sglang 0.1.14__py3-none-any.whl → 0.1.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +57 -2
- sglang/api.py +8 -5
- sglang/backend/anthropic.py +18 -4
- sglang/backend/openai.py +2 -1
- sglang/backend/runtime_endpoint.py +18 -5
- sglang/backend/vertexai.py +1 -0
- sglang/global_config.py +5 -1
- sglang/lang/chat_template.py +83 -2
- sglang/lang/interpreter.py +92 -35
- sglang/lang/ir.py +12 -9
- sglang/lang/tracer.py +6 -4
- sglang/launch_server_llavavid.py +31 -0
- sglang/srt/constrained/fsm_cache.py +1 -0
- sglang/srt/constrained/jump_forward.py +1 -0
- sglang/srt/conversation.py +2 -2
- sglang/srt/flush_cache.py +16 -0
- sglang/srt/hf_transformers_utils.py +10 -2
- sglang/srt/layers/context_flashattention_nopad.py +1 -0
- sglang/srt/layers/extend_attention.py +1 -0
- sglang/srt/layers/logits_processor.py +114 -54
- sglang/srt/layers/radix_attention.py +2 -1
- sglang/srt/layers/token_attention.py +1 -0
- sglang/srt/managers/detokenizer_manager.py +5 -1
- sglang/srt/managers/io_struct.py +27 -3
- sglang/srt/managers/router/infer_batch.py +97 -48
- sglang/srt/managers/router/manager.py +11 -8
- sglang/srt/managers/router/model_rpc.py +169 -90
- sglang/srt/managers/router/model_runner.py +110 -166
- sglang/srt/managers/router/radix_cache.py +89 -51
- sglang/srt/managers/router/scheduler.py +17 -28
- sglang/srt/managers/tokenizer_manager.py +110 -33
- sglang/srt/memory_pool.py +5 -14
- sglang/srt/model_config.py +11 -0
- sglang/srt/models/commandr.py +372 -0
- sglang/srt/models/dbrx.py +412 -0
- sglang/srt/models/dbrx_config.py +281 -0
- sglang/srt/models/gemma.py +24 -25
- sglang/srt/models/llama2.py +25 -26
- sglang/srt/models/llava.py +8 -10
- sglang/srt/models/llavavid.py +307 -0
- sglang/srt/models/mixtral.py +29 -33
- sglang/srt/models/qwen.py +34 -25
- sglang/srt/models/qwen2.py +25 -26
- sglang/srt/models/stablelm.py +26 -26
- sglang/srt/models/yivl.py +3 -5
- sglang/srt/openai_api_adapter.py +356 -0
- sglang/srt/{managers/openai_protocol.py → openai_protocol.py} +36 -20
- sglang/srt/sampling_params.py +2 -0
- sglang/srt/server.py +91 -456
- sglang/srt/server_args.py +79 -49
- sglang/srt/utils.py +212 -47
- sglang/srt/weight_utils.py +417 -0
- sglang/test/test_programs.py +8 -7
- sglang/test/test_utils.py +195 -7
- sglang/utils.py +77 -26
- {sglang-0.1.14.dist-info → sglang-0.1.16.dist-info}/METADATA +20 -18
- sglang-0.1.16.dist-info/RECORD +72 -0
- sglang-0.1.14.dist-info/RECORD +0 -64
- {sglang-0.1.14.dist-info → sglang-0.1.16.dist-info}/LICENSE +0 -0
- {sglang-0.1.14.dist-info → sglang-0.1.16.dist-info}/WHEEL +0 -0
- {sglang-0.1.14.dist-info → sglang-0.1.16.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,372 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
|
3
|
+
#
|
4
|
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5
|
+
# and OPT implementations in this library. It has been modified from its
|
6
|
+
# original forms to accommodate minor architectural differences compared
|
7
|
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8
|
+
#
|
9
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10
|
+
# you may not use this file except in compliance with the License.
|
11
|
+
# You may obtain a copy of the License at
|
12
|
+
#
|
13
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14
|
+
#
|
15
|
+
# Unless required by applicable law or agreed to in writing, software
|
16
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18
|
+
# See the License for the specific language governing permissions and
|
19
|
+
# limitations under the License.
|
20
|
+
|
21
|
+
# This file is based on the LLama model definition file in transformers
|
22
|
+
"""PyTorch Cohere model."""
|
23
|
+
from typing import Optional, Tuple
|
24
|
+
|
25
|
+
import torch
|
26
|
+
import torch.utils.checkpoint
|
27
|
+
from torch import nn
|
28
|
+
from torch.nn.parameter import Parameter
|
29
|
+
from transformers import PretrainedConfig
|
30
|
+
from vllm.distributed import (
|
31
|
+
get_tensor_model_parallel_rank,
|
32
|
+
get_tensor_model_parallel_world_size,
|
33
|
+
)
|
34
|
+
from vllm.model_executor.layers.activation import SiluAndMul
|
35
|
+
from vllm.model_executor.layers.linear import (
|
36
|
+
MergedColumnParallelLinear,
|
37
|
+
QKVParallelLinear,
|
38
|
+
RowParallelLinear,
|
39
|
+
)
|
40
|
+
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
|
41
|
+
from vllm.model_executor.layers.rotary_embedding import get_rope
|
42
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
|
43
|
+
from vllm.model_executor.utils import set_weight_attrs
|
44
|
+
|
45
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
46
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
47
|
+
from sglang.srt.managers.router.model_runner import InputMetadata
|
48
|
+
from sglang.srt.weight_utils import default_weight_loader, hf_model_weights_iterator
|
49
|
+
|
50
|
+
|
51
|
+
@torch.compile
|
52
|
+
def layer_norm_func(hidden_states, weight, variance_epsilon):
|
53
|
+
input_dtype = hidden_states.dtype
|
54
|
+
hidden_states = hidden_states.to(torch.float32)
|
55
|
+
mean = hidden_states.mean(-1, keepdim=True)
|
56
|
+
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
|
57
|
+
hidden_states = (hidden_states - mean) * torch.rsqrt(variance + variance_epsilon)
|
58
|
+
hidden_states = weight.to(torch.float32) * hidden_states
|
59
|
+
return hidden_states.to(input_dtype)
|
60
|
+
|
61
|
+
|
62
|
+
class LayerNorm(nn.Module):
|
63
|
+
def __init__(self, param_shape=None, eps=1e-5):
|
64
|
+
super().__init__()
|
65
|
+
self.weight = nn.Parameter(torch.ones(param_shape))
|
66
|
+
self.variance_epsilon = eps
|
67
|
+
set_weight_attrs(self.weight, {"weight_loader": self.weight_loader})
|
68
|
+
|
69
|
+
def forward(self, hidden_states, residuals=None):
|
70
|
+
hidden_states = layer_norm_func(
|
71
|
+
hidden_states, self.weight, self.variance_epsilon
|
72
|
+
)
|
73
|
+
return hidden_states, residuals
|
74
|
+
|
75
|
+
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
76
|
+
tp_rank = get_tensor_model_parallel_rank()
|
77
|
+
shard_dim = 0 if param.dim() != 1 else None
|
78
|
+
param_data = param.data
|
79
|
+
if shard_dim is not None:
|
80
|
+
shard_size = param_data.shape[shard_dim]
|
81
|
+
start_idx = tp_rank * shard_size
|
82
|
+
loaded_weight = loaded_weight.narrow(shard_dim, start_idx, shard_size)
|
83
|
+
assert param_data.shape == loaded_weight.shape
|
84
|
+
param_data.copy_(loaded_weight)
|
85
|
+
|
86
|
+
|
87
|
+
# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
|
88
|
+
class CohereMLP(nn.Module):
|
89
|
+
def __init__(
|
90
|
+
self,
|
91
|
+
config,
|
92
|
+
quant_config: Optional[QuantizationConfig] = None,
|
93
|
+
):
|
94
|
+
super().__init__()
|
95
|
+
self.config = config
|
96
|
+
self.hidden_size = config.hidden_size
|
97
|
+
self.intermediate_size = config.intermediate_size
|
98
|
+
self.gate_up_proj = MergedColumnParallelLinear(
|
99
|
+
self.hidden_size,
|
100
|
+
[self.intermediate_size] * 2,
|
101
|
+
bias=False,
|
102
|
+
quant_config=quant_config,
|
103
|
+
)
|
104
|
+
self.down_proj = RowParallelLinear(
|
105
|
+
self.intermediate_size,
|
106
|
+
self.hidden_size,
|
107
|
+
bias=False,
|
108
|
+
quant_config=quant_config,
|
109
|
+
)
|
110
|
+
self.act_fn = SiluAndMul()
|
111
|
+
|
112
|
+
def forward(self, x):
|
113
|
+
gate_up, _ = self.gate_up_proj(x)
|
114
|
+
x = self.act_fn(gate_up)
|
115
|
+
x, _ = self.down_proj(x)
|
116
|
+
return x
|
117
|
+
|
118
|
+
|
119
|
+
class CohereAttention(nn.Module):
|
120
|
+
def __init__(
|
121
|
+
self,
|
122
|
+
config: PretrainedConfig,
|
123
|
+
layer_id: int = 0,
|
124
|
+
quant_config: Optional[QuantizationConfig] = None,
|
125
|
+
):
|
126
|
+
super().__init__()
|
127
|
+
tp_size = get_tensor_model_parallel_world_size()
|
128
|
+
self.config = config
|
129
|
+
self.attention_dropout = config.attention_dropout
|
130
|
+
self.hidden_size = config.hidden_size
|
131
|
+
self.total_num_heads = config.num_attention_heads
|
132
|
+
self.num_heads = self.total_num_heads // tp_size
|
133
|
+
self.head_dim = self.hidden_size // self.total_num_heads
|
134
|
+
self.total_num_kv_heads = config.num_key_value_heads
|
135
|
+
if self.total_num_kv_heads >= tp_size:
|
136
|
+
# Number of KV heads is greater than TP size, so we partition
|
137
|
+
# the KV heads across multiple tensor parallel GPUs.
|
138
|
+
assert self.total_num_kv_heads % tp_size == 0
|
139
|
+
else:
|
140
|
+
# Number of KV heads is less than TP size, so we replicate
|
141
|
+
# the KV heads across multiple tensor parallel GPUs.
|
142
|
+
assert tp_size % self.total_num_kv_heads == 0
|
143
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
144
|
+
self.q_size = self.num_heads * self.head_dim
|
145
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
146
|
+
self.scaling = self.head_dim**-0.5
|
147
|
+
self.max_position_embeddings = getattr(
|
148
|
+
config, "model_max_length", None
|
149
|
+
) or getattr(config, "max_position_embeddings", 8192)
|
150
|
+
self.rope_theta = config.rope_theta
|
151
|
+
self.rope_scaling = getattr(config, "rope_scaling", None)
|
152
|
+
self.use_qk_norm = getattr(config, "use_qk_norm", False)
|
153
|
+
self.qkv_proj = QKVParallelLinear(
|
154
|
+
self.hidden_size,
|
155
|
+
self.head_dim,
|
156
|
+
self.total_num_heads,
|
157
|
+
self.total_num_kv_heads,
|
158
|
+
bias=False,
|
159
|
+
quant_config=quant_config,
|
160
|
+
)
|
161
|
+
self.o_proj = RowParallelLinear(
|
162
|
+
self.total_num_heads * self.head_dim,
|
163
|
+
self.hidden_size,
|
164
|
+
bias=False,
|
165
|
+
quant_config=quant_config,
|
166
|
+
)
|
167
|
+
self.rotary_emb = get_rope(
|
168
|
+
self.head_dim,
|
169
|
+
rotary_dim=self.head_dim,
|
170
|
+
max_position=self.max_position_embeddings,
|
171
|
+
base=self.rope_theta,
|
172
|
+
rope_scaling=self.rope_scaling,
|
173
|
+
is_neox_style=False,
|
174
|
+
)
|
175
|
+
self.attn = RadixAttention(
|
176
|
+
self.num_heads,
|
177
|
+
self.head_dim,
|
178
|
+
self.scaling,
|
179
|
+
num_kv_heads=self.num_kv_heads,
|
180
|
+
layer_id=layer_id,
|
181
|
+
)
|
182
|
+
if self.use_qk_norm:
|
183
|
+
self.q_norm = LayerNorm(
|
184
|
+
param_shape=(self.num_heads, self.head_dim), eps=config.layer_norm_eps
|
185
|
+
)
|
186
|
+
self.k_norm = LayerNorm(
|
187
|
+
param_shape=(self.num_kv_heads, self.head_dim),
|
188
|
+
eps=config.layer_norm_eps,
|
189
|
+
)
|
190
|
+
|
191
|
+
def _apply_qk_norm(self, q, k):
|
192
|
+
q = q.view(*q.shape[:-1], -1, self.head_dim)
|
193
|
+
k = k.view(*k.shape[:-1], -1, self.head_dim)
|
194
|
+
q, _ = self.q_norm(q)
|
195
|
+
k, _ = self.k_norm(k)
|
196
|
+
q = q.view(*q.shape[:-2], -1)
|
197
|
+
k = k.view(*k.shape[:-2], -1)
|
198
|
+
return q, k
|
199
|
+
|
200
|
+
def forward(
|
201
|
+
self,
|
202
|
+
positions: torch.Tensor,
|
203
|
+
hidden_states: torch.Tensor,
|
204
|
+
input_metadata: InputMetadata,
|
205
|
+
) -> torch.Tensor:
|
206
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
207
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
208
|
+
if self.use_qk_norm:
|
209
|
+
q, k = self._apply_qk_norm(q, k)
|
210
|
+
q, k = self.rotary_emb(positions, q, k)
|
211
|
+
attn_output = self.attn(q, k, v, input_metadata)
|
212
|
+
output, _ = self.o_proj(attn_output)
|
213
|
+
return output
|
214
|
+
|
215
|
+
|
216
|
+
class CohereDecoderLayer(nn.Module):
|
217
|
+
def __init__(
|
218
|
+
self,
|
219
|
+
config: PretrainedConfig,
|
220
|
+
layer_id: int = 0,
|
221
|
+
quant_config: Optional[QuantizationConfig] = None,
|
222
|
+
):
|
223
|
+
super().__init__()
|
224
|
+
self.hidden_size = config.hidden_size
|
225
|
+
|
226
|
+
self.self_attn = CohereAttention(
|
227
|
+
config, layer_id=layer_id, quant_config=quant_config
|
228
|
+
)
|
229
|
+
|
230
|
+
self.mlp = CohereMLP(config, quant_config=quant_config)
|
231
|
+
self.input_layernorm = LayerNorm(
|
232
|
+
param_shape=(config.hidden_size), eps=config.layer_norm_eps
|
233
|
+
)
|
234
|
+
|
235
|
+
def forward(
|
236
|
+
self,
|
237
|
+
positions: torch.Tensor,
|
238
|
+
hidden_states: torch.Tensor,
|
239
|
+
input_metadata: InputMetadata,
|
240
|
+
residual: Optional[torch.Tensor],
|
241
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
242
|
+
# Self Attention
|
243
|
+
residual = hidden_states
|
244
|
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
245
|
+
hidden_states_attention = self.self_attn(
|
246
|
+
positions=positions,
|
247
|
+
hidden_states=hidden_states,
|
248
|
+
input_metadata=input_metadata,
|
249
|
+
)
|
250
|
+
hidden_states_mlp = self.mlp(hidden_states)
|
251
|
+
# Add everything together
|
252
|
+
hidden_states = residual + hidden_states_attention + hidden_states_mlp
|
253
|
+
|
254
|
+
return hidden_states, residual
|
255
|
+
|
256
|
+
|
257
|
+
class CohereModel(nn.Module):
|
258
|
+
def __init__(
|
259
|
+
self,
|
260
|
+
config: PretrainedConfig,
|
261
|
+
quant_config: Optional[QuantizationConfig] = None,
|
262
|
+
):
|
263
|
+
super().__init__()
|
264
|
+
self.config = config
|
265
|
+
self.vocab_size = config.vocab_size
|
266
|
+
self.embed_tokens = VocabParallelEmbedding(
|
267
|
+
config.vocab_size, config.hidden_size
|
268
|
+
)
|
269
|
+
self.layers = nn.ModuleList(
|
270
|
+
[
|
271
|
+
CohereDecoderLayer(config, i, quant_config=quant_config)
|
272
|
+
for i in range(config.num_hidden_layers)
|
273
|
+
]
|
274
|
+
)
|
275
|
+
self.norm = LayerNorm(
|
276
|
+
param_shape=(config.hidden_size), eps=config.layer_norm_eps
|
277
|
+
)
|
278
|
+
|
279
|
+
def forward(
|
280
|
+
self,
|
281
|
+
input_ids: torch.Tensor,
|
282
|
+
positions: torch.Tensor,
|
283
|
+
input_metadata: InputMetadata,
|
284
|
+
) -> torch.Tensor:
|
285
|
+
hidden_states = self.embed_tokens(input_ids)
|
286
|
+
residual = None
|
287
|
+
for i in range(len(self.layers)):
|
288
|
+
layer = self.layers[i]
|
289
|
+
hidden_states, residual = layer(
|
290
|
+
positions,
|
291
|
+
hidden_states,
|
292
|
+
input_metadata,
|
293
|
+
residual,
|
294
|
+
)
|
295
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
296
|
+
return hidden_states
|
297
|
+
|
298
|
+
|
299
|
+
class CohereForCausalLM(nn.Module):
|
300
|
+
def __init__(
|
301
|
+
self,
|
302
|
+
config: PretrainedConfig,
|
303
|
+
quant_config: Optional[QuantizationConfig] = None,
|
304
|
+
) -> None:
|
305
|
+
super().__init__()
|
306
|
+
self.config = config
|
307
|
+
self.quant_config = quant_config
|
308
|
+
self.logits_processor = LogitsProcessor(config)
|
309
|
+
self.model = CohereModel(config, quant_config)
|
310
|
+
|
311
|
+
@torch.no_grad()
|
312
|
+
def forward(
|
313
|
+
self,
|
314
|
+
input_ids: torch.Tensor,
|
315
|
+
positions: torch.Tensor,
|
316
|
+
input_metadata: InputMetadata,
|
317
|
+
) -> torch.Tensor:
|
318
|
+
hidden_states = self.model(
|
319
|
+
input_ids,
|
320
|
+
positions,
|
321
|
+
input_metadata,
|
322
|
+
)
|
323
|
+
return self.logits_processor(
|
324
|
+
input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
|
325
|
+
)
|
326
|
+
|
327
|
+
def load_weights(
|
328
|
+
self,
|
329
|
+
model_name_or_path: str,
|
330
|
+
cache_dir: Optional[str] = None,
|
331
|
+
load_format: str = "auto",
|
332
|
+
revision: Optional[str] = None,
|
333
|
+
):
|
334
|
+
stacked_params_mapping = [
|
335
|
+
# (param_name, shard_name, shard_id)
|
336
|
+
("qkv_proj", "q_proj", "q"),
|
337
|
+
("qkv_proj", "k_proj", "k"),
|
338
|
+
("qkv_proj", "v_proj", "v"),
|
339
|
+
("gate_up_proj", "gate_proj", 0),
|
340
|
+
("gate_up_proj", "up_proj", 1),
|
341
|
+
]
|
342
|
+
params_dict = dict(self.named_parameters())
|
343
|
+
loaded_params = set()
|
344
|
+
for name, loaded_weight in hf_model_weights_iterator(
|
345
|
+
model_name_or_path, cache_dir, load_format, revision
|
346
|
+
):
|
347
|
+
for param_name, shard_name, shard_id in stacked_params_mapping:
|
348
|
+
if shard_name not in name:
|
349
|
+
continue
|
350
|
+
name = name.replace(shard_name, param_name)
|
351
|
+
# Skip loading extra bias for GPTQ models.
|
352
|
+
if name.endswith(".bias") and name not in params_dict:
|
353
|
+
continue
|
354
|
+
param = params_dict[name]
|
355
|
+
weight_loader = param.weight_loader
|
356
|
+
weight_loader(param, loaded_weight, shard_id)
|
357
|
+
break
|
358
|
+
else:
|
359
|
+
# lm_head is not used in vllm as it is tied with embed_token.
|
360
|
+
# To prevent errors, skip loading lm_head.weight.
|
361
|
+
if "lm_head.weight" in name:
|
362
|
+
continue
|
363
|
+
# Skip loading extra bias for GPTQ models.
|
364
|
+
if name.endswith(".bias") and name not in params_dict:
|
365
|
+
continue
|
366
|
+
param = params_dict[name]
|
367
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
368
|
+
weight_loader(param, loaded_weight)
|
369
|
+
loaded_params.add(name)
|
370
|
+
|
371
|
+
|
372
|
+
EntryClass = CohereForCausalLM
|