service-capacity-modeling 0.3.100__py3-none-any.whl → 0.3.101__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- service_capacity_modeling/tools/capture_baseline_costs.py +350 -0
- service_capacity_modeling/tools/data/__init__.py +0 -0
- {service_capacity_modeling-0.3.100.dist-info → service_capacity_modeling-0.3.101.dist-info}/METADATA +1 -1
- {service_capacity_modeling-0.3.100.dist-info → service_capacity_modeling-0.3.101.dist-info}/RECORD +8 -6
- {service_capacity_modeling-0.3.100.dist-info → service_capacity_modeling-0.3.101.dist-info}/WHEEL +0 -0
- {service_capacity_modeling-0.3.100.dist-info → service_capacity_modeling-0.3.101.dist-info}/entry_points.txt +0 -0
- {service_capacity_modeling-0.3.100.dist-info → service_capacity_modeling-0.3.101.dist-info}/licenses/LICENSE +0 -0
- {service_capacity_modeling-0.3.100.dist-info → service_capacity_modeling-0.3.101.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,350 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
"""
|
|
3
|
+
Capture current cost outputs for regression testing.
|
|
4
|
+
|
|
5
|
+
This script runs capacity planning for various scenarios and captures
|
|
6
|
+
the cost breakdowns to use as baselines for regression tests.
|
|
7
|
+
|
|
8
|
+
Usage:
|
|
9
|
+
python -m service_capacity_modeling.tools.capture_baseline_costs
|
|
10
|
+
"""
|
|
11
|
+
|
|
12
|
+
import json
|
|
13
|
+
from pathlib import Path
|
|
14
|
+
from typing import Any
|
|
15
|
+
|
|
16
|
+
from service_capacity_modeling.capacity_planner import planner
|
|
17
|
+
from service_capacity_modeling.interface import (
|
|
18
|
+
AccessConsistency,
|
|
19
|
+
CapacityDesires,
|
|
20
|
+
certain_float,
|
|
21
|
+
certain_int,
|
|
22
|
+
Consistency,
|
|
23
|
+
DataShape,
|
|
24
|
+
GlobalConsistency,
|
|
25
|
+
Interval,
|
|
26
|
+
QueryPattern,
|
|
27
|
+
)
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def capture_costs(
|
|
31
|
+
model_name: str,
|
|
32
|
+
region: str,
|
|
33
|
+
desires: CapacityDesires,
|
|
34
|
+
extra_args: dict[str, Any] | None = None,
|
|
35
|
+
scenario_name: str = "",
|
|
36
|
+
) -> dict[str, Any]:
|
|
37
|
+
"""Capture all cost breakdown for a planning scenario."""
|
|
38
|
+
try:
|
|
39
|
+
cap_plans = planner.plan_certain(
|
|
40
|
+
model_name=model_name,
|
|
41
|
+
region=region,
|
|
42
|
+
desires=desires,
|
|
43
|
+
num_results=1,
|
|
44
|
+
extra_model_arguments=extra_args or {},
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
if not cap_plans:
|
|
48
|
+
return {"error": "No capacity plans generated", "scenario": scenario_name}
|
|
49
|
+
|
|
50
|
+
cap_plan = cap_plans[0]
|
|
51
|
+
clusters = cap_plan.candidate_clusters
|
|
52
|
+
|
|
53
|
+
result = {
|
|
54
|
+
"scenario": scenario_name,
|
|
55
|
+
"model": model_name,
|
|
56
|
+
"region": region,
|
|
57
|
+
"service_tier": desires.service_tier,
|
|
58
|
+
"annual_costs": dict(
|
|
59
|
+
sorted((k, float(v)) for k, v in clusters.annual_costs.items())
|
|
60
|
+
),
|
|
61
|
+
"total_annual_cost": float(clusters.total_annual_cost),
|
|
62
|
+
"cluster_count": len(clusters.zonal) + len(clusters.regional),
|
|
63
|
+
"service_count": len(clusters.services),
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
# Add instance info
|
|
67
|
+
if clusters.zonal:
|
|
68
|
+
result["instance_name"] = clusters.zonal[0].instance.name
|
|
69
|
+
result["instance_count"] = clusters.zonal[0].count
|
|
70
|
+
result["deployment"] = "zonal"
|
|
71
|
+
elif clusters.regional:
|
|
72
|
+
result["instance_name"] = clusters.regional[0].instance.name
|
|
73
|
+
result["instance_count"] = clusters.regional[0].count
|
|
74
|
+
result["deployment"] = "regional"
|
|
75
|
+
|
|
76
|
+
return result
|
|
77
|
+
except (ValueError, KeyError, AttributeError) as e:
|
|
78
|
+
return {"error": str(e), "scenario": scenario_name}
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
# Define test scenarios for each service
|
|
82
|
+
# Each scenario: (model_name, region, desires, extra_args, scenario_name)
|
|
83
|
+
scenarios: list[tuple[str, str, CapacityDesires, dict[str, Any] | None, str]] = []
|
|
84
|
+
|
|
85
|
+
# RDS scenarios
|
|
86
|
+
rds_small = CapacityDesires(
|
|
87
|
+
service_tier=1,
|
|
88
|
+
query_pattern=QueryPattern(
|
|
89
|
+
estimated_read_per_second=certain_int(200),
|
|
90
|
+
estimated_write_per_second=certain_int(100),
|
|
91
|
+
estimated_mean_read_latency_ms=certain_float(10),
|
|
92
|
+
estimated_mean_write_latency_ms=certain_float(10),
|
|
93
|
+
),
|
|
94
|
+
data_shape=DataShape(
|
|
95
|
+
estimated_state_size_gib=certain_int(50),
|
|
96
|
+
),
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
rds_tier3 = CapacityDesires(
|
|
100
|
+
service_tier=3,
|
|
101
|
+
query_pattern=QueryPattern(
|
|
102
|
+
estimated_read_per_second=certain_int(200),
|
|
103
|
+
estimated_write_per_second=certain_int(100),
|
|
104
|
+
estimated_mean_read_latency_ms=certain_float(20),
|
|
105
|
+
estimated_mean_write_latency_ms=certain_float(20),
|
|
106
|
+
),
|
|
107
|
+
data_shape=DataShape(
|
|
108
|
+
estimated_state_size_gib=certain_int(200),
|
|
109
|
+
),
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
scenarios.extend(
|
|
113
|
+
[
|
|
114
|
+
("org.netflix.rds", "us-east-1", rds_small, None, "rds_small_tier1"),
|
|
115
|
+
("org.netflix.rds", "us-east-1", rds_tier3, None, "rds_tier3"),
|
|
116
|
+
]
|
|
117
|
+
)
|
|
118
|
+
|
|
119
|
+
# Aurora scenarios
|
|
120
|
+
aurora_small = CapacityDesires(
|
|
121
|
+
service_tier=1,
|
|
122
|
+
query_pattern=QueryPattern(
|
|
123
|
+
estimated_read_per_second=certain_int(100),
|
|
124
|
+
estimated_write_per_second=certain_int(100),
|
|
125
|
+
estimated_mean_read_latency_ms=certain_float(10),
|
|
126
|
+
estimated_mean_write_latency_ms=certain_float(10),
|
|
127
|
+
),
|
|
128
|
+
data_shape=DataShape(
|
|
129
|
+
estimated_state_size_gib=certain_int(50),
|
|
130
|
+
),
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
aurora_tier3 = CapacityDesires(
|
|
134
|
+
service_tier=3,
|
|
135
|
+
query_pattern=QueryPattern(
|
|
136
|
+
estimated_read_per_second=certain_int(200),
|
|
137
|
+
estimated_write_per_second=certain_int(100),
|
|
138
|
+
estimated_mean_read_latency_ms=certain_float(10),
|
|
139
|
+
estimated_mean_write_latency_ms=certain_float(10),
|
|
140
|
+
),
|
|
141
|
+
data_shape=DataShape(
|
|
142
|
+
estimated_state_size_gib=certain_int(200),
|
|
143
|
+
),
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
scenarios.extend(
|
|
147
|
+
[
|
|
148
|
+
("org.netflix.aurora", "us-east-1", aurora_small, None, "aurora_small_tier1"),
|
|
149
|
+
("org.netflix.aurora", "us-east-1", aurora_tier3, None, "aurora_tier3"),
|
|
150
|
+
]
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
# Cassandra scenarios
|
|
154
|
+
cassandra_small_high_qps = CapacityDesires(
|
|
155
|
+
service_tier=1,
|
|
156
|
+
query_pattern=QueryPattern(
|
|
157
|
+
estimated_read_per_second=certain_int(100_000),
|
|
158
|
+
estimated_write_per_second=certain_int(100_000),
|
|
159
|
+
estimated_mean_read_latency_ms=certain_float(0.5),
|
|
160
|
+
estimated_mean_write_latency_ms=certain_float(0.4),
|
|
161
|
+
),
|
|
162
|
+
data_shape=DataShape(
|
|
163
|
+
estimated_state_size_gib=certain_int(10),
|
|
164
|
+
),
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
cassandra_high_writes = CapacityDesires(
|
|
168
|
+
service_tier=1,
|
|
169
|
+
query_pattern=QueryPattern(
|
|
170
|
+
estimated_read_per_second=certain_int(10_000),
|
|
171
|
+
estimated_write_per_second=certain_int(500_000),
|
|
172
|
+
),
|
|
173
|
+
data_shape=DataShape(
|
|
174
|
+
estimated_state_size_gib=certain_int(300),
|
|
175
|
+
),
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
scenarios.extend(
|
|
179
|
+
[
|
|
180
|
+
(
|
|
181
|
+
"org.netflix.cassandra",
|
|
182
|
+
"us-east-1",
|
|
183
|
+
cassandra_small_high_qps,
|
|
184
|
+
{"require_local_disks": True},
|
|
185
|
+
"cassandra_small_high_qps_local",
|
|
186
|
+
),
|
|
187
|
+
(
|
|
188
|
+
"org.netflix.cassandra",
|
|
189
|
+
"us-east-1",
|
|
190
|
+
cassandra_high_writes,
|
|
191
|
+
{"require_local_disks": False, "copies_per_region": 2},
|
|
192
|
+
"cassandra_high_writes_ebs",
|
|
193
|
+
),
|
|
194
|
+
]
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
# Kafka scenarios - Kafka uses throughput-based sizing via write_size
|
|
198
|
+
# 100 MiB/s throughput with 2 consumers, 1 producer
|
|
199
|
+
throughput = 100 * 1024 * 1024 # 100 MiB/s
|
|
200
|
+
kafka_throughput = CapacityDesires(
|
|
201
|
+
service_tier=1,
|
|
202
|
+
query_pattern=QueryPattern(
|
|
203
|
+
estimated_read_per_second=Interval(low=1, mid=2, high=2, confidence=0.98),
|
|
204
|
+
estimated_write_per_second=Interval(low=1, mid=1, high=1, confidence=0.98),
|
|
205
|
+
estimated_mean_write_size_bytes=Interval(
|
|
206
|
+
low=throughput, mid=throughput, high=throughput * 2, confidence=0.98
|
|
207
|
+
),
|
|
208
|
+
),
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
scenarios.extend(
|
|
212
|
+
[
|
|
213
|
+
(
|
|
214
|
+
"org.netflix.kafka",
|
|
215
|
+
"us-east-1",
|
|
216
|
+
kafka_throughput,
|
|
217
|
+
{"require_local_disks": False},
|
|
218
|
+
"kafka_100mib_throughput",
|
|
219
|
+
),
|
|
220
|
+
]
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
# EVCache scenarios
|
|
224
|
+
# Tiny EVCache - small cluster to show spread cost (< 10 instances = spread penalty)
|
|
225
|
+
evcache_tiny = CapacityDesires(
|
|
226
|
+
service_tier=1,
|
|
227
|
+
query_pattern=QueryPattern(
|
|
228
|
+
estimated_read_per_second=certain_int(1_000),
|
|
229
|
+
estimated_write_per_second=certain_int(100),
|
|
230
|
+
estimated_mean_read_latency_ms=certain_float(1.0),
|
|
231
|
+
),
|
|
232
|
+
data_shape=DataShape(
|
|
233
|
+
estimated_state_size_gib=certain_int(1),
|
|
234
|
+
estimated_state_item_count=Interval(
|
|
235
|
+
low=10_000, mid=100_000, high=200_000, confidence=0.98
|
|
236
|
+
),
|
|
237
|
+
),
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
evcache_small = CapacityDesires(
|
|
241
|
+
service_tier=1,
|
|
242
|
+
query_pattern=QueryPattern(
|
|
243
|
+
estimated_read_per_second=certain_int(100_000),
|
|
244
|
+
estimated_write_per_second=certain_int(10_000),
|
|
245
|
+
estimated_mean_read_latency_ms=certain_float(1.0),
|
|
246
|
+
),
|
|
247
|
+
data_shape=DataShape(
|
|
248
|
+
estimated_state_size_gib=certain_int(10),
|
|
249
|
+
estimated_state_item_count=Interval(
|
|
250
|
+
low=1_000_000, mid=10_000_000, high=20_000_000, confidence=0.98
|
|
251
|
+
),
|
|
252
|
+
),
|
|
253
|
+
)
|
|
254
|
+
|
|
255
|
+
evcache_large = CapacityDesires(
|
|
256
|
+
service_tier=1,
|
|
257
|
+
query_pattern=QueryPattern(
|
|
258
|
+
estimated_read_per_second=certain_int(500_000),
|
|
259
|
+
estimated_write_per_second=certain_int(50_000),
|
|
260
|
+
estimated_mean_read_latency_ms=certain_float(1.0),
|
|
261
|
+
),
|
|
262
|
+
data_shape=DataShape(
|
|
263
|
+
estimated_state_size_gib=certain_int(500),
|
|
264
|
+
estimated_state_item_count=Interval(
|
|
265
|
+
low=10_000_000, mid=100_000_000, high=200_000_000, confidence=0.98
|
|
266
|
+
),
|
|
267
|
+
),
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
scenarios.extend(
|
|
271
|
+
[
|
|
272
|
+
(
|
|
273
|
+
"org.netflix.evcache",
|
|
274
|
+
"us-east-1",
|
|
275
|
+
evcache_tiny,
|
|
276
|
+
{"cross_region_replication": "none"},
|
|
277
|
+
"evcache_tiny_with_spread",
|
|
278
|
+
),
|
|
279
|
+
(
|
|
280
|
+
"org.netflix.evcache",
|
|
281
|
+
"us-east-1",
|
|
282
|
+
evcache_small,
|
|
283
|
+
{"cross_region_replication": "none"},
|
|
284
|
+
"evcache_small_no_replication",
|
|
285
|
+
),
|
|
286
|
+
(
|
|
287
|
+
"org.netflix.evcache",
|
|
288
|
+
"us-east-1",
|
|
289
|
+
evcache_large,
|
|
290
|
+
{"cross_region_replication": "sets", "copies_per_region": 2},
|
|
291
|
+
"evcache_large_with_replication",
|
|
292
|
+
),
|
|
293
|
+
]
|
|
294
|
+
)
|
|
295
|
+
|
|
296
|
+
# Key-Value scenarios (composite: Cassandra + EVCache)
|
|
297
|
+
# Uses evcache_large desires with eventual consistency to enable caching layer
|
|
298
|
+
kv_with_cache = evcache_large.model_copy(deep=True)
|
|
299
|
+
kv_with_cache.query_pattern.access_consistency = GlobalConsistency(
|
|
300
|
+
same_region=Consistency(target_consistency=AccessConsistency.eventual),
|
|
301
|
+
cross_region=Consistency(target_consistency=AccessConsistency.best_effort),
|
|
302
|
+
)
|
|
303
|
+
|
|
304
|
+
scenarios.extend(
|
|
305
|
+
[
|
|
306
|
+
(
|
|
307
|
+
"org.netflix.key-value",
|
|
308
|
+
"us-east-1",
|
|
309
|
+
kv_with_cache,
|
|
310
|
+
None,
|
|
311
|
+
"kv_with_cache",
|
|
312
|
+
),
|
|
313
|
+
]
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
# Export as dict for tests to import (single source of truth)
|
|
317
|
+
SCENARIOS: dict[str, dict[str, Any]] = {
|
|
318
|
+
name: {
|
|
319
|
+
"model": model,
|
|
320
|
+
"region": region,
|
|
321
|
+
"desires": desires,
|
|
322
|
+
"extra_args": extra_args,
|
|
323
|
+
}
|
|
324
|
+
for model, region, desires, extra_args, name in scenarios
|
|
325
|
+
}
|
|
326
|
+
|
|
327
|
+
|
|
328
|
+
if __name__ == "__main__":
|
|
329
|
+
# Capture all scenarios
|
|
330
|
+
results = []
|
|
331
|
+
for model, region, desires, extra_args, scenario_name in scenarios:
|
|
332
|
+
print(f"Capturing: {scenario_name}...")
|
|
333
|
+
result = capture_costs(model, region, desires, extra_args, scenario_name)
|
|
334
|
+
results.append(result)
|
|
335
|
+
|
|
336
|
+
if "error" in result:
|
|
337
|
+
print(f" ERROR: {result['error']}")
|
|
338
|
+
else:
|
|
339
|
+
print(f" Total cost: ${result['total_annual_cost']:,.2f}")
|
|
340
|
+
print(f" Cost breakdown: {list(result['annual_costs'].keys())}")
|
|
341
|
+
|
|
342
|
+
# Save results
|
|
343
|
+
output_file = Path(__file__).parent / "data" / "baseline_costs.json"
|
|
344
|
+
with open(output_file, "w", encoding="utf-8") as f:
|
|
345
|
+
json.dump(results, f, indent=2, sort_keys=True)
|
|
346
|
+
f.write("\n") # Ensure trailing newline for pre-commit
|
|
347
|
+
|
|
348
|
+
print(f"\nResults saved to: {output_file}")
|
|
349
|
+
success_count = len([r for r in results if "error" not in r])
|
|
350
|
+
print(f"Total scenarios captured: {success_count}/{len(results)}")
|
|
File without changes
|
{service_capacity_modeling-0.3.100.dist-info → service_capacity_modeling-0.3.101.dist-info}/RECORD
RENAMED
|
@@ -79,12 +79,14 @@ service_capacity_modeling/models/org/netflix/wal.py,sha256=QtRlqP_AIVpTg-XEINAfv
|
|
|
79
79
|
service_capacity_modeling/models/org/netflix/zookeeper.py,sha256=T_CkmRqoEVqpERCFPU8xihyaxlNfUHDJXz7dMHM8GD0,7679
|
|
80
80
|
service_capacity_modeling/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
81
81
|
service_capacity_modeling/tools/auto_shape.py,sha256=K248-DayPrcZwLw1dYr47lpeQQwL0ylh1WAoVSdLNxw,23621
|
|
82
|
+
service_capacity_modeling/tools/capture_baseline_costs.py,sha256=VXa5AEGpK4fGFhsDgKv-jKSkgLL8arAkuogv8Vm3Gq4,10729
|
|
82
83
|
service_capacity_modeling/tools/fetch_pricing.py,sha256=fO84h77cqiiIHF4hZt490RwbZ6JqjB45UsnPpV2AXD4,6122
|
|
83
84
|
service_capacity_modeling/tools/generate_missing.py,sha256=F7YqvMJAV4nZc20GNrlIsnQSF8_77sLgwYZqc5k4LDg,3099
|
|
84
85
|
service_capacity_modeling/tools/instance_families.py,sha256=e5RuYkCLUITvsAazDH12B6KjX_PaBsv6Ne3mj0HK_sQ,9223
|
|
85
|
-
service_capacity_modeling
|
|
86
|
-
service_capacity_modeling-0.3.
|
|
87
|
-
service_capacity_modeling-0.3.
|
|
88
|
-
service_capacity_modeling-0.3.
|
|
89
|
-
service_capacity_modeling-0.3.
|
|
90
|
-
service_capacity_modeling-0.3.
|
|
86
|
+
service_capacity_modeling/tools/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
87
|
+
service_capacity_modeling-0.3.101.dist-info/licenses/LICENSE,sha256=nl_Lt5v9VvJ-5lWJDT4ddKAG-VZ-2IaLmbzpgYDz2hU,11343
|
|
88
|
+
service_capacity_modeling-0.3.101.dist-info/METADATA,sha256=6tuDUib_sRWz0Y9imRcO6t5KhF-qr4v1kXG8zbmewj0,10367
|
|
89
|
+
service_capacity_modeling-0.3.101.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
|
|
90
|
+
service_capacity_modeling-0.3.101.dist-info/entry_points.txt,sha256=ZsjzpG5SomWpT1zCE19n1uSXKH2gTI_yc33sdl0vmJg,146
|
|
91
|
+
service_capacity_modeling-0.3.101.dist-info/top_level.txt,sha256=H8XjTCLgR3enHq5t3bIbxt9SeUkUT8HT_SDv2dgIT_A,26
|
|
92
|
+
service_capacity_modeling-0.3.101.dist-info/RECORD,,
|
{service_capacity_modeling-0.3.100.dist-info → service_capacity_modeling-0.3.101.dist-info}/WHEEL
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|