj9XQDsWpIYTQ,35798
5
+ sglang/check_env.py,sha256=oU8VmjjPK2SviRhr41cF1953soBu-eTT5E0Hf04zMzo,4974
6
+ sglang/global_config.py,sha256=9JxaFkBKSgep6BVeEl_kx9tuW9PqdijYELyBGTryl6o,1704
7
+ sglang/launch_server.py,sha256=Gg8CwNlTCCfg1dF65ZT9ePLxOT9LKtY79GhIPG6PCrU,358
8
+ sglang/launch_server_llavavid.py,sha256=40uaazMsavKuk6YXFa5v37kdUpFGuealgJJeph1g8gU,1025
9
+ sglang/utils.py,sha256=zFYGkC4vOUR3sTv1TmQXcsOLZDtDBR3wnjqnDp3xMIs,8352
10
+ sglang/version.py,sha256=X4KG3FscE5AhbGbcdDDgdDC550CVpxNMwdNLcx6EQ7M,23
11
+ sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
+ sglang/lang/chat_template.py,sha256=psIlhaDo70twgLrx5Lgln03metLEA3-FZuixeI0Y7Ao,13309
13
+ sglang/lang/choices.py,sha256=-W1DVw9N9ZliVpvmWrzIXG4cswAah8eMQrHWzkS3D8o,6234
14
+ sglang/lang/compiler.py,sha256=1Tc6MQs4RsIfrNmmO7PMSUEHIqvNqKOp_HxaYqonwFE,7533
15
+ sglang/lang/interpreter.py,sha256=3RIeSGdKlKTq2Ixg_Tyo0fGEDTvBKS2f9FaJYODBHzA,30102
16
+ sglang/lang/ir.py,sha256=Ow6jXDPIeRd1piAuYjvgyFxfro1G2_-1QwUFfq4Aihs,16842
17
+ sglang/lang/tracer.py,sha256=borJmlSJOhg1RUndGRnilnR60eEZz2Y9aU7BpftsOxU,8287
18
+ sglang/lang/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
+ sglang/lang/backend/anthropic.py,sha256=EXRX7xJgA5KZszX7toSLVnKzFQ5EO0Loj-YjHFtxSxg,2081
20
+ sglang/lang/backend/base_backend.py,sha256=Q5HdiDtyBewQeoYH0kDtBRVL8KFiEPNq9dw7XmauHQ8,1985
21
+ sglang/lang/backend/litellm.py,sha256=ugmL7sfUxkUHVbHtwNzHgdQAEd4UCjNQboFuE3KThcY,2450
22
+ sglang/lang/backend/openai.py,sha256=qM7eVH_kMxnDd2rpxOH0v76KxtOJFlAwgLgWIKvFGCI,15060
23
+ sglang/lang/backend/runtime_endpoint.py,sha256=AaBc5yczchX7mkwiKDMyjLjBkJsh2Lubrfd9lvCOlDo,9544
24
+ sglang/lang/backend/vertexai.py,sha256=O-iBLD-y3vq80UxnrAoJri7bxpgd-_eakZ88Cf8bEGA,4855
25
+ sglang/srt/conversation.py,sha256=V5YuoeO6-aLqGv0p3J2qx8TnBJbN1oTopYFutNul3GQ,16491
26
+ sglang/srt/hf_transformers_utils.py,sha256=Tf_RplcW7llVXsigRvSGqmeAUxBeAL8rPCkzuqWfZ8U,11925
27
+ sglang/srt/mm_utils.py,sha256=n7_GmbOM_0IWVXovpM34rKIBw0Py9yb_NXSQw27u4OA,9454
28
+ sglang/srt/model_config.py,sha256=k4OfRV-szWkFaJMIC40JoJGJ75AfYQ2hf4M1dS1aQ-o,6366
29
+ sglang/srt/sampling_params.py,sha256=5V1MhhEvyCWZrCF5VmQxcKNuKVoC4LynY-q4Bx3P3mo,4876
30
+ sglang/srt/server.py,sha256=FvczPB9ojDVLIdC2kic0RLAmOTt0WZrql_BvYzwbeRY,18495
31
+ sglang/srt/server_args.py,sha256=GLuJkgwv-Osmf3IqCvZqfdqIBJjcHkdtoNT0_zq75Kc,16849
32
+ sglang/srt/utils.py,sha256=ReJqGMdquK_cfve269yjpWWQaozTVoEHSLG5P3CKvAg,24102
33
+ sglang/srt/constrained/__init__.py,sha256=NLpZGj9RIx83ejDrM_pfaRtqGgaPq_ggJszPQENUJ2E,2037
34
+ sglang/srt/constrained/base_tool_cache.py,sha256=5sazBMHHDpHMoqOjuY6itCxwTmIFCflIWEDXMtmrPVs,2006
35
+ sglang/srt/constrained/fsm_cache.py,sha256=QTrBFoZCp2FeigtIakz2MCgQLtvQFXgl2lDPQaGtu9M,2784
36
+ sglang/srt/constrained/jump_forward.py,sha256=IgZ8D0woy5FLIQvXkE8wZRYejDsfVkjU0sqUlkiv_f4,6193
37
+ sglang/srt/layers/activation.py,sha256=MXkuGi5caKHEwqUegoEfOk2Omab8OLrxP-sjPj2TVzU,1197
38
+ sglang/srt/layers/decode_attention.py,sha256=Vgxd2rWzSZkNFp0bjZRAUAusG4bz6iy3D0CULnN-cdk,8904
39
+ sglang/srt/layers/extend_attention.py,sha256=_LOgzSr-1c2UweHZXADjWHbXOmd2JPm-tUMb1vwTTZI,14197
40
+ sglang/srt/layers/fused_moe.py,sha256=KmyXwau2OOZpQimGIQrHptzGNs1trIud5AKEEKXdzPU,20823
41
+ sglang/srt/layers/layernorm.py,sha256=RzN4eESN9S8mw32r2Nxarq7wKFdeG1yhxPmehUMx79s,2073
42
+ sglang/srt/layers/logits_processor.py,sha256=iewPk7VR4jdJeLH6NAO_XqwqM4RhIHdWJzj7-qPRYIw,11362
43
+ sglang/srt/layers/pooler.py,sha256=qNMG3Ycvt2yf9mk1Lcs-2K7oPeCuVeDYoHAxkMu9b_Q,1610
44
+ sglang/srt/layers/prefill_attention.py,sha256=y7vdcuX8lMa9Qf_jQYNDvQO9PVCBQSs3hb5LV2DFgpU,5256
45
+ sglang/srt/layers/radix_attention.py,sha256=LpfTizXKXm1oS5oUfh6aowZceHUHqnquvx-GpfyYjdk,7508
46
+ sglang/srt/managers/controller_multi.py,sha256=LYI-XE9h57DW8Uh4gpd8upsC3p2dd5weKzddEH274jg,6626
47
+ sglang/srt/managers/controller_single.py,sha256=CdQ9_XPZdcWF5jArDmVR8K-WZ9_8Gpgk4SwANKxTX-Y,5112
48
+ sglang/srt/managers/detokenizer_manager.py,sha256=OXufjdCt2ebt-S7MDndjY9Ew16rP4fhualGgj6YEKp0,6295
49
+ sglang/srt/managers/io_struct.py,sha256=Xvfl6DNZ2Ek2S4qlRzpVo3foc-aC-1-N-5odcJ4gdq4,9446
50
+ sglang/srt/managers/policy_scheduler.py,sha256=KRFaZwjCAkPQDX3W8lbzrxYqgOe7LKFDj2BPlcmlnR8,8379
51
+ sglang/srt/managers/schedule_batch.py,sha256=iZ2OwdEn5As7cVGAoe0x97cMCPSS6q_SI_iG79mF8LQ,31111
52
+ sglang/srt/managers/tokenizer_manager.py,sha256=TIIo4YlfdM10LE4JVqv2cO2uDJJtKXDagwzfjMCDU5Q,24858
53
+ sglang/srt/managers/tp_worker.py,sha256=qOx99QL6BIW0aOz7SknWqgflLeNeFYpJsGq0ZsYmYFY,32805
54
+ sglang/srt/mem_cache/base_prefix_cache.py,sha256=qEQwEkG4E5rab2ZoTqcesf5pR_J4nV2jBxIHsBJHtIM,924
55
+ sglang/srt/mem_cache/chunk_cache.py,sha256=CjZZYlqQzq7mYOiBMLWA5XNb6HIyh5lIMdY-K0OUZEc,2368
56
+ sglang/srt/mem_cache/flush_cache.py,sha256=pTLKPRB17U6vl5RFJJvuJ4jCL2SyomgkUBNlkDpGRqo,978
57
+ sglang/srt/mem_cache/memory_pool.py,sha256=eXDCstd5Mvu1CbHt1y9z27Eq60QYwW45FsKbZspu4yw,5310
58
+ sglang/srt/mem_cache/radix_cache.py,sha256=0AVr1BKKDOtTyybUkwxrz6PT8khDx-DpzgN5MgL27IE,10088
59
+ sglang/srt/model_executor/cuda_graph_runner.py,sha256=xQgTTtoMkvYJhYyRJHxPdybmPtfvcODqPLW9btUFt60,10003
60
+ sglang/srt/model_executor/forward_batch_info.py,sha256=B3flTlRNLMa7Km7use1O0Z2YL3-a6rw1BodNKjKV51g,11049
61
+ sglang/srt/model_executor/model_runner.py,sha256=ZlFgqBNuqgWpa-NrjkfTT-_amtea33H9M1tBl-MT_nk,16977
62
+ sglang/srt/model_loader/model_loader.py,sha256=QmZUhHh1nmWrfYlunfnxMcTsIvip1l6aMIlrXoCED4I,10697
63
+ sglang/srt/model_loader/utils.py,sha256=0AoWXX9uV5rKRYXJ4HduSnvdeerytI4ONCLCH6X4XFQ,10675
64
+ sglang/srt/models/chatglm.py,sha256=7bHU2AFoppINDZm0EdxgtAJe7rwr9OPkhOCfq2qNrIA,13862
65
+ sglang/srt/models/commandr.py,sha256=5BEtIS2uUQJANkkY-6ZeDqlrpUK5yXVYHiztU3vsTKY,14172
66
+ sglang/srt/models/dbrx.py,sha256=N_0Ku_p1NCsc29NktUBNqPv7Z33XhYxOZK5xN7nzW4s,14661
67
+ sglang/srt/models/deepseek.py,sha256=E5W4nkH-Ne449rAIwQZgz-FAH2Qqp2r1vNfboyk5wEg,16024
68
+ sglang/srt/models/deepseek_v2.py,sha256=NMcckZb48kVUwAmDA2l8wO19T6DNkJOkKAhHa6utBZM,26968
69
+ sglang/srt/models/gemma.py,sha256=ilfN_NOcz7hpwEJ2y7NW3fBFmFO7YfjhdFDbfzl2qww,12285
70
+ sglang/srt/models/gemma2.py,sha256=ybQOXAPofw_Pv3mBer7dTpH4SlZt6Gf2I462Q3lOIww,16359
71
+ sglang/srt/models/gpt_bigcode.py,sha256=OKk9UP67as3T5bePlTRGHTCD-1wqaUEk92AowXPm6dg,10204
72
+ sglang/srt/models/grok.py,sha256=M9rtdXslqYBle5VyZqFVHiJUXq_q_aHbza63xa03zqI,27861
73
+ sglang/srt/models/internlm2.py,sha256=6j7JH0p3yib8GZDH8Cmrs-pgwfH3eOlAK6V3Cq64O7w,12202
74
+ sglang/srt/models/llama2.py,sha256=HmzE1I8OnesmrdPY5b56l7okhWH_lRvWAg16K-UwKHg,14300
75
+ sglang/srt/models/llama_classification.py,sha256=Dvzy3PfETiJtnKFOk8qDDLUoZECf_cpSrNeA60PaDo4,4932
76
+ sglang/srt/models/llama_embedding.py,sha256=e2lpZ6GHKrHT1rr7_5gHGoCpfqdOBMusZCz34n62lec,3542
77
+ sglang/srt/models/llava.py,sha256=-ysi192vpBDxNaMS8qaLOhC34lXQyRtbG_0niVaceSo,18436
78
+ sglang/srt/models/llavavid.py,sha256=MX7YpqYh5J4BoOnV7vVAIfoOlBFQXYpp8Kpe7WK0ejk,13562
79
+ sglang/srt/models/minicpm.py,sha256=ea_OyiwVTo6Tg9jNRAwqxETnA6FFeAqlIbiUS-xViEI,13843
80
+ sglang/srt/models/mistral.py,sha256=jlrWBVNXbAUziAaIdHAjFcOJnKtn9Bl8rBd65ypJM-I,819
81
+ sglang/srt/models/mixtral.py,sha256=raSLbp6AfWg5_u-f-lYeRejE9koAjbHt8iIHXd3nURM,21397
82
+ sglang/srt/models/mixtral_quant.py,sha256=xYeeatZ9OfwCTas_KbH9nl6lnUT4YqSY7NAxpgLp5LE,14222
83
+ sglang/srt/models/qwen.py,sha256=43ea6gn4wHzAaI3JTDLtl08aEm0vIqgzbVH9M8oeuY0,10006
84
+ sglang/srt/models/qwen2.py,sha256=Hyhks2r4KHpKeb9iHZpnvEVc5klmnrPwcLohqg8j1kw,12284
85
+ sglang/srt/models/qwen2_moe.py,sha256=pTfBivDyzdbcP22_7PdmdPqgx34esH8J98r-EgFA9Uw,17747
86
+ sglang/srt/models/stablelm.py,sha256=yPrdzPEoUD2s_Q3RgOq7BBC7z-UtEaACzabqbDRs2tA,11368
87
+ sglang/srt/models/yivl.py,sha256=p4s_D_m4H2exP4b91Y-CTkq8T-eIG3DJsFy9pB0e7TM,4932
88
+ sglang/srt/openai_api/adapter.py,sha256=fgUAPAcQ_mUJszbpsI_cgv2vzOAS7AKKAJPi2B91aw4,42490
89
+ sglang/srt/openai_api/protocol.py,sha256=knf-nds0XO2LYg-hPM-Ho1f1y2XZIV_Gvg3xcCKLfgQ,9411
90
+ sglang/srt/sampling/penaltylib/__init__.py,sha256=5vQw0Y5DSzmsoFg1IdMIKLwFVhYZ5ArADHVBYbSmOec,513
91
+ sglang/srt/sampling/penaltylib/orchestrator.py,sha256=WkTNeDhj9H9rtp2ZZeX6MS2sdKSGlLboE6FcuKrwUo0,10815
92
+ sglang/srt/sampling/penaltylib/penalizers/frequency_penalty.py,sha256=IvYioX53Vq_ji-0Zhcz_r5mUa3T3GaIydVS6K4FhWfE,2557
93
+ sglang/srt/sampling/penaltylib/penalizers/min_new_tokens.py,sha256=XJZP0C4NFyXgcODbIWXxrgVEjmRgqLdZuVAtoN-LveY,3565
94
+ sglang/srt/sampling/penaltylib/penalizers/presence_penalty.py,sha256=0PlANTrR959foTA3Nj5qBE7ndaOZgG-9X6LhzlmEUc8,2533
95
+ sglang/srt/sampling/penaltylib/penalizers/repetition_penalty.py,sha256=v9jOgA0-I31WcrhIydiFbpy2ZJPLytFLGM98NRPd2sU,2820
96
+ sglang/test/run_eval.py,sha256=NWxeLWmInBgkCvC9Jr_QzF7GfAiBve3Gf1JQrEOlNlU,3899
97
+ sglang/test/runners.py,sha256=FYLbrWePfTacN5bsbAgMl5RiDI4g_Bsbwh1gXqRwr0Y,7794
98
+ sglang/test/simple_eval_common.py,sha256=HL1bfgkTAKP7sk-kShg73WTeADhuBD6xSsuLbV_9C3s,12359
99
+ sglang/test/simple_eval_gpqa.py,sha256=CaRAuHdZj0m4mRm4tH9k7cB0kQxe0LHwlz7Vn1qyKps,3189
100
+ sglang/test/simple_eval_humaneval.py,sha256=iCtN2LBL6j3nxMDjRJ--m0MCNPAwDo81gJ2whE-2Rt0,5674
101
+ sglang/test/simple_eval_math.py,sha256=EQblQmtUt-kl558drzhP7c6KhpDNgr1EJhhKx5eeHM4,2519
102
+ sglang/test/simple_eval_mgsm.py,sha256=wfbqJW9Rkc66vzq2fEMF6jchmoA8mw1OUiGU55cZ2B0,10261
103
+ sglang/test/simple_eval_mmlu.py,sha256=KqSSdSu2qfoKQ870ttxev1NJ7c90xv2mvKOQsSODtAw,4326
104
+ sglang/test/test_layernorm.py,sha256=VDdoeqGvebUa-l3rDiid6cC7wZq0Phpbm5fxxD0-cpg,1910
105
+ sglang/test/test_programs.py,sha256=vRhKIriZgSk_Zn8gGviIfiY_suOBA7Ni7P0NaQM2Esk,13894
106
+ sglang/test/test_utils.py,sha256=cO0ZbnfBS_MxyZ6MDyA7DrDVwu3umKRb3WP_dwggPng,14505
107
+ sglang/test/srt/sampling/penaltylib/utils.py,sha256=-0p0rV-P4lNo7xAe3rQSBHTubc50a-DFyOQmLGAkgkQ,12515
108
+ sglang-0.2.12.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
109
+ sglang-0.2.12.dist-info/METADATA,sha256=k4QBFP1vyWHeXgCA9Npoz7Wb8qT9aC8rL7R1QP2J60g,34314
110
+ sglang-0.2.12.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
111
+ sglang-0.2.12.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
112
+ sglang-0.2.12.dist-info/RECORD,,