sglang 0.1.13__py3-none-any.whl → 0.1.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +55 -2
- sglang/api.py +3 -5
- sglang/backend/anthropic.py +33 -13
- sglang/backend/openai.py +2 -1
- sglang/backend/runtime_endpoint.py +18 -5
- sglang/backend/vertexai.py +1 -0
- sglang/global_config.py +1 -0
- sglang/lang/chat_template.py +74 -0
- sglang/lang/interpreter.py +40 -16
- sglang/lang/ir.py +1 -1
- sglang/lang/tracer.py +6 -4
- sglang/launch_server.py +2 -1
- sglang/srt/constrained/fsm_cache.py +15 -3
- sglang/srt/constrained/jump_forward.py +1 -0
- sglang/srt/conversation.py +2 -2
- sglang/srt/hf_transformers_utils.py +2 -1
- sglang/srt/layers/context_flashattention_nopad.py +1 -0
- sglang/srt/layers/extend_attention.py +1 -0
- sglang/srt/layers/logits_processor.py +114 -54
- sglang/srt/layers/radix_attention.py +2 -1
- sglang/srt/layers/token_attention.py +1 -0
- sglang/srt/managers/detokenizer_manager.py +5 -1
- sglang/srt/managers/io_struct.py +12 -0
- sglang/srt/managers/router/infer_batch.py +70 -33
- sglang/srt/managers/router/manager.py +7 -2
- sglang/srt/managers/router/model_rpc.py +116 -73
- sglang/srt/managers/router/model_runner.py +121 -155
- sglang/srt/managers/router/radix_cache.py +46 -38
- sglang/srt/managers/tokenizer_manager.py +56 -11
- sglang/srt/memory_pool.py +5 -14
- sglang/srt/model_config.py +7 -0
- sglang/srt/models/commandr.py +376 -0
- sglang/srt/models/dbrx.py +413 -0
- sglang/srt/models/dbrx_config.py +281 -0
- sglang/srt/models/gemma.py +22 -20
- sglang/srt/models/llama2.py +23 -21
- sglang/srt/models/llava.py +12 -10
- sglang/srt/models/mixtral.py +27 -25
- sglang/srt/models/qwen.py +23 -21
- sglang/srt/models/qwen2.py +23 -21
- sglang/srt/models/stablelm.py +292 -0
- sglang/srt/models/yivl.py +6 -5
- sglang/srt/openai_api_adapter.py +356 -0
- sglang/srt/{managers/openai_protocol.py → openai_protocol.py} +36 -20
- sglang/srt/sampling_params.py +2 -0
- sglang/srt/server.py +68 -439
- sglang/srt/server_args.py +76 -49
- sglang/srt/utils.py +88 -32
- sglang/srt/weight_utils.py +402 -0
- sglang/test/test_programs.py +8 -7
- sglang/test/test_utils.py +196 -8
- {sglang-0.1.13.dist-info → sglang-0.1.15.dist-info}/METADATA +13 -15
- sglang-0.1.15.dist-info/RECORD +69 -0
- {sglang-0.1.13.dist-info → sglang-0.1.15.dist-info}/WHEEL +1 -1
- sglang-0.1.13.dist-info/RECORD +0 -63
- {sglang-0.1.13.dist-info → sglang-0.1.15.dist-info}/LICENSE +0 -0
- {sglang-0.1.13.dist-info → sglang-0.1.15.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,7 @@
|
|
1
1
|
import asyncio
|
2
2
|
import concurrent.futures
|
3
3
|
import dataclasses
|
4
|
+
import logging
|
4
5
|
import multiprocessing as mp
|
5
6
|
import os
|
6
7
|
from typing import List
|
@@ -10,6 +11,7 @@ import transformers
|
|
10
11
|
import uvloop
|
11
12
|
import zmq
|
12
13
|
import zmq.asyncio
|
14
|
+
|
13
15
|
from sglang.srt.hf_transformers_utils import (
|
14
16
|
get_config,
|
15
17
|
get_context_length,
|
@@ -30,13 +32,14 @@ from sglang.srt.utils import get_exception_traceback, is_multimodal_model, load_
|
|
30
32
|
|
31
33
|
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
|
32
34
|
|
35
|
+
logger = logging.getLogger(__name__)
|
36
|
+
|
33
37
|
|
34
38
|
@dataclasses.dataclass
|
35
39
|
class ReqState:
|
36
40
|
out_list: List
|
37
41
|
finished: bool
|
38
42
|
event: asyncio.Event
|
39
|
-
lock: asyncio.Lock
|
40
43
|
|
41
44
|
|
42
45
|
global global_processor
|
@@ -174,18 +177,26 @@ class TokenizerManager:
|
|
174
177
|
sampling_params=sampling_params,
|
175
178
|
return_logprob=obj.return_logprob,
|
176
179
|
logprob_start_len=obj.logprob_start_len,
|
180
|
+
top_logprobs_num=obj.top_logprobs_num,
|
177
181
|
stream=obj.stream,
|
178
182
|
)
|
179
183
|
self.send_to_router.send_pyobj(tokenized_obj)
|
180
184
|
|
181
|
-
lock = asyncio.Lock()
|
182
185
|
event = asyncio.Event()
|
183
|
-
state = ReqState([], False, event
|
186
|
+
state = ReqState([], False, event)
|
184
187
|
self.rid_to_state[rid] = state
|
185
188
|
|
186
189
|
while True:
|
187
190
|
await event.wait()
|
188
|
-
|
191
|
+
out = self.convert_logprob_style(state.out_list[-1],
|
192
|
+
obj.return_logprob,
|
193
|
+
obj.top_logprobs_num,
|
194
|
+
obj.return_text_in_logprobs)
|
195
|
+
|
196
|
+
if self.server_args.log_requests and state.finished:
|
197
|
+
logger.info(f"in={obj.text}, out={out}")
|
198
|
+
|
199
|
+
yield out
|
189
200
|
state.out_list = []
|
190
201
|
if state.finished:
|
191
202
|
del self.rid_to_state[rid]
|
@@ -217,13 +228,13 @@ class TokenizerManager:
|
|
217
228
|
sampling_params=sampling_params,
|
218
229
|
return_logprob=obj.return_logprob[i],
|
219
230
|
logprob_start_len=obj.logprob_start_len[i],
|
231
|
+
top_logprobs_num=obj.top_logprobs_num[i],
|
220
232
|
stream=obj.stream,
|
221
233
|
)
|
222
234
|
self.send_to_router.send_pyobj(tokenized_obj)
|
223
235
|
|
224
|
-
lock = asyncio.Lock()
|
225
236
|
event = asyncio.Event()
|
226
|
-
state = ReqState([], False, event
|
237
|
+
state = ReqState([], False, event)
|
227
238
|
self.rid_to_state[rid] = state
|
228
239
|
|
229
240
|
output_list = []
|
@@ -231,16 +242,16 @@ class TokenizerManager:
|
|
231
242
|
rid = obj.rid[i]
|
232
243
|
state = self.rid_to_state[rid]
|
233
244
|
await state.event.wait()
|
234
|
-
output_list.append(
|
245
|
+
output_list.append(
|
246
|
+
self.convert_logprob_style(state.out_list[-1],
|
247
|
+
obj.return_logprob[i],
|
248
|
+
obj.top_logprobs_num[i],
|
249
|
+
obj.return_text_in_logprobs))
|
235
250
|
assert state.finished
|
236
251
|
del self.rid_to_state[rid]
|
237
252
|
|
238
253
|
yield output_list
|
239
254
|
|
240
|
-
async def detokenize(self, obj: DetokenizeReqInput):
|
241
|
-
token_texts = self.tokenizer.convert_ids_to_tokens(obj.input_ids)
|
242
|
-
return [t.decode() if isinstance(t, bytes) else t for t in token_texts]
|
243
|
-
|
244
255
|
async def flush_cache(self):
|
245
256
|
flush_cache_req = FlushCacheReq()
|
246
257
|
self.send_to_router.send_pyobj(flush_cache_req)
|
@@ -267,3 +278,37 @@ class TokenizerManager:
|
|
267
278
|
state.event.set()
|
268
279
|
else:
|
269
280
|
raise ValueError(f"Invalid object: {recv_obj}")
|
281
|
+
|
282
|
+
def convert_logprob_style(self, ret, return_logprob, top_logprobs_num, return_text_in_logprobs):
|
283
|
+
if return_logprob:
|
284
|
+
ret["meta_info"]["prefill_token_logprobs"] = self.detokenize_logprob_tokens(
|
285
|
+
ret["meta_info"]["prefill_token_logprobs"], return_text_in_logprobs
|
286
|
+
)
|
287
|
+
ret["meta_info"]["decode_token_logprobs"] = self.detokenize_logprob_tokens(
|
288
|
+
ret["meta_info"]["decode_token_logprobs"], return_text_in_logprobs
|
289
|
+
)
|
290
|
+
if top_logprobs_num > 0:
|
291
|
+
ret["meta_info"]["prefill_top_logprobs"] = self.detokenize_top_logprobs_tokens(
|
292
|
+
ret["meta_info"]["prefill_top_logprobs"], return_text_in_logprobs
|
293
|
+
)
|
294
|
+
ret["meta_info"]["decode_top_logprobs"] = self.detokenize_top_logprobs_tokens(
|
295
|
+
ret["meta_info"]["decode_top_logprobs"], return_text_in_logprobs
|
296
|
+
)
|
297
|
+
return ret
|
298
|
+
|
299
|
+
def detokenize_logprob_tokens(self, token_logprobs, decode_to_text):
|
300
|
+
if not decode_to_text:
|
301
|
+
return [(logprob, token_id, None) for logprob, token_id in token_logprobs]
|
302
|
+
|
303
|
+
token_ids = [tid for _, tid in token_logprobs]
|
304
|
+
token_texts = self.tokenizer.batch_decode(token_ids)
|
305
|
+
return [
|
306
|
+
(logprob, token_id, token_text)
|
307
|
+
for (logprob, token_id), token_text, in zip(token_logprobs, token_texts)
|
308
|
+
]
|
309
|
+
|
310
|
+
def detokenize_top_logprobs_tokens(self, top_logprobs, decode_to_text):
|
311
|
+
for i, t in enumerate(top_logprobs):
|
312
|
+
if t:
|
313
|
+
top_logprobs[i] = self.detokenize_logprob_tokens(t, decode_to_text)
|
314
|
+
return top_logprobs
|
sglang/srt/memory_pool.py
CHANGED
@@ -31,9 +31,6 @@ class ReqToTokenPool:
|
|
31
31
|
self.can_use_mem_size += free_index.shape[0]
|
32
32
|
self.mem_state[free_index] = 1
|
33
33
|
|
34
|
-
# if self.can_use_mem_size == len(self.mem_state):
|
35
|
-
# print(f"ReqToTokenPool: freed all. size = {self.can_use_mem_size}.")
|
36
|
-
|
37
34
|
def clear(self):
|
38
35
|
self.mem_state.fill_(1)
|
39
36
|
self.can_use_mem_size = len(self.mem_state)
|
@@ -42,7 +39,7 @@ class ReqToTokenPool:
|
|
42
39
|
class TokenToKVPool:
|
43
40
|
def __init__(self, size, dtype, head_num, head_dim, layer_num):
|
44
41
|
self.mem_state = torch.zeros((size,), dtype=torch.int16, device="cuda")
|
45
|
-
self.
|
42
|
+
self.total_ref_ct = 0
|
46
43
|
|
47
44
|
# [size, key/value, head_num, head_dim] for each layer
|
48
45
|
self.kv_data = [
|
@@ -83,9 +80,6 @@ class TokenToKVPool:
|
|
83
80
|
self.add_refs(select_index)
|
84
81
|
return select_index.to(torch.int32), start_loc, start_loc + need_size
|
85
82
|
|
86
|
-
def free(self, free_index):
|
87
|
-
return self.decrease_refs(free_index)
|
88
|
-
|
89
83
|
def used_size(self):
|
90
84
|
return len(torch.nonzero(self.mem_state).squeeze(1))
|
91
85
|
|
@@ -93,20 +87,17 @@ class TokenToKVPool:
|
|
93
87
|
return torch.sum(self.mem_state == 0).item()
|
94
88
|
|
95
89
|
def add_refs(self, token_index: torch.Tensor):
|
96
|
-
self.
|
90
|
+
self.total_ref_ct += len(token_index)
|
97
91
|
self.mem_state[token_index] += 1
|
98
92
|
|
99
|
-
def
|
100
|
-
self.
|
93
|
+
def dec_refs(self, token_index: torch.Tensor):
|
94
|
+
self.total_ref_ct -= len(token_index)
|
101
95
|
self.mem_state[token_index] -= 1
|
102
96
|
|
103
97
|
num_freed = torch.sum(self.mem_state[token_index] == 0)
|
104
98
|
|
105
|
-
# if self.alloc_ct == 0:
|
106
|
-
# print(f"TokenToKVPool: freed all. size = {len(self.mem_state)}.")
|
107
|
-
|
108
99
|
return num_freed
|
109
100
|
|
110
101
|
def clear(self):
|
111
102
|
self.mem_state.fill_(0)
|
112
|
-
self.
|
103
|
+
self.total_ref_ct = 0
|
sglang/srt/model_config.py
CHANGED
@@ -29,6 +29,13 @@ class ModelConfig:
|
|
29
29
|
)
|
30
30
|
self.num_attention_heads = self.hf_config.num_attention_heads
|
31
31
|
self.num_key_value_heads = getattr(self.hf_config, "num_key_value_heads", None)
|
32
|
+
|
33
|
+
# for Dbrx and MPT models
|
34
|
+
if self.hf_config.model_type in ["dbrx", "mpt"]:
|
35
|
+
self.num_key_value_heads = getattr(
|
36
|
+
self.hf_config.attn_config, "kv_n_heads", None
|
37
|
+
)
|
38
|
+
|
32
39
|
if self.num_key_value_heads is None:
|
33
40
|
self.num_key_value_heads = self.num_attention_heads
|
34
41
|
self.hidden_size = self.hf_config.hidden_size
|
@@ -0,0 +1,376 @@
|
|
1
|
+
# coding=utf-8
|
2
|
+
# Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
|
3
|
+
#
|
4
|
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5
|
+
# and OPT implementations in this library. It has been modified from its
|
6
|
+
# original forms to accommodate minor architectural differences compared
|
7
|
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8
|
+
#
|
9
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10
|
+
# you may not use this file except in compliance with the License.
|
11
|
+
# You may obtain a copy of the License at
|
12
|
+
#
|
13
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14
|
+
#
|
15
|
+
# Unless required by applicable law or agreed to in writing, software
|
16
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18
|
+
# See the License for the specific language governing permissions and
|
19
|
+
# limitations under the License.
|
20
|
+
|
21
|
+
# This file is based on the LLama model definition file in transformers
|
22
|
+
"""PyTorch Cohere model."""
|
23
|
+
from typing import Optional, Tuple
|
24
|
+
|
25
|
+
import torch
|
26
|
+
import torch.utils.checkpoint
|
27
|
+
from torch import nn
|
28
|
+
from torch.nn.parameter import Parameter
|
29
|
+
from transformers import PretrainedConfig
|
30
|
+
from vllm.model_executor.layers.activation import SiluAndMul
|
31
|
+
from vllm.model_executor.layers.linear import (
|
32
|
+
MergedColumnParallelLinear,
|
33
|
+
QKVParallelLinear,
|
34
|
+
RowParallelLinear,
|
35
|
+
)
|
36
|
+
from vllm.model_executor.layers.quantization.base_config import (
|
37
|
+
QuantizationConfig)
|
38
|
+
from vllm.model_executor.layers.rotary_embedding import get_rope
|
39
|
+
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
|
40
|
+
from vllm.distributed import (
|
41
|
+
get_tensor_model_parallel_rank,
|
42
|
+
get_tensor_model_parallel_world_size,
|
43
|
+
)
|
44
|
+
from vllm.model_executor.utils import set_weight_attrs
|
45
|
+
from sglang.srt.weight_utils import (
|
46
|
+
default_weight_loader,
|
47
|
+
hf_model_weights_iterator,
|
48
|
+
)
|
49
|
+
|
50
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
51
|
+
from sglang.srt.layers.radix_attention import RadixAttention
|
52
|
+
from sglang.srt.managers.router.model_runner import InputMetadata
|
53
|
+
|
54
|
+
|
55
|
+
@torch.compile
|
56
|
+
def layer_norm_func(hidden_states, weight, variance_epsilon):
|
57
|
+
input_dtype = hidden_states.dtype
|
58
|
+
hidden_states = hidden_states.to(torch.float32)
|
59
|
+
mean = hidden_states.mean(-1, keepdim=True)
|
60
|
+
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
|
61
|
+
hidden_states = (hidden_states - mean) * torch.rsqrt(variance + variance_epsilon)
|
62
|
+
hidden_states = weight.to(torch.float32) * hidden_states
|
63
|
+
return hidden_states.to(input_dtype)
|
64
|
+
|
65
|
+
|
66
|
+
class LayerNorm(nn.Module):
|
67
|
+
def __init__(self, param_shape=None, eps=1e-5):
|
68
|
+
super().__init__()
|
69
|
+
self.weight = nn.Parameter(torch.ones(param_shape))
|
70
|
+
self.variance_epsilon = eps
|
71
|
+
set_weight_attrs(self.weight, {"weight_loader": self.weight_loader})
|
72
|
+
|
73
|
+
def forward(self, hidden_states, residuals=None):
|
74
|
+
hidden_states = layer_norm_func(
|
75
|
+
hidden_states, self.weight, self.variance_epsilon
|
76
|
+
)
|
77
|
+
return hidden_states, residuals
|
78
|
+
|
79
|
+
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
80
|
+
tp_rank = get_tensor_model_parallel_rank()
|
81
|
+
shard_dim = 0 if param.dim() != 1 else None
|
82
|
+
param_data = param.data
|
83
|
+
if shard_dim is not None:
|
84
|
+
shard_size = param_data.shape[shard_dim]
|
85
|
+
start_idx = tp_rank * shard_size
|
86
|
+
loaded_weight = loaded_weight.narrow(shard_dim, start_idx, shard_size)
|
87
|
+
assert param_data.shape == loaded_weight.shape
|
88
|
+
param_data.copy_(loaded_weight)
|
89
|
+
|
90
|
+
|
91
|
+
# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
|
92
|
+
class CohereMLP(nn.Module):
|
93
|
+
def __init__(
|
94
|
+
self,
|
95
|
+
config,
|
96
|
+
quant_config: Optional[QuantizationConfig] = None,
|
97
|
+
):
|
98
|
+
super().__init__()
|
99
|
+
self.config = config
|
100
|
+
self.hidden_size = config.hidden_size
|
101
|
+
self.intermediate_size = config.intermediate_size
|
102
|
+
self.gate_up_proj = MergedColumnParallelLinear(
|
103
|
+
self.hidden_size,
|
104
|
+
[self.intermediate_size] * 2,
|
105
|
+
bias=False,
|
106
|
+
quant_config=quant_config,
|
107
|
+
)
|
108
|
+
self.down_proj = RowParallelLinear(
|
109
|
+
self.intermediate_size,
|
110
|
+
self.hidden_size,
|
111
|
+
bias=False,
|
112
|
+
quant_config=quant_config,
|
113
|
+
)
|
114
|
+
self.act_fn = SiluAndMul()
|
115
|
+
|
116
|
+
def forward(self, x):
|
117
|
+
gate_up, _ = self.gate_up_proj(x)
|
118
|
+
x = self.act_fn(gate_up)
|
119
|
+
x, _ = self.down_proj(x)
|
120
|
+
return x
|
121
|
+
|
122
|
+
|
123
|
+
class CohereAttention(nn.Module):
|
124
|
+
def __init__(
|
125
|
+
self,
|
126
|
+
config: PretrainedConfig,
|
127
|
+
layer_id: int = 0,
|
128
|
+
quant_config: Optional[QuantizationConfig] = None,
|
129
|
+
):
|
130
|
+
super().__init__()
|
131
|
+
tp_size = get_tensor_model_parallel_world_size()
|
132
|
+
self.config = config
|
133
|
+
self.attention_dropout = config.attention_dropout
|
134
|
+
self.hidden_size = config.hidden_size
|
135
|
+
self.total_num_heads = config.num_attention_heads
|
136
|
+
self.num_heads = self.total_num_heads // tp_size
|
137
|
+
self.head_dim = self.hidden_size // self.total_num_heads
|
138
|
+
self.total_num_kv_heads = config.num_key_value_heads
|
139
|
+
if self.total_num_kv_heads >= tp_size:
|
140
|
+
# Number of KV heads is greater than TP size, so we partition
|
141
|
+
# the KV heads across multiple tensor parallel GPUs.
|
142
|
+
assert self.total_num_kv_heads % tp_size == 0
|
143
|
+
else:
|
144
|
+
# Number of KV heads is less than TP size, so we replicate
|
145
|
+
# the KV heads across multiple tensor parallel GPUs.
|
146
|
+
assert tp_size % self.total_num_kv_heads == 0
|
147
|
+
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
148
|
+
self.q_size = self.num_heads * self.head_dim
|
149
|
+
self.kv_size = self.num_kv_heads * self.head_dim
|
150
|
+
self.scaling = self.head_dim**-0.5
|
151
|
+
self.max_position_embeddings = getattr(
|
152
|
+
config, "model_max_length", None
|
153
|
+
) or getattr(config, "max_position_embeddings", 8192)
|
154
|
+
self.rope_theta = config.rope_theta
|
155
|
+
self.rope_scaling = getattr(config, "rope_scaling", None)
|
156
|
+
self.use_qk_norm = getattr(config, "use_qk_norm", False)
|
157
|
+
self.qkv_proj = QKVParallelLinear(
|
158
|
+
self.hidden_size,
|
159
|
+
self.head_dim,
|
160
|
+
self.total_num_heads,
|
161
|
+
self.total_num_kv_heads,
|
162
|
+
bias=False,
|
163
|
+
quant_config=quant_config,
|
164
|
+
)
|
165
|
+
self.o_proj = RowParallelLinear(
|
166
|
+
self.total_num_heads * self.head_dim,
|
167
|
+
self.hidden_size,
|
168
|
+
bias=False,
|
169
|
+
quant_config=quant_config,
|
170
|
+
)
|
171
|
+
self.rotary_emb = get_rope(
|
172
|
+
self.head_dim,
|
173
|
+
rotary_dim=self.head_dim,
|
174
|
+
max_position=self.max_position_embeddings,
|
175
|
+
base=self.rope_theta,
|
176
|
+
rope_scaling=self.rope_scaling,
|
177
|
+
is_neox_style=False,
|
178
|
+
)
|
179
|
+
self.attn = RadixAttention(
|
180
|
+
self.num_heads,
|
181
|
+
self.head_dim,
|
182
|
+
self.scaling,
|
183
|
+
num_kv_heads=self.num_kv_heads,
|
184
|
+
layer_id=layer_id,
|
185
|
+
)
|
186
|
+
if self.use_qk_norm:
|
187
|
+
self.q_norm = LayerNorm(
|
188
|
+
param_shape=(self.num_heads, self.head_dim), eps=config.layer_norm_eps
|
189
|
+
)
|
190
|
+
self.k_norm = LayerNorm(
|
191
|
+
param_shape=(self.num_kv_heads, self.head_dim),
|
192
|
+
eps=config.layer_norm_eps,
|
193
|
+
)
|
194
|
+
|
195
|
+
def _apply_qk_norm(self, q, k):
|
196
|
+
q = q.view(*q.shape[:-1], -1, self.head_dim)
|
197
|
+
k = k.view(*k.shape[:-1], -1, self.head_dim)
|
198
|
+
q, _ = self.q_norm(q)
|
199
|
+
k, _ = self.k_norm(k)
|
200
|
+
q = q.view(*q.shape[:-2], -1)
|
201
|
+
k = k.view(*k.shape[:-2], -1)
|
202
|
+
return q, k
|
203
|
+
|
204
|
+
def forward(
|
205
|
+
self,
|
206
|
+
positions: torch.Tensor,
|
207
|
+
hidden_states: torch.Tensor,
|
208
|
+
input_metadata: InputMetadata,
|
209
|
+
) -> torch.Tensor:
|
210
|
+
qkv, _ = self.qkv_proj(hidden_states)
|
211
|
+
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
212
|
+
if self.use_qk_norm:
|
213
|
+
q, k = self._apply_qk_norm(q, k)
|
214
|
+
q, k = self.rotary_emb(positions, q, k)
|
215
|
+
attn_output = self.attn(q, k, v, input_metadata)
|
216
|
+
output, _ = self.o_proj(attn_output)
|
217
|
+
return output
|
218
|
+
|
219
|
+
|
220
|
+
class CohereDecoderLayer(nn.Module):
|
221
|
+
def __init__(
|
222
|
+
self,
|
223
|
+
config: PretrainedConfig,
|
224
|
+
layer_id: int = 0,
|
225
|
+
quant_config: Optional[QuantizationConfig] = None,
|
226
|
+
):
|
227
|
+
super().__init__()
|
228
|
+
self.hidden_size = config.hidden_size
|
229
|
+
|
230
|
+
self.self_attn = CohereAttention(
|
231
|
+
config, layer_id=layer_id, quant_config=quant_config
|
232
|
+
)
|
233
|
+
|
234
|
+
self.mlp = CohereMLP(config, quant_config=quant_config)
|
235
|
+
self.input_layernorm = LayerNorm(
|
236
|
+
param_shape=(config.hidden_size), eps=config.layer_norm_eps
|
237
|
+
)
|
238
|
+
|
239
|
+
def forward(
|
240
|
+
self,
|
241
|
+
positions: torch.Tensor,
|
242
|
+
hidden_states: torch.Tensor,
|
243
|
+
input_metadata: InputMetadata,
|
244
|
+
residual: Optional[torch.Tensor],
|
245
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
246
|
+
# Self Attention
|
247
|
+
residual = hidden_states
|
248
|
+
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
249
|
+
hidden_states_attention = self.self_attn(
|
250
|
+
positions=positions,
|
251
|
+
hidden_states=hidden_states,
|
252
|
+
input_metadata=input_metadata,
|
253
|
+
)
|
254
|
+
hidden_states_mlp = self.mlp(hidden_states)
|
255
|
+
# Add everything together
|
256
|
+
hidden_states = residual + hidden_states_attention + hidden_states_mlp
|
257
|
+
|
258
|
+
return hidden_states, residual
|
259
|
+
|
260
|
+
|
261
|
+
class CohereModel(nn.Module):
|
262
|
+
def __init__(
|
263
|
+
self,
|
264
|
+
config: PretrainedConfig,
|
265
|
+
quant_config: Optional[QuantizationConfig] = None,
|
266
|
+
):
|
267
|
+
super().__init__()
|
268
|
+
self.config = config
|
269
|
+
self.vocab_size = config.vocab_size
|
270
|
+
self.embed_tokens = VocabParallelEmbedding(
|
271
|
+
config.vocab_size, config.hidden_size
|
272
|
+
)
|
273
|
+
self.layers = nn.ModuleList(
|
274
|
+
[
|
275
|
+
CohereDecoderLayer(config, i, quant_config=quant_config)
|
276
|
+
for i in range(config.num_hidden_layers)
|
277
|
+
]
|
278
|
+
)
|
279
|
+
self.norm = LayerNorm(
|
280
|
+
param_shape=(config.hidden_size), eps=config.layer_norm_eps
|
281
|
+
)
|
282
|
+
|
283
|
+
def forward(
|
284
|
+
self,
|
285
|
+
input_ids: torch.Tensor,
|
286
|
+
positions: torch.Tensor,
|
287
|
+
input_metadata: InputMetadata,
|
288
|
+
) -> torch.Tensor:
|
289
|
+
hidden_states = self.embed_tokens(input_ids)
|
290
|
+
residual = None
|
291
|
+
for i in range(len(self.layers)):
|
292
|
+
layer = self.layers[i]
|
293
|
+
hidden_states, residual = layer(
|
294
|
+
positions,
|
295
|
+
hidden_states,
|
296
|
+
input_metadata,
|
297
|
+
residual,
|
298
|
+
)
|
299
|
+
hidden_states, _ = self.norm(hidden_states, residual)
|
300
|
+
return hidden_states
|
301
|
+
|
302
|
+
|
303
|
+
class CohereForCausalLM(nn.Module):
|
304
|
+
def __init__(
|
305
|
+
self,
|
306
|
+
config: PretrainedConfig,
|
307
|
+
quant_config: Optional[QuantizationConfig] = None,
|
308
|
+
) -> None:
|
309
|
+
super().__init__()
|
310
|
+
self.config = config
|
311
|
+
self.quant_config = quant_config
|
312
|
+
self.logits_processor = LogitsProcessor(config)
|
313
|
+
self.model = CohereModel(config, quant_config)
|
314
|
+
|
315
|
+
@torch.no_grad()
|
316
|
+
def forward(
|
317
|
+
self,
|
318
|
+
input_ids: torch.Tensor,
|
319
|
+
positions: torch.Tensor,
|
320
|
+
input_metadata: InputMetadata,
|
321
|
+
) -> torch.Tensor:
|
322
|
+
hidden_states = self.model(
|
323
|
+
input_ids,
|
324
|
+
positions,
|
325
|
+
input_metadata,
|
326
|
+
)
|
327
|
+
return self.logits_processor(
|
328
|
+
input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
|
329
|
+
)
|
330
|
+
|
331
|
+
def load_weights(
|
332
|
+
self,
|
333
|
+
model_name_or_path: str,
|
334
|
+
cache_dir: Optional[str] = None,
|
335
|
+
load_format: str = "auto",
|
336
|
+
revision: Optional[str] = None,
|
337
|
+
):
|
338
|
+
stacked_params_mapping = [
|
339
|
+
# (param_name, shard_name, shard_id)
|
340
|
+
("qkv_proj", "q_proj", "q"),
|
341
|
+
("qkv_proj", "k_proj", "k"),
|
342
|
+
("qkv_proj", "v_proj", "v"),
|
343
|
+
("gate_up_proj", "gate_proj", 0),
|
344
|
+
("gate_up_proj", "up_proj", 1),
|
345
|
+
]
|
346
|
+
params_dict = dict(self.named_parameters())
|
347
|
+
loaded_params = set()
|
348
|
+
for name, loaded_weight in hf_model_weights_iterator(
|
349
|
+
model_name_or_path, cache_dir, load_format, revision
|
350
|
+
):
|
351
|
+
for param_name, shard_name, shard_id in stacked_params_mapping:
|
352
|
+
if shard_name not in name:
|
353
|
+
continue
|
354
|
+
name = name.replace(shard_name, param_name)
|
355
|
+
# Skip loading extra bias for GPTQ models.
|
356
|
+
if name.endswith(".bias") and name not in params_dict:
|
357
|
+
continue
|
358
|
+
param = params_dict[name]
|
359
|
+
weight_loader = param.weight_loader
|
360
|
+
weight_loader(param, loaded_weight, shard_id)
|
361
|
+
break
|
362
|
+
else:
|
363
|
+
# lm_head is not used in vllm as it is tied with embed_token.
|
364
|
+
# To prevent errors, skip loading lm_head.weight.
|
365
|
+
if "lm_head.weight" in name:
|
366
|
+
continue
|
367
|
+
# Skip loading extra bias for GPTQ models.
|
368
|
+
if name.endswith(".bias") and name not in params_dict:
|
369
|
+
continue
|
370
|
+
param = params_dict[name]
|
371
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
372
|
+
weight_loader(param, loaded_weight)
|
373
|
+
loaded_params.add(name)
|
374
|
+
|
375
|
+
|
376
|
+
EntryClass = CohereForCausalLM
|