sglang 0.1.24__py3-none-any.whl → 0.1.25__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,113 +0,0 @@
1
- """A data parallel worker thread."""
2
-
3
- import asyncio
4
- import logging
5
- import queue
6
- import threading
7
- from typing import Callable, List
8
-
9
- import uvloop
10
- import zmq
11
-
12
- from sglang.global_config import global_config
13
- from sglang.srt.managers.controller.tp_worker import ModelTpClient
14
- from sglang.srt.managers.io_struct import BatchTokenIDOut
15
- from sglang.srt.server_args import PortArgs, ServerArgs
16
- from sglang.srt.utils import kill_parent_process
17
- from sglang.utils import get_exception_traceback
18
-
19
- logger = logging.getLogger("srt.controller")
20
- CHECKING_INTERVAL = 5
21
-
22
- asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
23
-
24
-
25
- class DataParallelWorkerThread(threading.Thread):
26
- def __init__(
27
- self,
28
- worker_id: int,
29
- request_queue: queue.Queue,
30
- detokenizer_port: int,
31
- step_func: Callable,
32
- ):
33
- super(DataParallelWorkerThread, self).__init__()
34
- self.worker_id = worker_id
35
- self.request_queue = request_queue
36
- self.liveness = True
37
- self.request_dependency_delay = global_config.request_dependency_delay
38
-
39
- context = zmq.asyncio.Context()
40
- self.send_to_detokenizer = context.socket(zmq.PUSH)
41
- self.send_to_detokenizer.connect(f"tcp://127.0.0.1:{detokenizer_port}")
42
-
43
- self.step = step_func
44
-
45
- async def loop_for_forward(self):
46
- while self.liveness:
47
- requests = []
48
- while not self.request_queue.empty():
49
- requests.append(self.request_queue.get())
50
-
51
- out_pyobjs: List[BatchTokenIDOut] = []
52
- try:
53
- out_pyobjs = await self.step(requests)
54
- except Exception:
55
- for r in requests:
56
- self.request_queue.put(r)
57
- logger.error(
58
- f"Worker thread {self.worker_id}: "
59
- f"failed to get back from Model Server\n"
60
- f"{get_exception_traceback()}"
61
- )
62
- self.liveness = False
63
- # Crash the whole server when there are any errors.
64
- # TODO(lianmin): make this an option.
65
- kill_parent_process()
66
- return
67
-
68
- for obj in out_pyobjs:
69
- self.send_to_detokenizer.send_pyobj(obj)
70
-
71
- # async sleep for receiving the subsequent request and avoiding cache miss
72
- if len(out_pyobjs) != 0:
73
- has_finished = any(
74
- [obj.finished_reason is not None for obj in out_pyobjs]
75
- )
76
- if has_finished:
77
- await asyncio.sleep(self.request_dependency_delay)
78
- await asyncio.sleep(global_config.wait_for_new_request_delay)
79
-
80
- async def monitoring(self):
81
- while True:
82
- await asyncio.sleep(CHECKING_INTERVAL)
83
- # can plug in monitoring logic here
84
-
85
- def run(self):
86
- logger.info(f"DataParallelWorkerThread {self.worker_id} start")
87
- loop = asyncio.new_event_loop()
88
- asyncio.set_event_loop(loop)
89
- loop.create_task(self.monitoring())
90
- loop.run_until_complete(self.loop_for_forward())
91
-
92
-
93
- def start_data_parallel_worker(
94
- server_args: ServerArgs,
95
- port_args: PortArgs,
96
- model_overide_args,
97
- gpu_ids: List[int],
98
- worker_id: int,
99
- ):
100
- model_tp_client = ModelTpClient(
101
- gpu_ids,
102
- server_args,
103
- port_args.model_port_args[worker_id],
104
- model_overide_args,
105
- )
106
- worker_thread = DataParallelWorkerThread(
107
- worker_id=worker_id,
108
- request_queue=queue.Queue(),
109
- detokenizer_port=port_args.detokenizer_port,
110
- step_func=model_tp_client.step,
111
- )
112
- worker_thread.start()
113
- return worker_thread
@@ -1,432 +0,0 @@
1
- """Conversion between OpenAI APIs and native SRT APIs"""
2
-
3
- import asyncio
4
- import json
5
- import os
6
- from http import HTTPStatus
7
-
8
- from fastapi import Request
9
- from fastapi.responses import JSONResponse, StreamingResponse
10
-
11
- from sglang.srt.conversation import (
12
- Conversation,
13
- SeparatorStyle,
14
- chat_template_exists,
15
- generate_chat_conv,
16
- register_conv_template,
17
- )
18
- from sglang.srt.managers.io_struct import GenerateReqInput
19
- from sglang.srt.openai_api.protocol import (
20
- ChatCompletionRequest,
21
- ChatCompletionResponse,
22
- ChatCompletionResponseChoice,
23
- ChatCompletionResponseStreamChoice,
24
- ChatCompletionStreamResponse,
25
- ChatMessage,
26
- CompletionRequest,
27
- CompletionResponse,
28
- CompletionResponseChoice,
29
- CompletionResponseStreamChoice,
30
- CompletionStreamResponse,
31
- DeltaMessage,
32
- ErrorResponse,
33
- LogProbs,
34
- UsageInfo,
35
- )
36
-
37
- chat_template_name = None
38
-
39
-
40
- def create_error_response(
41
- message: str,
42
- err_type: str = "BadRequestError",
43
- status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
44
- ):
45
- error = ErrorResponse(message=message, type=err_type, code=status_code.value)
46
- return JSONResponse(content=error.model_dump(), status_code=error.code)
47
-
48
-
49
- def create_streaming_error_response(
50
- message: str,
51
- err_type: str = "BadRequestError",
52
- status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
53
- ) -> str:
54
- error = ErrorResponse(message=message, type=err_type, code=status_code.value)
55
- json_str = json.dumps({"error": error.model_dump()})
56
- return json_str
57
-
58
-
59
- def load_chat_template_for_openai_api(chat_template_arg):
60
- global chat_template_name
61
-
62
- print(f"Use chat template: {chat_template_arg}")
63
- if not chat_template_exists(chat_template_arg):
64
- if not os.path.exists(chat_template_arg):
65
- raise RuntimeError(
66
- f"Chat template {chat_template_arg} is not a built-in template name "
67
- "or a valid chat template file path."
68
- )
69
- with open(chat_template_arg, "r") as filep:
70
- template = json.load(filep)
71
- try:
72
- sep_style = SeparatorStyle[template["sep_style"]]
73
- except KeyError:
74
- raise ValueError(
75
- f"Unknown separator style: {template['sep_style']}"
76
- ) from None
77
- register_conv_template(
78
- Conversation(
79
- name=template["name"],
80
- system_template=template["system"] + "\n{system_message}",
81
- system_message=template.get("system_message", ""),
82
- roles=(template["user"], template["assistant"]),
83
- sep_style=sep_style,
84
- sep=template.get("sep", "\n"),
85
- stop_str=template["stop_str"],
86
- ),
87
- override=True,
88
- )
89
- chat_template_name = template["name"]
90
- else:
91
- chat_template_name = chat_template_arg
92
-
93
-
94
- async def v1_completions(tokenizer_manager, raw_request: Request):
95
- request_json = await raw_request.json()
96
- request = CompletionRequest(**request_json)
97
-
98
- adapted_request = GenerateReqInput(
99
- text=request.prompt,
100
- sampling_params={
101
- "temperature": request.temperature,
102
- "max_new_tokens": request.max_tokens,
103
- "stop": request.stop,
104
- "top_p": request.top_p,
105
- "presence_penalty": request.presence_penalty,
106
- "frequency_penalty": request.frequency_penalty,
107
- "regex": request.regex,
108
- "n": request.n,
109
- "ignore_eos": request.ignore_eos,
110
- },
111
- return_logprob=request.logprobs is not None and request.logprobs > 0,
112
- top_logprobs_num=request.logprobs if request.logprobs is not None else 0,
113
- return_text_in_logprobs=True,
114
- stream=request.stream,
115
- )
116
-
117
- if adapted_request.stream:
118
-
119
- async def generate_stream_resp():
120
- stream_buffer = ""
121
- n_prev_token = 0
122
- try:
123
- async for content in tokenizer_manager.generate_request(
124
- adapted_request, raw_request
125
- ):
126
- text = content["text"]
127
- prompt_tokens = content["meta_info"]["prompt_tokens"]
128
- completion_tokens = content["meta_info"]["completion_tokens"]
129
-
130
- if not stream_buffer: # The first chunk
131
- if request.echo:
132
- # Prepend prompt in response text.
133
- text = request.prompt + text
134
-
135
- if request.logprobs:
136
- # The first chunk and echo is enabled.
137
- if not stream_buffer and request.echo:
138
- prefill_token_logprobs = content["meta_info"][
139
- "prefill_token_logprobs"
140
- ]
141
- prefill_top_logprobs = content["meta_info"][
142
- "prefill_top_logprobs"
143
- ]
144
- else:
145
- prefill_token_logprobs = None
146
- prefill_top_logprobs = None
147
-
148
- logprobs = to_openai_style_logprobs(
149
- prefill_token_logprobs=prefill_token_logprobs,
150
- prefill_top_logprobs=prefill_top_logprobs,
151
- decode_token_logprobs=content["meta_info"][
152
- "decode_token_logprobs"
153
- ][n_prev_token:],
154
- decode_top_logprobs=content["meta_info"][
155
- "decode_top_logprobs"
156
- ][n_prev_token:],
157
- )
158
-
159
- n_prev_token = len(
160
- content["meta_info"]["decode_token_logprobs"]
161
- )
162
- else:
163
- logprobs = None
164
-
165
- delta = text[len(stream_buffer) :]
166
- stream_buffer = stream_buffer + delta
167
- choice_data = CompletionResponseStreamChoice(
168
- index=0,
169
- text=delta,
170
- logprobs=logprobs,
171
- finish_reason=content["meta_info"]["finish_reason"],
172
- )
173
- chunk = CompletionStreamResponse(
174
- id=content["meta_info"]["id"],
175
- object="text_completion",
176
- choices=[choice_data],
177
- model=request.model,
178
- usage=UsageInfo(
179
- prompt_tokens=prompt_tokens,
180
- completion_tokens=completion_tokens,
181
- total_tokens=prompt_tokens + completion_tokens,
182
- ),
183
- )
184
- yield f"data: {chunk.model_dump_json()}\n\n"
185
- except ValueError as e:
186
- error = create_streaming_error_response(str(e))
187
- yield f"data: {error}\n\n"
188
- yield "data: [DONE]\n\n"
189
-
190
- return StreamingResponse(
191
- generate_stream_resp(),
192
- media_type="text/event-stream",
193
- background=tokenizer_manager.create_abort_task(adapted_request),
194
- )
195
-
196
- # Non-streaming response.
197
- try:
198
- ret = await tokenizer_manager.generate_request(
199
- adapted_request, raw_request
200
- ).__anext__()
201
- except ValueError as e:
202
- return create_error_response(str(e))
203
-
204
- if not isinstance(ret, list):
205
- ret = [ret]
206
- choices = []
207
-
208
- for idx, ret_item in enumerate(ret):
209
- text = ret_item["text"]
210
-
211
- if request.echo:
212
- text = request.prompt + text
213
-
214
- if request.logprobs:
215
- if request.echo:
216
- prefill_token_logprobs = ret_item["meta_info"]["prefill_token_logprobs"]
217
- prefill_top_logprobs = ret_item["meta_info"]["prefill_top_logprobs"]
218
- else:
219
- prefill_token_logprobs = None
220
- prefill_top_logprobs = None
221
-
222
- logprobs = to_openai_style_logprobs(
223
- prefill_token_logprobs=prefill_token_logprobs,
224
- prefill_top_logprobs=prefill_top_logprobs,
225
- decode_token_logprobs=ret_item["meta_info"]["decode_token_logprobs"],
226
- decode_top_logprobs=ret_item["meta_info"]["decode_top_logprobs"],
227
- )
228
- else:
229
- logprobs = None
230
-
231
- choice_data = CompletionResponseChoice(
232
- index=idx,
233
- text=text,
234
- logprobs=logprobs,
235
- finish_reason=ret_item["meta_info"]["finish_reason"],
236
- )
237
-
238
- choices.append(choice_data)
239
-
240
- response = CompletionResponse(
241
- id=ret[0]["meta_info"]["id"],
242
- model=request.model,
243
- choices=choices,
244
- usage=UsageInfo(
245
- prompt_tokens=ret[0]["meta_info"]["prompt_tokens"],
246
- completion_tokens=sum(
247
- item["meta_info"]["completion_tokens"] for item in ret
248
- ),
249
- total_tokens=ret[0]["meta_info"]["prompt_tokens"]
250
- + sum(item["meta_info"]["completion_tokens"] for item in ret),
251
- ),
252
- )
253
-
254
- return response
255
-
256
-
257
- async def v1_chat_completions(tokenizer_manager, raw_request: Request):
258
- request_json = await raw_request.json()
259
- request = ChatCompletionRequest(**request_json)
260
-
261
- # Prep the data needed for the underlying GenerateReqInput:
262
- # - prompt: The full prompt string.
263
- # - stop: Custom stop tokens.
264
- # - image_data: None or a list of image strings (URLs or base64 strings).
265
- # None skips any image processing in GenerateReqInput.
266
- if not isinstance(request.messages, str):
267
- # Apply chat template and its stop strings.
268
- if chat_template_name is None:
269
- prompt = tokenizer_manager.tokenizer.apply_chat_template(
270
- request.messages, tokenize=False, add_generation_prompt=True
271
- )
272
- stop = request.stop
273
- image_data = None
274
- else:
275
- conv = generate_chat_conv(request, chat_template_name)
276
- prompt = conv.get_prompt()
277
- image_data = conv.image_data
278
- stop = conv.stop_str or []
279
- if request.stop:
280
- if isinstance(request.stop, str):
281
- stop.append(request.stop)
282
- else:
283
- stop.extend(request.stop)
284
- else:
285
- # Use the raw prompt and stop strings if the messages is already a string.
286
- prompt = request.messages
287
- stop = request.stop
288
- image_data = None
289
-
290
- adapted_request = GenerateReqInput(
291
- text=prompt,
292
- image_data=image_data,
293
- sampling_params={
294
- "temperature": request.temperature,
295
- "max_new_tokens": request.max_tokens,
296
- "stop": stop,
297
- "top_p": request.top_p,
298
- "presence_penalty": request.presence_penalty,
299
- "frequency_penalty": request.frequency_penalty,
300
- "regex": request.regex,
301
- "n": request.n,
302
- },
303
- stream=request.stream,
304
- )
305
-
306
- if adapted_request.stream:
307
-
308
- async def generate_stream_resp():
309
- is_first = True
310
-
311
- stream_buffer = ""
312
- try:
313
- async for content in tokenizer_manager.generate_request(
314
- adapted_request, raw_request
315
- ):
316
- if is_first:
317
- # First chunk with role
318
- is_first = False
319
- choice_data = ChatCompletionResponseStreamChoice(
320
- index=0,
321
- delta=DeltaMessage(role="assistant"),
322
- finish_reason=content["meta_info"]["finish_reason"],
323
- )
324
- chunk = ChatCompletionStreamResponse(
325
- id=content["meta_info"]["id"],
326
- choices=[choice_data],
327
- model=request.model,
328
- )
329
- yield f"data: {chunk.model_dump_json()}\n\n"
330
-
331
- text = content["text"]
332
- delta = text[len(stream_buffer) :]
333
- stream_buffer = stream_buffer + delta
334
- choice_data = ChatCompletionResponseStreamChoice(
335
- index=0,
336
- delta=DeltaMessage(content=delta),
337
- finish_reason=content["meta_info"]["finish_reason"],
338
- )
339
- chunk = ChatCompletionStreamResponse(
340
- id=content["meta_info"]["id"],
341
- choices=[choice_data],
342
- model=request.model,
343
- )
344
- yield f"data: {chunk.model_dump_json()}\n\n"
345
- except ValueError as e:
346
- error = create_streaming_error_response(str(e))
347
- yield f"data: {error}\n\n"
348
- yield "data: [DONE]\n\n"
349
-
350
- return StreamingResponse(
351
- generate_stream_resp(),
352
- media_type="text/event-stream",
353
- background=tokenizer_manager.create_abort_task(adapted_request),
354
- )
355
-
356
- # Non-streaming response.
357
- try:
358
- ret = await tokenizer_manager.generate_request(
359
- adapted_request, raw_request
360
- ).__anext__()
361
- except ValueError as e:
362
- return create_error_response(str(e))
363
-
364
- if not isinstance(ret, list):
365
- ret = [ret]
366
- choices = []
367
- total_prompt_tokens = 0
368
- total_completion_tokens = 0
369
-
370
- for idx, ret_item in enumerate(ret):
371
- prompt_tokens = ret_item["meta_info"]["prompt_tokens"]
372
- completion_tokens = ret_item["meta_info"]["completion_tokens"]
373
-
374
- choice_data = ChatCompletionResponseChoice(
375
- index=idx,
376
- message=ChatMessage(role="assistant", content=ret_item["text"]),
377
- finish_reason=ret_item["meta_info"]["finish_reason"],
378
- )
379
-
380
- choices.append(choice_data)
381
- total_prompt_tokens = prompt_tokens
382
- total_completion_tokens += completion_tokens
383
-
384
- response = ChatCompletionResponse(
385
- id=ret[0]["meta_info"]["id"],
386
- model=request.model,
387
- choices=choices,
388
- usage=UsageInfo(
389
- prompt_tokens=total_prompt_tokens,
390
- completion_tokens=total_completion_tokens,
391
- total_tokens=total_prompt_tokens + total_completion_tokens,
392
- ),
393
- )
394
-
395
- return response
396
-
397
-
398
- def to_openai_style_logprobs(
399
- prefill_token_logprobs=None,
400
- decode_token_logprobs=None,
401
- prefill_top_logprobs=None,
402
- decode_top_logprobs=None,
403
- ):
404
- ret_logprobs = LogProbs()
405
-
406
- def append_token_logprobs(token_logprobs):
407
- for logprob, _, token_text in token_logprobs:
408
- ret_logprobs.tokens.append(token_text)
409
- ret_logprobs.token_logprobs.append(logprob)
410
-
411
- # Not supported yet
412
- ret_logprobs.text_offset.append(-1)
413
-
414
- def append_top_logprobs(top_logprobs):
415
- for tokens in top_logprobs:
416
- if tokens is not None:
417
- ret_logprobs.top_logprobs.append(
418
- {token[2]: token[0] for token in tokens}
419
- )
420
- else:
421
- ret_logprobs.top_logprobs.append(None)
422
-
423
- if prefill_token_logprobs is not None:
424
- append_token_logprobs(prefill_token_logprobs)
425
- if decode_token_logprobs is not None:
426
- append_token_logprobs(decode_token_logprobs)
427
- if prefill_top_logprobs is not None:
428
- append_top_logprobs(prefill_top_logprobs)
429
- if decode_top_logprobs is not None:
430
- append_top_logprobs(decode_top_logprobs)
431
-
432
- return ret_logprobs