sglang 0.1.26__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_serving.py +3 -3
- sglang/global_config.py +1 -1
- sglang/srt/managers/controller/model_runner.py +7 -49
- sglang/srt/managers/io_struct.py +4 -1
- sglang/srt/openai_api/adapter.py +6 -1
- sglang/srt/server.py +1 -4
- sglang/srt/utils.py +51 -1
- sglang/version.py +1 -1
- {sglang-0.1.26.dist-info → sglang-0.2.1.dist-info}/METADATA +29 -19
- {sglang-0.1.26.dist-info → sglang-0.2.1.dist-info}/RECORD +13 -13
- {sglang-0.1.26.dist-info → sglang-0.2.1.dist-info}/LICENSE +0 -0
- {sglang-0.1.26.dist-info → sglang-0.2.1.dist-info}/WHEEL +0 -0
- {sglang-0.1.26.dist-info → sglang-0.2.1.dist-info}/top_level.txt +0 -0
sglang/bench_serving.py
CHANGED
@@ -369,7 +369,7 @@ def sample_random_requests(
|
|
369
369
|
) -> List[Tuple[str, int, int]]:
|
370
370
|
|
371
371
|
input_lens = np.random.randint(
|
372
|
-
int(input_len * range_ratio),
|
372
|
+
max(int(input_len * range_ratio), 1),
|
373
373
|
input_len + 1,
|
374
374
|
size=num_prompts,
|
375
375
|
)
|
@@ -415,7 +415,7 @@ def sample_random_requests(
|
|
415
415
|
prompt_token_ids = tokenizer(prompt).input_ids
|
416
416
|
prompt_len = len(prompt_token_ids)
|
417
417
|
|
418
|
-
if prompt_len
|
418
|
+
if prompt_len > input_lens[i]:
|
419
419
|
input_ids = prompt_token_ids[: input_lens[i]]
|
420
420
|
else:
|
421
421
|
ratio = (input_lens[i] + prompt_len - 1) // prompt_len
|
@@ -935,7 +935,7 @@ if __name__ == "__main__":
|
|
935
935
|
parser.add_argument(
|
936
936
|
"--random-range-ratio",
|
937
937
|
type=float,
|
938
|
-
default=
|
938
|
+
default=0.0,
|
939
939
|
help="Range of sampled ratio of input/output length, "
|
940
940
|
"used only for random dataset.",
|
941
941
|
)
|
sglang/global_config.py
CHANGED
@@ -17,7 +17,7 @@ class GlobalConfig:
|
|
17
17
|
|
18
18
|
# Runtime constants: New generation token ratio estimation
|
19
19
|
self.init_new_token_ratio = 0.7
|
20
|
-
self.base_min_new_token_ratio = 0.
|
20
|
+
self.base_min_new_token_ratio = 0.1
|
21
21
|
self.new_token_ratio_decay = 0.001
|
22
22
|
self.new_token_ratio_recovery = 0.05
|
23
23
|
|
@@ -15,7 +15,6 @@ from flashinfer import (
|
|
15
15
|
BatchPrefillWithRaggedKVCacheWrapper,
|
16
16
|
)
|
17
17
|
from flashinfer.decode import _grouped_size_compiled_for_decode_kernels
|
18
|
-
from torch.nn.parameter import Parameter
|
19
18
|
from vllm.config import DeviceConfig, LoadConfig
|
20
19
|
from vllm.config import ModelConfig as VllmModelConfig
|
21
20
|
from vllm.distributed import (
|
@@ -23,7 +22,6 @@ from vllm.distributed import (
|
|
23
22
|
init_distributed_environment,
|
24
23
|
initialize_model_parallel,
|
25
24
|
)
|
26
|
-
from vllm.model_executor.layers.linear import QKVParallelLinear
|
27
25
|
from vllm.model_executor.models import ModelRegistry
|
28
26
|
|
29
27
|
from sglang.global_config import global_config
|
@@ -32,26 +30,16 @@ from sglang.srt.memory_pool import ReqToTokenPool, TokenToKVPool
|
|
32
30
|
from sglang.srt.server_args import ServerArgs
|
33
31
|
from sglang.srt.utils import (
|
34
32
|
get_available_gpu_memory,
|
33
|
+
is_llama3_405b_fp8,
|
35
34
|
is_multimodal_model,
|
36
35
|
monkey_patch_vllm_dummy_weight_loader,
|
37
36
|
monkey_patch_vllm_p2p_access_check,
|
37
|
+
monkey_patch_vllm_qvk_linear_loader,
|
38
38
|
)
|
39
39
|
|
40
40
|
logger = logging.getLogger("srt.model_runner")
|
41
41
|
|
42
42
|
|
43
|
-
def is_llama3_405b_fp8(model_config):
|
44
|
-
if (
|
45
|
-
model_config.hf_config.architectures[0] == "LlamaForCausalLM"
|
46
|
-
and model_config.hf_config.hidden_size == 16384
|
47
|
-
and model_config.hf_config.intermediate_size == 53248
|
48
|
-
and model_config.hf_config.num_hidden_layers == 126
|
49
|
-
and model_config.hf_config.quantization_config["quant_method"] == "fbgemm_fp8"
|
50
|
-
):
|
51
|
-
return True
|
52
|
-
return False
|
53
|
-
|
54
|
-
|
55
43
|
class ModelRunner:
|
56
44
|
def __init__(
|
57
45
|
self,
|
@@ -132,9 +120,13 @@ class ModelRunner:
|
|
132
120
|
seed=42,
|
133
121
|
skip_tokenizer_init=True,
|
134
122
|
)
|
135
|
-
|
123
|
+
|
124
|
+
if is_llama3_405b_fp8(self.model_config) and self.tp_size <= 8:
|
125
|
+
# A temporary hack to fix the num_heads for meta-llama/Meta-Llama-3.1-405B-FP8 checkpoints
|
136
126
|
self.model_config.hf_config.num_key_value_heads = 8
|
137
127
|
vllm_model_config.hf_config.num_key_value_heads = 8
|
128
|
+
monkey_patch_vllm_qvk_linear_loader()
|
129
|
+
|
138
130
|
self.dtype = vllm_model_config.dtype
|
139
131
|
if self.model_config.model_overide_args is not None:
|
140
132
|
vllm_model_config.hf_config.update(self.model_config.model_overide_args)
|
@@ -387,39 +379,5 @@ def load_model_cls_srt(model_arch: str) -> Optional[Type[nn.Module]]:
|
|
387
379
|
return model_arch_name_to_cls[model_arch]
|
388
380
|
|
389
381
|
|
390
|
-
def get_original_weight(loaded_weight, head_dim):
|
391
|
-
n_kv_head = loaded_weight.shape[0] // (2 * head_dim)
|
392
|
-
dim = loaded_weight.shape[1]
|
393
|
-
for i in range(n_kv_head):
|
394
|
-
loaded_weight[i * head_dim : (i + 1) * head_dim, :] = loaded_weight[
|
395
|
-
2 * i * head_dim : (2 * i + 1) * head_dim, :
|
396
|
-
]
|
397
|
-
original_kv_weight = loaded_weight[: n_kv_head * head_dim, :]
|
398
|
-
assert original_kv_weight.shape == (n_kv_head * head_dim, dim)
|
399
|
-
return original_kv_weight
|
400
|
-
|
401
|
-
|
402
|
-
def get_weight_loader_srt(weight_loader):
|
403
|
-
def weight_loader_srt(
|
404
|
-
self,
|
405
|
-
param: Parameter,
|
406
|
-
loaded_weight: torch.Tensor,
|
407
|
-
loaded_shard_id: Optional[str] = None,
|
408
|
-
):
|
409
|
-
if (
|
410
|
-
loaded_shard_id in ["k", "v"]
|
411
|
-
and loaded_weight.shape[0] == self.head_size * self.total_num_kv_heads * 2
|
412
|
-
):
|
413
|
-
loaded_weight = get_original_weight(loaded_weight, self.head_size)
|
414
|
-
|
415
|
-
weight_loader(self, param, loaded_weight, loaded_shard_id)
|
416
|
-
|
417
|
-
return weight_loader_srt
|
418
|
-
|
419
|
-
|
420
382
|
# Monkey patch model loader
|
421
383
|
setattr(ModelRegistry, "load_model_cls", load_model_cls_srt)
|
422
|
-
original_weight_loader = QKVParallelLinear.weight_loader
|
423
|
-
setattr(
|
424
|
-
QKVParallelLinear, "weight_loader", get_weight_loader_srt(original_weight_loader)
|
425
|
-
)
|
sglang/srt/managers/io_struct.py
CHANGED
@@ -40,7 +40,10 @@ class GenerateReqInput:
|
|
40
40
|
self.text is not None and self.input_ids is not None
|
41
41
|
):
|
42
42
|
raise ValueError("Either text or input_ids should be provided.")
|
43
|
-
if
|
43
|
+
if (
|
44
|
+
isinstance(self.sampling_params, dict)
|
45
|
+
and self.sampling_params.get("n", 1) != 1
|
46
|
+
):
|
44
47
|
is_single = False
|
45
48
|
else:
|
46
49
|
if self.text is not None:
|
sglang/srt/openai_api/adapter.py
CHANGED
@@ -94,9 +94,14 @@ def load_chat_template_for_openai_api(chat_template_arg):
|
|
94
94
|
async def v1_completions(tokenizer_manager, raw_request: Request):
|
95
95
|
request_json = await raw_request.json()
|
96
96
|
request = CompletionRequest(**request_json)
|
97
|
+
prompt = request.prompt
|
98
|
+
if isinstance(prompt, str) or isinstance(prompt[0], str):
|
99
|
+
prompt_kwargs = {"text": prompt}
|
100
|
+
else:
|
101
|
+
prompt_kwargs = {"input_ids": prompt}
|
97
102
|
|
98
103
|
adapted_request = GenerateReqInput(
|
99
|
-
|
104
|
+
**prompt_kwargs,
|
100
105
|
sampling_params={
|
101
106
|
"temperature": request.temperature,
|
102
107
|
"max_new_tokens": request.max_tokens,
|
sglang/srt/server.py
CHANGED
@@ -202,15 +202,12 @@ def launch_server(
|
|
202
202
|
"reinstall the latest version by following the instructions "
|
203
203
|
"at https://docs.flashinfer.ai/installation.html.",
|
204
204
|
)
|
205
|
-
|
206
|
-
if server_args.tp_size // server_args.dp_size > 1:
|
205
|
+
if server_args.tp_size * server_args.dp_size > 1:
|
207
206
|
# FIXME: remove this after https://github.com/triton-lang/triton/pull/4295 is used as a dependency.
|
208
207
|
maybe_set_triton_cache_manager()
|
209
|
-
|
210
208
|
if server_args.chat_template:
|
211
209
|
# TODO: replace this with huggingface transformers template
|
212
210
|
load_chat_template_for_openai_api(server_args.chat_template)
|
213
|
-
|
214
211
|
if server_args.enable_torch_compile:
|
215
212
|
_set_torch_compile_config()
|
216
213
|
|
sglang/srt/utils.py
CHANGED
@@ -21,6 +21,7 @@ import torch.distributed as dist
|
|
21
21
|
from fastapi.responses import JSONResponse
|
22
22
|
from packaging import version as pkg_version
|
23
23
|
from starlette.middleware.base import BaseHTTPMiddleware
|
24
|
+
from torch.nn.parameter import Parameter
|
24
25
|
from triton.runtime.cache import (
|
25
26
|
FileCacheManager,
|
26
27
|
default_cache_dir,
|
@@ -471,7 +472,7 @@ def maybe_set_triton_cache_manager() -> None:
|
|
471
472
|
cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
|
472
473
|
if cache_manger is None:
|
473
474
|
manager = "sglang.srt.utils:CustomCacheManager"
|
474
|
-
logger.
|
475
|
+
logger.debug("Setting Triton cache manager to: %s", manager)
|
475
476
|
os.environ["TRITON_CACHE_MANAGER"] = manager
|
476
477
|
|
477
478
|
|
@@ -615,3 +616,52 @@ def set_ulimit(target_soft_limit=65535):
|
|
615
616
|
resource.setrlimit(resource_type, (target_soft_limit, current_hard))
|
616
617
|
except ValueError as e:
|
617
618
|
logger.warn(f"Fail to set RLIMIT_NOFILE: {e}")
|
619
|
+
|
620
|
+
|
621
|
+
def is_llama3_405b_fp8(model_config):
|
622
|
+
"""Return whether the model is meta-llama/Meta-Llama-3.1-405B-FP8 with 16 kv heads."""
|
623
|
+
if (
|
624
|
+
model_config.hf_config.architectures[0] == "LlamaForCausalLM"
|
625
|
+
and model_config.hf_config.hidden_size == 16384
|
626
|
+
and model_config.hf_config.intermediate_size == 53248
|
627
|
+
and model_config.hf_config.num_hidden_layers == 126
|
628
|
+
and model_config.hf_config.num_key_value_heads == 16
|
629
|
+
and hasattr(model_config.hf_config, "quantization_config")
|
630
|
+
and model_config.hf_config.quantization_config["quant_method"] == "fbgemm_fp8"
|
631
|
+
):
|
632
|
+
return True
|
633
|
+
return False
|
634
|
+
|
635
|
+
|
636
|
+
def monkey_patch_vllm_qvk_linear_loader():
|
637
|
+
"""A temporary hack to fix the num_heads for meta-llama/Meta-Llama-3.1-405B-FP8 checkpoints."""
|
638
|
+
from vllm.model_executor.layers.linear import QKVParallelLinear
|
639
|
+
|
640
|
+
origin_weight_loader = QKVParallelLinear.weight_loader
|
641
|
+
|
642
|
+
def get_original_weight(loaded_weight, head_dim):
|
643
|
+
n_kv_head = loaded_weight.shape[0] // (2 * head_dim)
|
644
|
+
dim = loaded_weight.shape[1]
|
645
|
+
for i in range(n_kv_head):
|
646
|
+
loaded_weight[i * head_dim : (i + 1) * head_dim, :] = loaded_weight[
|
647
|
+
2 * i * head_dim : (2 * i + 1) * head_dim, :
|
648
|
+
]
|
649
|
+
original_kv_weight = loaded_weight[: n_kv_head * head_dim, :]
|
650
|
+
assert original_kv_weight.shape == (n_kv_head * head_dim, dim)
|
651
|
+
return original_kv_weight
|
652
|
+
|
653
|
+
def weight_loader_srt(
|
654
|
+
self,
|
655
|
+
param: Parameter,
|
656
|
+
loaded_weight: torch.Tensor,
|
657
|
+
loaded_shard_id: Optional[str] = None,
|
658
|
+
):
|
659
|
+
if (
|
660
|
+
loaded_shard_id in ["k", "v"]
|
661
|
+
and loaded_weight.shape[0] == self.head_size * self.total_num_kv_heads * 2
|
662
|
+
):
|
663
|
+
loaded_weight = get_original_weight(loaded_weight, self.head_size)
|
664
|
+
|
665
|
+
origin_weight_loader(self, param, loaded_weight, loaded_shard_id)
|
666
|
+
|
667
|
+
setattr(QKVParallelLinear, "weight_loader", weight_loader_srt)
|
sglang/version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "0.1
|
1
|
+
__version__ = "0.2.1"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: sglang
|
3
|
-
Version: 0.1
|
3
|
+
Version: 0.2.1
|
4
4
|
Summary: SGLang is yet another fast serving framework for large language models and vision language models.
|
5
5
|
License: Apache License
|
6
6
|
Version 2.0, January 2004
|
@@ -249,7 +249,7 @@ Requires-Dist: outlines >=0.0.44 ; extra == 'srt'
|
|
249
249
|
|
250
250
|
--------------------------------------------------------------------------------
|
251
251
|
|
252
|
-
| [**Blog**](https://lmsys.org/blog/2024-
|
252
|
+
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) |
|
253
253
|
|
254
254
|
SGLang is a fast serving framework for large language models and vision language models.
|
255
255
|
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
|
@@ -259,13 +259,14 @@ The core features include:
|
|
259
259
|
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
|
260
260
|
|
261
261
|
## News
|
262
|
-
- [2024/
|
263
|
-
- [2024/
|
264
|
-
- [2024/
|
262
|
+
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
|
263
|
+
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
|
264
|
+
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
|
265
265
|
|
266
266
|
<details>
|
267
267
|
<summary>More</summary>
|
268
268
|
|
269
|
+
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
|
269
270
|
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
|
270
271
|
|
271
272
|
</details>
|
@@ -302,7 +303,8 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.3/
|
|
302
303
|
```
|
303
304
|
|
304
305
|
### Method 3: Using docker
|
305
|
-
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags).
|
306
|
+
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
|
307
|
+
Repalce `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
|
306
308
|
|
307
309
|
```bash
|
308
310
|
docker run --gpus all \
|
@@ -311,15 +313,10 @@ docker run --gpus all \
|
|
311
313
|
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
|
312
314
|
--ipc=host \
|
313
315
|
lmsysorg/sglang:latest \
|
314
|
-
python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B --host 0.0.0.0 --port 30000
|
316
|
+
python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --host 0.0.0.0 --port 30000
|
315
317
|
```
|
316
318
|
|
317
319
|
### Common Notes
|
318
|
-
- If you see errors from the Triton compiler, please install the [Triton Nightly](https://triton-lang.org/main/getting-started/installation.html) by
|
319
|
-
```
|
320
|
-
pip uninstall -y triton triton-nightly
|
321
|
-
pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly
|
322
|
-
```
|
323
320
|
- If you cannot install FlashInfer, check out its [installation](https://docs.flashinfer.ai/installation.html#) page. If you still cannot install it, you can use the slower Triton kernels by adding `--disable-flashinfer` when launching the server.
|
324
321
|
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
|
325
322
|
|
@@ -402,6 +399,22 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
|
|
402
399
|
```
|
403
400
|
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/custom_chat_template.md).
|
404
401
|
- To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
|
402
|
+
- To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
|
403
|
+
|
404
|
+
### Run Llama 3.1 405B
|
405
|
+
|
406
|
+
```bash
|
407
|
+
# 2 nodes run 405B fp16
|
408
|
+
# replace the `172.16.4.52:20000` with your own first node ip address and port, disable CUDA Graph temporarily
|
409
|
+
# on the first node
|
410
|
+
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph --mem-frac 0.75
|
411
|
+
|
412
|
+
# on the second
|
413
|
+
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph --mem-frac 0.75
|
414
|
+
|
415
|
+
# single node run 405B fp8
|
416
|
+
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8
|
417
|
+
```
|
405
418
|
|
406
419
|
### Supported Models
|
407
420
|
|
@@ -660,15 +673,12 @@ for out in state.text_iter():
|
|
660
673
|
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
|
661
674
|
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
|
662
675
|
|
663
|
-
## Benchmark And Performance
|
664
|
-
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
|
665
|
-

|
666
676
|
|
667
|
-
|
668
|
-

|
679
|
+

|
669
680
|
|
670
|
-
|
671
|
-
- Synthetic latency and throughput benchmark [scripts](https://github.com/sgl-project/sglang/tree/main/benchmark/latency_throughput).
|
681
|
+
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
|
672
682
|
|
673
683
|
## Roadmap
|
674
684
|
[Development Roadmap (2024 Q3)](https://github.com/sgl-project/sglang/issues/634)
|
@@ -1,13 +1,13 @@
|
|
1
1
|
sglang/__init__.py,sha256=UV7VlXhXrwi00Zg45iNB9KcnmrwLjdMtjMz06AiafY0,1151
|
2
2
|
sglang/api.py,sha256=1JARbc1wNYF6tODdUpgmNgTyLOvMnxdTBctLvEwzGTY,5565
|
3
3
|
sglang/bench_latency.py,sha256=UPy6WhrddMTDX7HqIeHNhCn5vF0YMOKxJlQRvhMC8zU,10552
|
4
|
-
sglang/bench_serving.py,sha256=
|
4
|
+
sglang/bench_serving.py,sha256=UWhTENnoATPJo3nk59Ktr73CwZgiY_MGaRY6TQk0ozI,34584
|
5
5
|
sglang/check_env.py,sha256=CscuPMlf68dkgZf0m-FiLpUisNNDoihMck4qhLOeV1Q,4124
|
6
|
-
sglang/global_config.py,sha256=
|
6
|
+
sglang/global_config.py,sha256=CyhGL7PE-KlMcg7IHWykzImU1y4NQlpeIlh9lHA77uo,1749
|
7
7
|
sglang/launch_server.py,sha256=Gg8CwNlTCCfg1dF65ZT9ePLxOT9LKtY79GhIPG6PCrU,358
|
8
8
|
sglang/launch_server_llavavid.py,sha256=40uaazMsavKuk6YXFa5v37kdUpFGuealgJJeph1g8gU,1025
|
9
9
|
sglang/utils.py,sha256=arJuwOAEX445M2NL9SAOi6jBNu0-cfU04PLAr-hIH3U,8168
|
10
|
-
sglang/version.py,sha256=
|
10
|
+
sglang/version.py,sha256=HfjVOrpTnmZ-xVFCYSVmX50EXaBQeJteUHG-PD6iQs8,22
|
11
11
|
sglang/lang/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
12
12
|
sglang/lang/chat_template.py,sha256=psIlhaDo70twgLrx5Lgln03metLEA3-FZuixeI0Y7Ao,13309
|
13
13
|
sglang/lang/compiler.py,sha256=UiXUmPR9wBAPtnORrLcyQX8Uh0ZL0nKeV8ZgBozAJPw,7531
|
@@ -28,9 +28,9 @@ sglang/srt/memory_pool.py,sha256=FhJk5GtYortO3MJIsMMQ-o49agwDHVX1aEQH2LITq6c,394
|
|
28
28
|
sglang/srt/mm_utils.py,sha256=OptgAHDX-73Bk4jAdr2BOAJtiEXJNzPrMhaM-dy275c,8889
|
29
29
|
sglang/srt/model_config.py,sha256=lZu1D-XLVMETHS6FBMoPn8Uowa9QFGe95d3SuWrr2q8,5282
|
30
30
|
sglang/srt/sampling_params.py,sha256=OI11asr1Bd_E5soDjih614v4flgWxdMZU9HAF0aBafQ,3062
|
31
|
-
sglang/srt/server.py,sha256=
|
31
|
+
sglang/srt/server.py,sha256=IUed6vnXCx7-xbrpEMAaJZ_aa4UubPAQ5pXvcv-xNoY,14607
|
32
32
|
sglang/srt/server_args.py,sha256=aF6L35mEB-FU3BL_ooKuCIcOXLhYLxA9-MjpaOTQRCo,13189
|
33
|
-
sglang/srt/utils.py,sha256=
|
33
|
+
sglang/srt/utils.py,sha256=HvKkGbut8sOxMpGIzYsJ9NEZJg48LOnxyGESaGZmANs,22385
|
34
34
|
sglang/srt/constrained/__init__.py,sha256=5LB3_mDTMW6wcRkFA5J2Rd5HPHHEKRyiELhe4gtlBYM,1472
|
35
35
|
sglang/srt/constrained/base_cache.py,sha256=QQjmFEiT8jlOskJoZobhrDl2TKB-B4b1LPQo9JQCP_w,1405
|
36
36
|
sglang/srt/constrained/fsm_cache.py,sha256=P4qNDHHxpKpTnYL_8V1R6OFXlUwbM6ZcBdzddpcBgb4,1135
|
@@ -45,13 +45,13 @@ sglang/srt/layers/token_attention.py,sha256=EJ4gjbVLfshOZ_vr1iB-Eq8_B-4F26n_wPDj
|
|
45
45
|
sglang/srt/layers/quantization/__init__.py,sha256=PQFzdPpul98DvywBA6YMBOnrMjtHE1LMlMpJ7FM8J3I,1971
|
46
46
|
sglang/srt/layers/quantization/fp8.py,sha256=jaqgRFnHC--IL8iqB6Qygi-KXYPYBKKqt_j4Rk55_h4,24946
|
47
47
|
sglang/srt/managers/detokenizer_manager.py,sha256=8rN2cdMr61LWy07lingEqLnNy0W5Rebdn14IsTQ9PCs,5049
|
48
|
-
sglang/srt/managers/io_struct.py,sha256=
|
48
|
+
sglang/srt/managers/io_struct.py,sha256=VHy9wdZ3sfZA7fS6iq8lqbxdHL5WkBZNqxpacyZ8_8c,5483
|
49
49
|
sglang/srt/managers/tokenizer_manager.py,sha256=SbivhFhZUR9HU9pLTe93MlYprAFAHzOU3KMBA2piQUk,19308
|
50
50
|
sglang/srt/managers/controller/cuda_graph_runner.py,sha256=0aRqA1_34oJ557Zn8PjpJecex5bBWJdnCmBlcDVvYO0,8509
|
51
51
|
sglang/srt/managers/controller/infer_batch.py,sha256=SKwCwhnZ_CNlG0mVCEc4X0e4HNjJFke-c8zdWP3TzjQ,34186
|
52
52
|
sglang/srt/managers/controller/manager_multi.py,sha256=DT8Y9RF5OyTxlrLEZYz4claNWir3UrVztdOZaVPiA6g,6077
|
53
53
|
sglang/srt/managers/controller/manager_single.py,sha256=2xO_iWK6tWvc0B31nKbe2N3klxwQBJmPTnFhNjzhVSI,4566
|
54
|
-
sglang/srt/managers/controller/model_runner.py,sha256=
|
54
|
+
sglang/srt/managers/controller/model_runner.py,sha256=4-nBd9_MgIlamjEdLZDepBEykYNR8nL-65Sf1EYsnx0,14371
|
55
55
|
sglang/srt/managers/controller/radix_cache.py,sha256=tx8LEQpqLxipw9UUVj4D1YQLMMDmWnjDYv8oDlOl-co,8210
|
56
56
|
sglang/srt/managers/controller/schedule_heuristic.py,sha256=SQAGzPS3aB_TPj7rnPBhewwyR6W1sVwW4D3zG3JUY00,2714
|
57
57
|
sglang/srt/managers/controller/tp_worker.py,sha256=yjz-Xzl0zEy4QSU-EYneZH5vi3oHtBuXTtYe4VuDp2g,30517
|
@@ -79,14 +79,14 @@ sglang/srt/models/qwen2.py,sha256=87Tt1Bti-Py3AGudcf7k5ni-OHhtDKPj_Hke44YGw4U,11
|
|
79
79
|
sglang/srt/models/qwen2_moe.py,sha256=oHNoo45myV5kitkls2GWVzuGt1Q4pRHN2nLlXEltFI8,17581
|
80
80
|
sglang/srt/models/stablelm.py,sha256=Z_XCDSHY_QMz3lZwwkZdIZjEOizZjLYJU9GDi8o08qQ,10802
|
81
81
|
sglang/srt/models/yivl.py,sha256=55KPrQ-dVplI0hh2WCSugjc1luE0J2UAafjZxu_7Xuc,4367
|
82
|
-
sglang/srt/openai_api/adapter.py,sha256=
|
82
|
+
sglang/srt/openai_api/adapter.py,sha256=A0IG9ZKEMkkYCsLrVEspnVWzZHBUbc1vHv747LrF8ew,15920
|
83
83
|
sglang/srt/openai_api/protocol.py,sha256=j7ifIR2SFQxTwaHAd9ksM096vfffcNltzTH4sg7H0RA,5739
|
84
84
|
sglang/test/test_conversation.py,sha256=gF_AyOxQgpPQBPnA57-kq-M0p_zFu-rBDMFgAq655Rw,1596
|
85
85
|
sglang/test/test_openai_protocol.py,sha256=DVx3r6hrb8oRqbo5AYIleldxbqMBTtb-gtORM6t_Y1c,1661
|
86
86
|
sglang/test/test_programs.py,sha256=uefeHUFKT2NJESOujj-CsnPXdw1aQQN2TzUbPCHJjGs,13654
|
87
87
|
sglang/test/test_utils.py,sha256=kD_fQe3WroZ9Kc3NBRKPiZOFJ_JD2uEE9XIvPp6AD9Y,11048
|
88
|
-
sglang-0.1.
|
89
|
-
sglang-0.1.
|
90
|
-
sglang-0.1.
|
91
|
-
sglang-0.1.
|
92
|
-
sglang-0.1.
|
88
|
+
sglang-0.2.1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
89
|
+
sglang-0.2.1.dist-info/METADATA,sha256=9Ez23PnJHeEmys9eu3mEfe5SASMKR-AZ8nR9hXMqS5A,31706
|
90
|
+
sglang-0.2.1.dist-info/WHEEL,sha256=Wyh-_nZ0DJYolHNn1_hMa4lM7uDedD_RGVwbmTjyItk,91
|
91
|
+
sglang-0.2.1.dist-info/top_level.txt,sha256=yxhh3pYQkcnA7v3Bg889C2jZhvtJdEincysO7PEB09M,7
|
92
|
+
sglang-0.2.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|