sequenzo 0.1.17__cp39-cp39-macosx_10_9_universal2.whl → 0.1.18__cp39-cp39-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (86) hide show
  1. sequenzo/__init__.py +25 -1
  2. sequenzo/big_data/clara/clara.py +1 -1
  3. sequenzo/big_data/clara/utils/get_weighted_diss.c +157 -157
  4. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so +0 -0
  5. sequenzo/clustering/hierarchical_clustering.py +202 -8
  6. sequenzo/define_sequence_data.py +34 -2
  7. sequenzo/dissimilarity_measures/c_code.cpython-39-darwin.so +0 -0
  8. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  9. sequenzo/dissimilarity_measures/src/DHDdistance.cpp +13 -37
  10. sequenzo/dissimilarity_measures/src/LCPdistance.cpp +13 -37
  11. sequenzo/dissimilarity_measures/src/OMdistance.cpp +12 -47
  12. sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +103 -67
  13. sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
  14. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +41 -16
  15. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +4 -0
  16. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +7 -0
  17. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +10 -0
  18. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +127 -43
  19. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +30 -2
  20. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
  21. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +14 -5
  22. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +111 -54
  23. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +131 -9
  24. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +11 -113
  25. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +39 -7
  26. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +336 -30
  27. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +9 -37
  28. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +58 -0
  29. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +1 -0
  30. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +35 -2
  31. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +3 -1
  32. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +17 -0
  33. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +13 -0
  34. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +18 -0
  35. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +13 -0
  36. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +8 -0
  37. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +363 -34
  38. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +7 -0
  39. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +13 -0
  40. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +41 -4
  41. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +252 -16
  42. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +9 -0
  43. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +12 -1
  44. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +7 -0
  45. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
  46. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +78 -1
  47. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +3 -1
  48. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +13 -2
  49. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +5 -0
  50. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +5 -1
  51. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +2 -0
  52. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +64 -1
  53. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +36 -0
  54. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +40 -31
  55. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +8 -0
  56. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
  57. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +6 -0
  58. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +157 -157
  59. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so +0 -0
  60. sequenzo/dissimilarity_measures/utils/seqconc.c +157 -157
  61. sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so +0 -0
  62. sequenzo/dissimilarity_measures/utils/seqdss.c +157 -157
  63. sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so +0 -0
  64. sequenzo/dissimilarity_measures/utils/seqdur.c +157 -157
  65. sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so +0 -0
  66. sequenzo/dissimilarity_measures/utils/seqlength.c +157 -157
  67. sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so +0 -0
  68. sequenzo/sequence_characteristics/__init__.py +4 -0
  69. sequenzo/sequence_characteristics/complexity_index.py +17 -57
  70. sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +177 -111
  71. sequenzo/sequence_characteristics/plot_characteristics.py +30 -11
  72. sequenzo/sequence_characteristics/simple_characteristics.py +1 -0
  73. sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +9 -3
  74. sequenzo/sequence_characteristics/turbulence.py +47 -67
  75. sequenzo/sequence_characteristics/variance_of_spell_durations.py +19 -9
  76. sequenzo/sequence_characteristics/within_sequence_entropy.py +5 -58
  77. sequenzo/visualization/plot_sequence_index.py +58 -35
  78. sequenzo/visualization/plot_state_distribution.py +57 -36
  79. sequenzo/with_event_history_analysis/__init__.py +35 -0
  80. sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
  81. sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
  82. {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/METADATA +7 -6
  83. {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/RECORD +86 -79
  84. {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/WHEEL +0 -0
  85. {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/licenses/LICENSE +0 -0
  86. {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,283 @@
1
+ """
2
+ @Author : Yuqi Liang 梁彧祺
3
+ @File : sequence_history_analysis.py
4
+ @Time : 30/09/2025 21:08
5
+ @Desc : Sequence History Analysis - Convert person-level sequence data to person-period format
6
+ """
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+
11
+
12
+ def person_level_to_person_period(data, id_col="id", period_col="time", event_col="event"):
13
+ """
14
+ Convert person-level data to person-period format.
15
+
16
+ This function expands each person's single row into multiple rows,
17
+ one for each time period they are observed.
18
+
19
+ Parameters
20
+ ----------
21
+ data : pandas.DataFrame
22
+ Input data with one row per person
23
+ id_col : str, optional
24
+ Name of the ID column (default: "id")
25
+ period_col : str, optional
26
+ Name of the time period column (default: "time")
27
+ event_col : str, optional
28
+ Name of the event indicator column (default: "event")
29
+
30
+ Returns
31
+ -------
32
+ pandas.DataFrame
33
+ Expanded data with one row per person-period
34
+
35
+ Examples
36
+ --------
37
+ >>> data = pd.DataFrame({'id': [1, 2], 'time': [3, 2], 'event': [True, False]})
38
+ >>> person_level_to_person_period(data)
39
+ id time event
40
+ 0 1 1 False
41
+ 1 1 2 False
42
+ 2 1 3 True
43
+ 3 2 1 False
44
+ 4 2 2 False
45
+ """
46
+ # Check for missing values in critical columns
47
+ if data[[id_col, period_col, event_col]].isna().any().any():
48
+ raise ValueError("Cannot handle missing data in the time or event variables")
49
+
50
+ # Create an index that repeats each row based on the time value
51
+ # For example, if time=3, that row will be repeated 3 times
52
+ index = np.repeat(np.arange(len(data)), data[period_col].values)
53
+
54
+ # Find the cumulative sum to identify which rows should have the event
55
+ idmax = np.cumsum(data[period_col].values) - 1
56
+
57
+ # Expand the data by repeating rows
58
+ dat = data.iloc[index].copy()
59
+ dat.reset_index(drop=True, inplace=True)
60
+
61
+ # Create sequential time periods for each ID (1, 2, 3, ...)
62
+ dat[period_col] = dat.groupby(id_col).cumcount() + 1
63
+
64
+ # Set all events to False initially
65
+ dat[event_col] = False
66
+
67
+ # Set events to True only at the final period for each person
68
+ # Convert to bool to avoid dtype incompatibility warning
69
+ dat.loc[idmax, event_col] = data[event_col].values.astype(bool)
70
+
71
+ return dat
72
+
73
+
74
+ def _extract_sequence_dataframe(seqdata):
75
+ """
76
+ Extract sequence DataFrame from various input types.
77
+
78
+ Parameters
79
+ ----------
80
+ seqdata : SequenceData, pandas.DataFrame, or numpy.ndarray
81
+ Input sequence data
82
+
83
+ Returns
84
+ -------
85
+ pandas.DataFrame
86
+ Sequence data as a DataFrame
87
+ """
88
+ # Check if input is a SequenceData object
89
+ if hasattr(seqdata, 'seqdata'):
90
+ # This is a SequenceData object
91
+ return seqdata.seqdata.copy()
92
+ elif isinstance(seqdata, pd.DataFrame):
93
+ return seqdata.copy()
94
+ else:
95
+ # Assume it's array-like
96
+ return pd.DataFrame(seqdata)
97
+
98
+
99
+ def seqsha(seqdata, time, event, include_present=False, align_end=False, covar=None):
100
+ """
101
+ Sequence History Analysis: Create person-period format with sequence history.
102
+
103
+ This function converts sequence data into a person-period format where each
104
+ row represents a time point for a person, with columns showing their sequence
105
+ history up to that point.
106
+
107
+ Parameters
108
+ ----------
109
+ seqdata : SequenceData, pandas.DataFrame, or numpy.ndarray
110
+ Sequence data where each row is a person and each column is a time point.
111
+ Can be a SequenceData object, DataFrame, or array.
112
+ time : array-like
113
+ Duration or time until event for each person. Length should equal the
114
+ number of sequences. Each value indicates how many time periods that
115
+ person is observed. For example, if all persons are observed for the
116
+ full sequence length, use: np.full(n_persons, sequence_length)
117
+ event : array-like
118
+ Event indicator for each person (True/False or 1/0). Length should
119
+ equal the number of sequences.
120
+ include_present : bool, optional
121
+ If True, include the current time point in the history (default: False)
122
+ If False, only include past time points (recommended for most analyses)
123
+ align_end : bool, optional
124
+ If True, align sequences from the end (right-aligned) (default: False)
125
+ If False, align sequences from the start (left-aligned)
126
+ covar : pandas.DataFrame or numpy.ndarray, optional
127
+ Additional covariates to merge with the output (default: None)
128
+ Should have the same number of rows as seqdata
129
+
130
+ Returns
131
+ -------
132
+ pandas.DataFrame
133
+ Person-period data with the following columns:
134
+ - id: Person identifier
135
+ - time: Time period within person
136
+ - event: Event indicator (True only at the final period for each person)
137
+ - Sequence history columns (varies based on align_end parameter)
138
+ - Additional covariate columns (if covar is provided)
139
+
140
+ Raises
141
+ ------
142
+ ValueError
143
+ If maximum time exceeds the length of the longest sequence
144
+
145
+ Examples
146
+ --------
147
+ Example 1: Basic usage with DataFrame
148
+ >>> import pandas as pd
149
+ >>> import numpy as np
150
+ >>> seqdata = pd.DataFrame([[1, 2, 3, 4], [1, 1, 2, 2]])
151
+ >>> time = np.array([3, 2])
152
+ >>> event = np.array([True, False])
153
+ >>> result = seqsha(seqdata, time, event)
154
+
155
+ Example 2: Usage with SequenceData object (recommended)
156
+ >>> from sequenzo import SequenceData, load_dataset
157
+ >>> df = load_dataset('pairfam_family')
158
+ >>> time_cols = [str(i) for i in range(1, 265)]
159
+ >>> seq_data = SequenceData(df, time=time_cols, id_col='id',
160
+ ... states=list(range(1, 10)))
161
+ >>> # All persons observed for 264 months
162
+ >>> time = np.full(len(df), 264)
163
+ >>> event = df['highschool'].values
164
+ >>> result = seqsha(seq_data, time, event)
165
+
166
+ Example 3: With covariates
167
+ >>> covar = df[['sex', 'yeduc', 'east']]
168
+ >>> result = seqsha(seq_data, time, event, covar=covar)
169
+
170
+ Example 4: Right-aligned sequences
171
+ >>> result = seqsha(seq_data, time, event, align_end=True)
172
+
173
+ Notes
174
+ -----
175
+ - The time parameter represents observation duration, not calendar time
176
+ - When include_present=False (default), only past states are included
177
+ - Use align_end=True when analyzing sequences leading up to an event
178
+ - Missing values in the original sequence are converted to "NA_orig"
179
+ """
180
+ # Extract sequence DataFrame from input (handles SequenceData, DataFrame, or array)
181
+ seq_df = _extract_sequence_dataframe(seqdata)
182
+
183
+ # Convert time and event to numpy arrays for consistency
184
+ time_array = np.asarray(time)
185
+ event_array = np.asarray(event)
186
+
187
+ # Check that dimensions match
188
+ n_sequences = len(seq_df)
189
+ if len(time_array) != n_sequences:
190
+ raise ValueError(
191
+ f"Length of 'time' ({len(time_array)}) must match number of sequences ({n_sequences})"
192
+ )
193
+ if len(event_array) != n_sequences:
194
+ raise ValueError(
195
+ f"Length of 'event' ({len(event_array)}) must match number of sequences ({n_sequences})"
196
+ )
197
+
198
+ # Create base time data: one row per person with their time and event
199
+ basetime = pd.DataFrame({
200
+ 'id': np.arange(1, n_sequences + 1),
201
+ 'time': time_array,
202
+ 'event': event_array
203
+ })
204
+
205
+ # Convert to person-period format (expand rows)
206
+ persper = person_level_to_person_period(basetime, "id", "time", "event")
207
+
208
+ # Convert sequence data to matrix and handle missing values
209
+ sdata = seq_df.values.astype(str)
210
+ sdata[pd.isna(seq_df.values)] = "NA_orig"
211
+
212
+ # Get the time periods for each row in person-period data
213
+ age = persper['time'].values
214
+ ma = int(np.max(age))
215
+
216
+ # Check if time values are valid
217
+ if ma > seq_df.shape[1]:
218
+ raise ValueError("Maximum time of event occurrence is higher than the longest sequence!")
219
+
220
+ # Create empty matrix to store past sequence states
221
+ past = np.full((len(persper), seq_df.shape[1]), np.nan, dtype=object)
222
+
223
+ if align_end:
224
+ # Right-align the sequences (align from the end)
225
+ start = 1 if include_present else 2
226
+
227
+ for aa in range(start, ma + 1):
228
+ # Find rows where time equals aa
229
+ cond = age == aa
230
+ # Get the person IDs for these rows
231
+ ids_a = persper.loc[cond, 'id'].values - 1 # Subtract 1 for 0-based indexing
232
+
233
+ if include_present:
234
+ # Include current time point: fill from (ncol-aa) to end
235
+ past[cond, (seq_df.shape[1] - aa):seq_df.shape[1]] = sdata[ids_a, 0:aa]
236
+ else:
237
+ # Exclude current time point: fill from (ncol-aa+1) to end
238
+ past[cond, (seq_df.shape[1] - aa + 1):seq_df.shape[1]] = sdata[ids_a, 0:(aa - 1)]
239
+
240
+ # Create column names counting backwards
241
+ col_names = [f"Tm{i}" for i in range(seq_df.shape[1], 0, -1)]
242
+ else:
243
+ # Left-align the sequences (align from the start)
244
+ for aa in range(1, ma + 1):
245
+ if include_present:
246
+ # Include present: use time > aa
247
+ cond = age > aa
248
+ else:
249
+ # Exclude present: use time >= aa
250
+ cond = age >= aa
251
+
252
+ # Get the person IDs for these rows
253
+ ids_a = persper.loc[cond, 'id'].values - 1 # Subtract 1 for 0-based indexing
254
+
255
+ # Fill in the sequence state at position aa-1 (0-based)
256
+ past[cond, aa - 1] = sdata[ids_a, aa - 1]
257
+
258
+ # Use original column names or create default ones
259
+ if seq_df.columns is not None and len(seq_df.columns) > 0:
260
+ col_names = [str(col) for col in seq_df.columns[:ma]]
261
+ # Pad with additional column names if needed
262
+ col_names += [f"col_{i}" for i in range(ma, seq_df.shape[1])]
263
+ else:
264
+ col_names = [f"col_{i}" for i in range(seq_df.shape[1])]
265
+
266
+ # Convert past matrix to DataFrame
267
+ past_df = pd.DataFrame(past, columns=col_names)
268
+
269
+ # Combine person-period data with sequence history
270
+ alldata = pd.concat([persper.reset_index(drop=True), past_df], axis=1)
271
+
272
+ # Add covariates if provided
273
+ if covar is not None:
274
+ # Merge covariates based on the ID (subtract 1 for 0-based indexing)
275
+ if isinstance(covar, pd.DataFrame):
276
+ covar_subset = covar.iloc[alldata['id'].values - 1].reset_index(drop=True)
277
+ alldata = pd.concat([alldata, covar_subset], axis=1)
278
+ else:
279
+ covar_array = np.array(covar)
280
+ covar_subset = covar_array[alldata['id'].values - 1]
281
+ alldata = pd.concat([alldata, pd.DataFrame(covar_subset)], axis=1)
282
+
283
+ return alldata
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sequenzo
3
- Version: 0.1.17
3
+ Version: 0.1.18
4
4
  Summary: A fast, scalable and intuitive Python package for social sequence analysis.
5
5
  Author-email: Yuqi Liang <yuqi.liang.1900@gmail.com>, Xinyi Li <1836724126@qq.com>, Jan Heinrich Ernst Meyerhoff-Liang <jan.meyerhoff1@gmail.com>
6
6
  License: BSD 3-Clause License
@@ -58,6 +58,7 @@ Requires-Dist: joblib>=1.0.1
58
58
  Requires-Dist: docutils>=0.17
59
59
  Requires-Dist: tqdm<5.0.0,>=4.62.3
60
60
  Requires-Dist: missingno<0.6.0,>=0.5.2
61
+ Requires-Dist: rpy2
61
62
  Provides-Extra: dev
62
63
  Requires-Dist: pytest>=6.2.5; extra == "dev"
63
64
  Requires-Dist: flake8>=3.9.2; extra == "dev"
@@ -123,12 +124,12 @@ Perfect for research, policy, and business, enabling seamless analysis of catego
123
124
 
124
125
  Sequenzo provides pre-built Python wheels for maximum compatibility — no need to compile from source.
125
126
 
126
- | Platform | Architecture | Python Versions | Status |
127
+ | Platform | Architecture | Python Versions | Status |
127
128
  |------------------|-------------------------------|-----------------------|-------------------|
128
- | **macOS** | `universal2` (Intel + Apple Silicon) | 3.9, 3.11 | ✅ Pre-built wheel |
129
- | **Windows** | `AMD64` (64-bit) | 3.9, 3.10, 3.11 | ✅ Pre-built wheel |
130
- | **Linux (glibc)**| `x86_64` (standard Linux) | 3.9, 3.10, 3.11 | ✅ Pre-built wheel |
131
- | **Linux (musl)** | `x86_64` (Alpine Linux) | 3.9, 3.10, 3.11 | ✅ Pre-built wheel |
129
+ | **macOS** | `universal2` (Intel + Apple Silicon) | 3.9, 3.10, 3.11, 3.12 | ✅ Pre-built wheel |
130
+ | **Windows** | `AMD64` (64-bit) | 3.9, 3.10, 3.11, 3.12 | ✅ Pre-built wheel |
131
+ | **Linux (glibc)**| `x86_64` (standard Linux) | 3.9, 3.10, 3.11, 3.12 | ✅ Pre-built wheel |
132
+ | **Linux (musl)** | `x86_64` (Alpine Linux) | 3.9, 3.10, 3.11, 3.12 | ✅ Pre-built wheel |
132
133
 
133
134
 
134
135
  What do these terms mean?
@@ -1,20 +1,20 @@
1
- sequenzo/__init__.py,sha256=OQ0-cfOGB-cHDWM18fMNk4OXHInmGawk29dOEIQVcGM,5743
2
- sequenzo/define_sequence_data.py,sha256=cDBn74UTIxpo6658ZhrfYVZpJfnlfPafyUOtyPlNzpI,25749
1
+ sequenzo/__init__.py,sha256=TRZc7i5NYjA8IqdaWQV7E0xH9X8iWGo4oF1SLzrynJk,6279
2
+ sequenzo/define_sequence_data.py,sha256=EioGt7wKRtSt_F85icbli7CmmPzFGfRtuEa2jeAiN_I,28211
3
3
  sequenzo/big_data/__init__.py,sha256=iSZnGboYhbvsFf75uL8D8XDucXRxYypmFNN1uX5MxJo,152
4
4
  sequenzo/big_data/clara/__init__.py,sha256=pDR5_TSDisEhPtsA2gXGaXXBNTmWidJC_nnd9QMkz-U,700
5
- sequenzo/big_data/clara/clara.py,sha256=28qy9J48UYp1Dm2P5zy51V4z-Ed7LOCyZy4LCinXJQ8,18818
5
+ sequenzo/big_data/clara/clara.py,sha256=67KaOUrmUxzUJrSe7O3VtW4URIhYZUHe3_QlokQTGds,18824
6
6
  sequenzo/big_data/clara/visualization.py,sha256=EpSmtAxRHVqcXlcXvSGiUuBjEETR7zK_gnLZgjlbXB8,3211
7
7
  sequenzo/big_data/clara/utils/__init__.py,sha256=2_o1tz8HFZVKFy8w8oJWdWlVKtwGjGY3z4PQylHKjt0,726
8
8
  sequenzo/big_data/clara/utils/aggregatecases.py,sha256=ul97pbnRlwxbFbX_0M4j-Bkyxkp7zMAKatSo4eanO24,2899
9
9
  sequenzo/big_data/clara/utils/davies_bouldin.py,sha256=4Y6VFjqopG3CaftQ8tDxQPjxxupJ6Hgv-yTXwCvgN7w,3037
10
- sequenzo/big_data/clara/utils/get_weighted_diss.c,sha256=U9OkbU5M9RS1zrPnYtc2UYnZPv0XWqFQdZYohMQBWNk,466603
11
- sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so,sha256=mYvCcfYm0SaxkIrUVmYCT9Bml_NHlUJZENnjtsO2Yas,104280
10
+ sequenzo/big_data/clara/utils/get_weighted_diss.c,sha256=xKcmRuFHEVlppw71SsyzahwKO87Iu1Cq-AiioswujYI,466603
11
+ sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so,sha256=aYyHmzFZ0u6tpGPjw4QFNqHASqiTSfPcV5687hypdtM,104280
12
12
  sequenzo/big_data/clara/utils/get_weighted_diss.pyx,sha256=UYR-u8MDQEuWID3inKhSpBsuxu7qTFmEwLrjNPBMmUw,430
13
13
  sequenzo/big_data/clara/utils/wfcmdd.py,sha256=-1H6CbTteTW-CeuQ_ehVDhnKH3ozcCkUobxoCSRIpYg,7074
14
14
  sequenzo/clustering/KMedoids.py,sha256=8EcBIeW4071b6hBa2p4p3ivanMwqUGIv97s8n0lScoQ,6181
15
15
  sequenzo/clustering/__init__.py,sha256=duEY0Hq0-7Kc_lv0uFDK3D8IEXby-7Z0Rjff0EgO0KM,875
16
16
  sequenzo/clustering/clustering_c_code.cpython-39-darwin.so,sha256=Fj5RvS-gmqEooFTeW6wUe4SEhMPyFmr0S0-Pajl1hGk,362760
17
- sequenzo/clustering/hierarchical_clustering.py,sha256=ZmijK9xZRR6z1kwItcRLqo6WQ1Ryl0NrYeeuknVBfS0,47646
17
+ sequenzo/clustering/hierarchical_clustering.py,sha256=ZFx4jAN_aUUAJBrpAEKQov7ZL1uLaZpnpWWGSs7kf0Y,56496
18
18
  sequenzo/clustering/src/KMedoid.cpp,sha256=Bb4LaRes004T9vyCmUknRS0NUaNr4ZoEpWvtkYGq-jw,9299
19
19
  sequenzo/clustering/src/PAM.cpp,sha256=UFXdTy1wMWheYa-fUoi8ASQPmn0Ew-AO7fqVQVxn_E8,8357
20
20
  sequenzo/clustering/src/PAMonce.cpp,sha256=C9HqGBRenmF2tnQofALjjU1As02dTw2oqEnuvdhoJIk,7943
@@ -46,16 +46,17 @@ sequenzo/datasets/polyadic_samplep1.csv,sha256=-2HvKSmevfqe1rWFVJlbnjousEgJRU_PH
46
46
  sequenzo/datasets/polyadic_seqc1.csv,sha256=ydZ-U8NTszR4lNBN4hhsH_dHfq0w5VZSMM7t9C5Uado,7028
47
47
  sequenzo/datasets/polyadic_seqp1.csv,sha256=sydXCR0JBKJlbMxJyGa46cic9XQstUpYFOtHaLmkp_0,7681
48
48
  sequenzo/dissimilarity_measures/__init__.py,sha256=qkWAQ1sBpS2aayO-FSA8Zha7rQ_vjs0_KIHEB60bVg4,958
49
- sequenzo/dissimilarity_measures/c_code.cpython-39-darwin.so,sha256=4X3Q-T8CbSZECQnqCbtX4-tDEv2hC4VnomCdwr7Ldkw,345304
49
+ sequenzo/dissimilarity_measures/c_code.cpython-39-darwin.so,sha256=s6h-gzYX6kK55Hf5KXr-39QXd-QyEEvwxf_Z6YLJpoY,345992
50
50
  sequenzo/dissimilarity_measures/get_distance_matrix.py,sha256=bRlmBHkVAo48hAm9kuFarXH1p-eEXORgG-nOi96CH14,30017
51
- sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py,sha256=NcwKUY3l7zLMR4rqaYUuCjCJHXR3fv3HG-NBAdz6Cb4,9529
51
+ sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py,sha256=A2ohhpJw-dznmjfsjctVnO5BOzajRBm3Ffj-oPYEvJ4,9551
52
52
  sequenzo/dissimilarity_measures/setup.py,sha256=OLo8Zw65euUVytr-SjjkOrgIHgHe98DdWCUynsTDPXQ,758
53
- sequenzo/dissimilarity_measures/src/DHDdistance.cpp,sha256=YYZMnnOKHricMP0B2aDPCy5vVdjhq6vBty5vLSG1kWA,5471
54
- sequenzo/dissimilarity_measures/src/LCPdistance.cpp,sha256=W2g9m6krNoEyhG-SkL8nok4Dif8Pbc6RunJyyHIEc04,3988
55
- sequenzo/dissimilarity_measures/src/OMdistance.cpp,sha256=rkZoDn-1WP0KSB-gfPu5aZ71w9erJVCxDlBACTwOJxw,9823
56
- sequenzo/dissimilarity_measures/src/OMspellDistance.cpp,sha256=eO0wjWa_LvrTEYo42OY2p_nuTFx_BbL6xv2jZwQ471E,8248
53
+ sequenzo/dissimilarity_measures/src/DHDdistance.cpp,sha256=RbWbSaELxlJiw5ST_JaD-wPx_sD7PGV2VdK4qEhOcxE,4714
54
+ sequenzo/dissimilarity_measures/src/LCPdistance.cpp,sha256=VCqRm_mbI2IOm6KiO7SACHDOpZXBTkDdyr1Fo39zJVE,3231
55
+ sequenzo/dissimilarity_measures/src/OMdistance.cpp,sha256=0HxjF4VFXkCtrV2zV7Kb_URVMWrjgt_W-4ugf1O7cDo,8726
56
+ sequenzo/dissimilarity_measures/src/OMspellDistance.cpp,sha256=EbtrWCTNK5mq5hfTJUwcgD4aUm3VbVCjzIA1J_3wNP0,9877
57
57
  sequenzo/dissimilarity_measures/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
58
58
  sequenzo/dissimilarity_measures/src/dist2matrix.cpp,sha256=spUINWdfJyXR3uWaQ66tLPifrZT0VPfylX5SkKdQ3RQ,1759
59
+ sequenzo/dissimilarity_measures/src/dp_utils.h,sha256=mghKkQlXhl3F4dXuO-4INGBkWiYfyxBawVv-PtBCkZw,4466
59
60
  sequenzo/dissimilarity_measures/src/module.cpp,sha256=A8SheP33EUcBATXzVcb1W_bqevxYOFoj0yJxdVDLT7M,1729
60
61
  sequenzo/dissimilarity_measures/src/setup.py,sha256=HTMiDG0P6sCLdAQBgyp8Jd5iNvQimzvNoTHE4QP0XVs,579
61
62
  sequenzo/dissimilarity_measures/src/utils.h,sha256=Hw_VLkhFvoXLFoJ9FsdFMuflnI5Zm6-6gAwspnzA5TI,803
@@ -389,59 +390,61 @@ sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h
389
390
  sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h,sha256=rsHZiQKOqWBd-ptCJyOP2Ju5uDc9Vm7V8SoUJQcSUR8,16505
390
391
  sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h,sha256=5K91T9EDnVCqWxNogT4GN6g3ieIx9uoJ3_4Y-UkBeF0,4312
391
392
  sequenzo/dissimilarity_measures/src/xsimd/.github/cmake-test/main.cpp,sha256=2CGojY-vyRREHQGI6-Wytz1Yq9dk5bLVvlz_FM10TXY,57
392
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp,sha256=pq1cZpXyhC15orjwj22KgnSHCX6uFRFpbaQOCMaO7SQ,2616
393
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp,sha256=GphfuEIWQsJD9LDCOP--XlfV1Dac-6Jsavq3v6yrwNA,88059
394
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp,sha256=NqZ1H-sgeY1NL2_R0qgFbXCQcWF-_7EakjdexTe3PKI,43390
395
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp,sha256=vVo0QdCcrlCjgtoi8RtB3cqmUH0SNzIyPT0_nRuMoPw,29853
393
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp,sha256=LsMwucFe7RvswPkgXNdSuKbSqUvkRXOYLmq3LWBrrH8,2728
394
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp,sha256=G3uE_md-Y7asBipzc25gKAIOV4aCrZbnMMzUbjEpw3g,90424
395
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp,sha256=zQqo2dqAZy2O32juPWtbnAFqkAiUlv5VKHncFpIp6Fc,48668
396
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp,sha256=IeasuDjPImrarVlp6IbesQgjlIgTt3RzKzDLcvOTcEM,25719
396
397
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512cd.hpp,sha256=xBQYj_r0XVrrO5ZeGndBarz5N4kWAYaXWO9kGJmA2sk,979
397
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp,sha256=mJMcNB3NiuD3cc5iD5mLKj_YpUIoLmS1gLeHmtYo3Cc,9366
398
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp,sha256=BXsaqGeY2m0y2tSxowpBGe9wh05GaOM8NaXho6jrGpY,11306
398
399
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512er.hpp,sha256=0Ry5oiqe9up1h5MIU07qvBP6TpZW2sN9UrqPBh0U2QE,933
399
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp,sha256=UB_EE82L8RUpqXeu1OoSuXZZ1X3IKpEUXJGWKINrwdg,113587
400
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp,sha256=R4XzWQvIlkmjYcP_4h0FrpUbNgAthnkf6DADa1qyi-0,126892
400
401
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512ifma.hpp,sha256=HO39AdydUnMCg9NDElzZuml9DDHxJYPrHXMODiRrvFw,939
401
402
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512pf.hpp,sha256=Df3HEkrfatmU5GEQpdxWpZy3oSbxJqqjL3Lo8OEsDBw,933
402
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp,sha256=OZcC_BmK5uOqCRSQLRPoIKLhzKhRQg2VRVvx2sIb-HE,4108
403
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp,sha256=kHaHDq8Dc4No_vZ-dy9r9kxxkKEVs8TCQb3LvRqw0fQ,3176
403
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp,sha256=g5HvZjA7tTs8aq2OJnYN1eppX24evxzpOzaAhW_Laeg,3425
404
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp,sha256=_2LR8AldChNT_1nf7C_1Q4hTYC33pIxO-kbh9aFaUHc,5606
404
405
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512bw.hpp,sha256=GKWN2MD1An0VGTSxLCSVEc2WTNxxRE4FBga_khzlEFA,968
405
406
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512vbmi2.hpp,sha256=Gs2IqCq_ZgJJjWgqVKOA1EKrICB40sUTWitS1z1cZCQ,975
406
407
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avxvnni.hpp,sha256=b9XOSCmcZcNdWNxs0UUdTEMUpYSCt69Y5wC7Nt2F0sw,930
407
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp,sha256=UqTtqe21YMVkmhUS-DijTor-NQp-3e0ZU3954YqtR7M,1153
408
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp,sha256=cpFjOSIN6h6BX5ZWeVWdZWHCYz5upqqbsOZRRZw__3A,2737
409
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp,sha256=jSIS29Xfm34Wd9NlDnrw3HJzY204eTmFOttHtic1VQ8,14092
410
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp,sha256=h_VC-mjPsqLaokmt87dX1oalcIoVPU3KvI2RigwibSc,36204
411
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp,sha256=1mjc_5evkSyJeyl4cjy9a6WbuPlJc1B3aqScAdlPn-Q,3042
408
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp,sha256=X4gfm9-2oz8rY9dacrd2FCPTBaJY1Nb73PjphEjZY_g,1198
409
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp,sha256=1z6BzrXnkWgrxEMirbKYuUMWoWbfeEP-fCux2pEcpLs,5146
410
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp,sha256=ozPvnc8vxUqtNrLXa1K05WRULHlP7ZsWZrPXGEEfxws,14121
411
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp,sha256=gYgWArvPoxf4tXTZ52KKUdq9dP594g5tkBYrP4fq14c,36922
412
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp,sha256=UHZzvx6Uv2mZTzSgMw8dPsw664q5XEi3jX_0jfChOyw,3564
412
413
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx2.hpp,sha256=cU1qT6VBmLW-LUFiLJIKQQow1QsXHPOYs30RRFSXwCQ,1592
413
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp,sha256=roaWDy9e8knDZF1r8UcJl0jO5Crl6sVgC2OwHhmwyn0,3041
414
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp,sha256=pr3MIsqNEGVatJvB4uFwCR6reQLj2zHOW24Vsv6cTwg,2957
414
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp,sha256=UG5bvU7vwqryu6USHeGiwLjda9sNzRPzvXo37lqK7Xo,3816
415
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp,sha256=b8THgymg0NPIjQTcir5i9AvAg-wqsbzPJeYplVIMJm8,3461
415
416
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_i8mm_neon64.hpp,sha256=OChPwZc_MGK-9mTOMyLVszuhDKgihN8NhQaeEZCSASo,901
416
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp,sha256=vwQpCnkASeQ_UJGJQT4z5ROSSIw31I9FaVgKZDP8JEI,2768
417
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp,sha256=W5sHoHjwaQNZip8JpXvr1KG_cBhqbSq-ROFl1B6QGOg,126707
418
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp,sha256=-BHZqOdi_naDZmA6WGS2PYUqERvdKG1PjGc20mIBA-Q,61941
419
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp,sha256=DEl-wMCkt5wWpN4Y1KGgClhqOTzmmmhXn25nsbxr0oo,70518
420
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp,sha256=vRec_I2FFO08TOc9qzX9bVKO5tySgojlIDewIyyxUIg,36502
421
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp,sha256=ouYp7iokhwnlipC_F-LQnGYSWHMnwm2jG7diik0Y1oo,78475
422
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp,sha256=HJa3Z2dGgnNKzWnUpxe17H1jWGFLmasY7wy7gx7ax2A,2102
417
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp,sha256=j3GZ5OK-CSxEkfmr0x7td_Noy4YXGWjumvKGEjQG4T0,2886
418
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp,sha256=BFYGefKVrYsN-t8qM2Bz26l0SDzKOce1RicwX1-zaew,141079
419
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp,sha256=YGe3vT-xZ2lNxhTU02_aadOYnK6coVe4J-2HBzJ-a1k,62146
420
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp,sha256=KKyskeg7Q96G9epwqUxTeXgwfG2OWsg1yq1VlZvrFhA,71057
421
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp,sha256=uXnw00QSIdAKsKupxUGL7P0GVEyZi9vxPtKmPJiH7Ak,38191
422
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp,sha256=wXChvyjuc0GGJ2a44Yv9_05C1nufr71LBULX-vvD_ZM,88290
423
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp,sha256=iIz3YP_trmCipgLrn6F4eLnJLEP6mHpAas4RPQ4DJX0,2447
423
424
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_1.hpp,sha256=OpXAmc-2deMiqa2PBltJ6L2ObDK8HaJPLBsEPNrOFOo,14045
424
425
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_2.hpp,sha256=gK3_yY9vcjyac0LDUFB5-i7jNQraKxC2PwmQtEukD0E,1697
425
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp,sha256=vv9t_UrBwqADio-VgrlRpShs-JOEg_JoUjowMr51uE0,7945
426
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp,sha256=RA86okzM4MzxPXHsCAsWhm8bnY7OI7wJqtlWUH0MnwU,48947
427
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp,sha256=yUtqTqMyf-I6JWs7MBtlsBsRRqOByTcdZUZ5cMEwBlw,72155
428
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp,sha256=XF5DGDsbxGx7VQC6PDBohV_aYRN9fz-nOFNLwDlD4SU,10081
429
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp,sha256=xFL0kBf-V6gLDqXRY_3vzUaAg-B9dcdmklsgC_HjZTA,4007
430
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp,sha256=zdRWq1Tn9iNCDqNg85J7GAwRwu52INcq3xieq1wND9U,15339
431
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp,sha256=Pu5xs-A5ZGZ0k-kcl7uwj2F1TKidWoGahzVbvJtITcQ,8350
432
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp,sha256=x0g_ywqi5l6jWGhpJsKe1GDSi0-6U2F9VKW_CZeRgNw,114906
433
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp,sha256=hLQT4FmSS1dmrLICJzs5LlH_r_EM9sEmIXmhexCm764,40475
426
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp,sha256=PdfDhj7N1AQ077UbPpBP-K30rloTSqy7haOSYjHaoe8,8438
427
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp,sha256=_Qkr110UwsAaEjvO8IKLQcSoEQmh0nVCP_ETcI4kLjw,49170
428
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp,sha256=ClL2V7IJbjf13s2tnGPauIiVgO3Xr5CV1JH31V0s-VY,40985
429
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp,sha256=ROKyylLmspeGbBc-1RPserBSNdtcdeVWTV7y7Cv_Zco,75372
430
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp,sha256=fLlHThTIcJ4uVU1J9Ziw_1w3UEhMUJKRS1BycvOfCUo,12008
431
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp,sha256=mqcXzs6CSdv9SzfOMLx6qJ5myVvXuwa_y34M8QAkd8w,4070
432
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp,sha256=_mD-smC8FQRgWofxuuhtjhsUeFWO1fHj9XUVA6wERF8,15802
433
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp,sha256=RJJy8CsnohK2TlM-B3L_uEuR3aywVjc5_HHnyAQGJTs,8526
434
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp,sha256=7TDTegY1TC02GEMz6tolupM244dHmnjPPpi1uh17jWI,116975
435
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp,sha256=XiO9Gmzk-BrCPJHDkDgFD9XYEgVroCDIHk44NlnJcro,41564
434
436
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_rounding.hpp,sha256=h7MJ6xC3jzjX1Ur9lCutOU8SAZfHRSeFhfDmqoCF8nQ,2772
435
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp,sha256=ey1phD8M9b_Fxp3Y_48yE2m5oT7gabDVIgnS1RqK_KU,45031
436
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp,sha256=wR6k9p-mvu9z7fF5nZYNwGrxrdWa8qUXrOQysrtTmlQ,8192
437
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp,sha256=zD1WSYBj2ujcpbXxTkJP8feZdnIIQzo8hfkuR_BCmzM,10517
438
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp,sha256=L10EvW4rHG2OtqVcNNQO6vAx7Xzzzd3vV4YEDPlutAw,9163
439
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp,sha256=VlwbeY8M3F6kK5tN5l3_LZQJ0z2rIEnXmz1-8408zis,1028
437
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp,sha256=mygsN-TfId4EmTLEdUjqE-PjtEiHN5nmS8qBGO6sHs4,9876
438
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp,sha256=vproKQRWczMTzEqu58exB2ZBnynrnV5IhSs4qn15XhU,45215
439
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp,sha256=1tYXZvcPoIXq2JQn9zCLssZJxw78ujtCJzIgP_3aLFM,8357
440
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp,sha256=mLDtLMxrLg_VvE2VLzXgdbZaubB-i8zigxR2xwgYy2Y,10819
441
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp,sha256=wRwLPkFnMMbT2jNkN3HBzQF6Qem7cqG-btBGsN2eQbc,9243
442
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp,sha256=G4txGeFYlaJ6eJV7-ZuyfDDGwNK_xixG-yF3QYofuEE,1127
440
443
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/math/xsimd_rem_pio2.hpp,sha256=8HLQvmN5LyevGa5_oHmvh1DpIfcx5vhOyNMEemyusac,25630
441
444
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_aligned_allocator.hpp,sha256=FjurT6RViugW6JYw-dTZ4BGQeeDfoj15fjl8EdG_q44,11463
442
445
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_alignment.hpp,sha256=daZBsGCBL-dy_z6sNIaJnFMolvYyOn9XNexjKq_vNtQ,2610
443
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp,sha256=Xe3Nr4YJ9tBFvRswGszEU79pPvRDJB1F9S1WIt-epa0,1943
444
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp,sha256=w48GY_8uwmEqL3KkF9Dhj9E320zB-tb9IljDAtGehlQ,91528
446
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp,sha256=dFsghzwm8dkyfGOlAZalxpsaZ48F8OkJ4-WBQ04oQIM,1978
447
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp,sha256=BgUmz6rVac01w0MThpdEzAlX7WaLKCJph88hYDSyaVU,94022
445
448
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx2_register.hpp,sha256=Bv7gezr-leUFuxJwqNw4HN28LuvJ1MjRnfw_IaL5hsA,1441
446
449
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512bw_register.hpp,sha256=I5SuqGKd_eNjPz13FMvPPImFscpX_LKSSYiFZ_QBB7I,1658
447
450
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512cd_register.hpp,sha256=rzJzLBBiU2oykdVnL98u1lM_WVJvkDQNuGRpWos0oUo,1653
@@ -456,7 +459,7 @@ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_a
456
459
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_avx512vbmi2_register.hpp,sha256=ip1yV_HIBIQq0oDMYpiJLYC2D--4pvL0jN6cZAaR5xE,1871
457
460
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx_register.hpp,sha256=PALy0fEfHn5HzQXrtK06KsnBcbWTjbi3Mjwwfe4jAP4,2403
458
461
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avxvnni_register.hpp,sha256=y7c7Odk5jYAvPK7Gw_K719kgfS3WiM4BS9ap-2nhx0I,1473
459
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp,sha256=AXt0NsbLvK70coeK3kbZSeDVDdXL3t3zg2NtJxVwDYs,54278
462
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp,sha256=E3nUHaiHNOzQtAI32u144bE7AQXJRW6ODiFj0rvV-QQ,55252
460
463
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch_constant.hpp,sha256=EHJK2Wg3mR2qOKrqKXJvLSiWrWmU48zxhaNF3_SrsZ0,11442
461
464
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_common_arch.hpp,sha256=mQ1R_I4sR2tOo6MndNkpK171somx0OwEMl0wfszSdbw,1837
462
465
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_emulated_register.hpp,sha256=JHsYwTCOXgxhbKeI4lrdN9Zltzlzgl6-Uw7lGoHCfoM,2958
@@ -468,32 +471,33 @@ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_i8mm_neon64_
468
471
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon64_register.hpp,sha256=dWUugWN9Gxr36Q1msPnfHP0u6EPCqc-VuLKorU_x028,1847
469
472
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon_register.hpp,sha256=c6ncY5lAnYamrQI7ezH9Mkm0QfM-3bQoUE1-wKOZmpk,5615
470
473
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_register.hpp,sha256=0nY6CpGYVZSttQiRxXbjasCX3e8gPKDYkGvmxfPBIlQ,4204
471
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp,sha256=sQ3Qml_QY8tRN2oseQaNF--8z0uZ5V9oCY23if_ztZ8,23353
474
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp,sha256=uBJayrwCSnV1_uBR0wAJc5wNNNxWw__axtOdMbNxMCw,24167
472
475
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse2_register.hpp,sha256=6-HpqxXs-76kNQHXGwEQmT8UUidk7DQiAvr5g9d_TyM,2395
473
476
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse3_register.hpp,sha256=Dp8_723CrlJYil5Z5PuRzsQMhKH5uH8kA8VdtfputyE,1498
474
477
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_1_register.hpp,sha256=m_g1DYCdhUlCrXJ2CTusdSIag-BAlnVjqlw8Iyou7lA,1522
475
478
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_2_register.hpp,sha256=kT8B8i7d43i12F7mHhEg_MnJQY-gkQY85c9tPuoJaHA,1527
476
479
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_ssse3_register.hpp,sha256=RuJmgxeX0_7MI_6scYdvtIfkbrfy3ora1BPojhuUqSA,1507
477
480
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sve_register.hpp,sha256=nhyBKiLBSddra8Al0y9jU-tjnkyelnxvB6OhAhk2rAw,6734
478
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp,sha256=DB9n9fi9BnDgiwccZAW_M8S8AqAzVogownAnvEzWUXo,9847
481
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp,sha256=mSacRtj8YS_VoAbFdPsaYr4alCrevMfIm4uiBYIefws,9979
479
482
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_utils.hpp,sha256=waxMGI8c9_7hxfoZka-AiJpr4j8zQmVKXPhjx_L9T8U,15882
483
+ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp,sha256=bylgPaSUsBwou9cNz1yE2XCTlgz3cGBCs3nYcO0i16g,3450
480
484
  sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_wasm_register.hpp,sha256=Am-0VbiA-S1zX2YXxKPgHc4dxWDDHS6_bL2ox5x7aMA,2437
481
485
  sequenzo/dissimilarity_measures/utils/__init__.py,sha256=aZMQJGgJq4GsL1x-pQPLmL7KrJ78cHMH46GVmVE8pJ0,407
482
486
  sequenzo/dissimilarity_measures/utils/get_LCP_length_for_2_seq.py,sha256=bJjbEQcjENSAdLv2IMRUWJC4avldwCfHrtSEnlDEACY,1470
483
- sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c,sha256=PLwjBD980gR2UTiFN3gfIDEgQvYriW3xsJ9YNfKA04I,578883
484
- sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so,sha256=WHcJC6kREuDB-M0wTRXewXLwzSvTNDze-7Fn2_v8xZ0,145144
487
+ sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c,sha256=PzcX3i6RJv5XyOHUA3K1b9kutATYj_r7UuaGKTqqPQM,578883
488
+ sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so,sha256=YMOUjMDtIlAq9YphSK_6A2SSONSZuhkGUw21MIOwFL0,145144
485
489
  sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.pyx,sha256=pwImh8jgNcbLLb0y1uhYAYNwXP93JPIh-DQ5frVjZUE,3216
486
- sequenzo/dissimilarity_measures/utils/seqconc.c,sha256=PUU_DmpJlqWCM68mjG4yKw2A7MSoksnFA3pPVzDxBn0,488207
487
- sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so,sha256=MewZV3R9blcA2hyXvLvuPF0IQUo7grYuTu14KuOwkbI,123440
490
+ sequenzo/dissimilarity_measures/utils/seqconc.c,sha256=FiNsssiU_sAXJP_qHwy7CZYtSXzNqb6aZn1XOZ2nyAQ,488207
491
+ sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so,sha256=Ti8ROt1od4aNCBq4heuicwV6ctAtpUjP8gypzVUY280,123440
488
492
  sequenzo/dissimilarity_measures/utils/seqconc.pyx,sha256=7X8jv1kXq9o2pCnBNu5X_NZ0aMpWtxhhqnMsUJzqANo,770
489
- sequenzo/dissimilarity_measures/utils/seqdss.c,sha256=ZMmQEtp48UIHe37tprJEMHDFaxAZ91dT9JXxnzaKu34,599803
490
- sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so,sha256=trdG6C7ir--cEqq7rmcCASWmuSrurHDERbm-OLK0eEw,153192
493
+ sequenzo/dissimilarity_measures/utils/seqdss.c,sha256=MyMJNB_jtklJlUKUiYPVna8ngY1fiWg4tBEWlkPhl4Y,599803
494
+ sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so,sha256=ngtFvz01SskGCDynesoovEg-E1L9pa8Sr9txcVo6hlA,153192
491
495
  sequenzo/dissimilarity_measures/utils/seqdss.pyx,sha256=THl9-bw63NqgXAv9_OhlB6DF92A0moszCoA32XyyA0Q,1232
492
- sequenzo/dissimilarity_measures/utils/seqdur.c,sha256=RLw6GKaRcGRqLf3ETM4YpDtlVEa1GX6OlZ_wkwkjRl4,524109
493
- sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so,sha256=bOir94OgZ846M0WaOYR1QPUKiL2M6MHvuHKZMqEc8bg,126136
496
+ sequenzo/dissimilarity_measures/utils/seqdur.c,sha256=Jk9r0WeJIcXUy1lt89QVxX2tXwEsuoE8GfaGCRy9DOE,524109
497
+ sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so,sha256=SGvyGzMJVrsQiKtZ2_kdJFbEmMXcPJVMmYBEenzifUI,126136
494
498
  sequenzo/dissimilarity_measures/utils/seqdur.pyx,sha256=RyBqjdO8SdiCYg7cScdT6uEWPjYX_e7-KUrlQkRkBC0,1288
495
- sequenzo/dissimilarity_measures/utils/seqlength.c,sha256=vsCrvm1pOjgKIJorAKFwYjejfsrKPx_AeRgPpibF2-o,476176
496
- sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so,sha256=y8z6KFi1K-GRg6m3MZU89xA2tylFJo7PRM8UJ8FwY28,121904
499
+ sequenzo/dissimilarity_measures/utils/seqlength.c,sha256=icw9znQ5OSsxP-70VEETrKQyjrqKR7aOA94DTRVTWWA,476176
500
+ sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so,sha256=RJkt5mRt6Be2KNUJIVpx3Uc78wwL02iGBMcZg3QhfpM,121904
497
501
  sequenzo/dissimilarity_measures/utils/seqlength.pyx,sha256=y-792z6X1L4zychHJj5IQVHOfM5JibQ_ITFnkYHJO3c,564
498
502
  sequenzo/multidomain/__init__.py,sha256=bVnbkJXuXj8y5lHreRBQnL1JFcrmlsz2TSt-qFfmWm8,734
499
503
  sequenzo/multidomain/association_between_domains.py,sha256=V4I_ILAAwf3cfz2i0HdLF8otAqPtF2LfjcCKo1IkfHA,10855
@@ -506,15 +510,15 @@ sequenzo/prefix_tree/__init__.py,sha256=YxMzr5UwM22DmpMDMAmKYI-vjhikDI8Gft_cJ9h1
506
510
  sequenzo/prefix_tree/individual_level_indicators.py,sha256=9JPINoPU50UGh9-D2QOAr7GQsxAkZ6qDmhKQtVwvZsU,52788
507
511
  sequenzo/prefix_tree/system_level_indicators.py,sha256=tGnzRRqwzJbGv-vjOMAzdh6arN6QJkdsybe0Yif57ug,17507
508
512
  sequenzo/prefix_tree/utils.py,sha256=7DETf9i_OclRnWel680qD4wO1b8SffJVKq2Kx0zkTaQ,1489
509
- sequenzo/sequence_characteristics/__init__.py,sha256=Ynmua4dhyjbvqqQMxomeO5vYu86SeWbc4DRwc7p4XW8,1143
510
- sequenzo/sequence_characteristics/complexity_index.py,sha256=LjP78MTrfpj0mR23nPPbIbb7UgxPSSKeYujXfx2vJ08,3950
511
- sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py,sha256=sHyLLPe7oYCFcnK6Kn_62UT_jDWYuqjPz7VHge4FiD4,6079
512
- sequenzo/sequence_characteristics/plot_characteristics.py,sha256=qbJ-57bwAINtVSKo8oERq-i-Ygu7JJBL_HZQ35FgKyc,24552
513
- sequenzo/sequence_characteristics/simple_characteristics.py,sha256=qxyWez_UNu5RIhn_XjjS2d21mvKwNnwG0sKXRZwhL2s,11651
514
- sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py,sha256=R28BBv-swn73RpfkCQCFQ-OfAuMIHwFQb-bX9Tao_IY,1170
515
- sequenzo/sequence_characteristics/turbulence.py,sha256=fyjwXjFppTgHqxmYjZcnDU2atW3h1iUTZ1xj4xOvto8,7657
516
- sequenzo/sequence_characteristics/variance_of_spell_durations.py,sha256=tIeTVhyoka6yvAB2MX_TNxWSJoC0fku3Aj6cjI07X9k,2767
517
- sequenzo/sequence_characteristics/within_sequence_entropy.py,sha256=oDRxLWy6WCm8nB1JTjgskmFcQej8dt4URquQya8dCgg,4129
513
+ sequenzo/sequence_characteristics/__init__.py,sha256=dPdBD7K-dhsuLoVYhDDVUj9_DYBLPxSUh9GPJ8y2P4k,1224
514
+ sequenzo/sequence_characteristics/complexity_index.py,sha256=KZ9TpaHtSIkbaqiOqEGRoFDYenrcuIzv34Du_RbL-6A,1762
515
+ sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py,sha256=ipyOVZ_o9xC-VYMLIPU7QcMlpJzyzAYG3qKdlBV5HS0,9302
516
+ sequenzo/sequence_characteristics/plot_characteristics.py,sha256=LYOCNoS5BnFVbY1r-HEJSrQyACOTkxHuxguS4wVLI9o,25612
517
+ sequenzo/sequence_characteristics/simple_characteristics.py,sha256=3dj8R_tDEtC7Wk58PzX4q0nXW9orW4f1hO1Lt2uXeCc,11715
518
+ sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py,sha256=S5vzqUrJF_tadIlgd-S-jHfwWo3agFzc1ptAB6CXfPE,1313
519
+ sequenzo/sequence_characteristics/turbulence.py,sha256=bixo1wcGNKYhsNmppORwv_fjy7xQxhGHo-OebG_TnYE,6217
520
+ sequenzo/sequence_characteristics/variance_of_spell_durations.py,sha256=hx00o_ypk3VDUU1VHOI8eN_Fy12CKlOd02NeF_fKl04,3299
521
+ sequenzo/sequence_characteristics/within_sequence_entropy.py,sha256=K9uhkTcy7SkW5By1lNX1DS6mREGj49ElgdPs1erJ-bI,1500
518
522
  sequenzo/suffix_tree/__init__.py,sha256=rJTkjwxg2Ub_jGxugYmEYWatTxtKu_BTWNDZbJ-KgsI,1148
519
523
  sequenzo/suffix_tree/individual_level_indicators.py,sha256=W36tEQEEmzu67gf5BLmau8Ja6-1BEBG5ArzZqbKc-PM,67211
520
524
  sequenzo/suffix_tree/system_level_indicators.py,sha256=N4DrjM9fBHFqqcjDN1TAkwbkoDnlZSK2F8F2ERCizIQ,16962
@@ -524,14 +528,17 @@ sequenzo/visualization/plot_mean_time.py,sha256=5K1iBNCYTs4JrPlxaiZ1WF-0p-paDHPf
524
528
  sequenzo/visualization/plot_modal_state.py,sha256=wTAhdlu4px-dJdxM9LSSgDQioW46r-N08pt2hhSeU9c,9919
525
529
  sequenzo/visualization/plot_most_frequent_sequences.py,sha256=UbkCjPUCKRAVY06Hm8HVSBI9_8iKFxkBdWwoMNmy0BE,6317
526
530
  sequenzo/visualization/plot_relative_frequency.py,sha256=tUNyIxc8C0SPjRJJYormBbTxWjvbox-pjaH9suzjRwU,16423
527
- sequenzo/visualization/plot_sequence_index.py,sha256=TiAeuTiQEDCkuv4HUXi8UUelEGULfOcvH93mN3J_soY,40019
531
+ sequenzo/visualization/plot_sequence_index.py,sha256=qc4h6JzQrDeiBsGvK6Cdn3HwDZFLfNzPqyFOon1ZQ6Q,41079
528
532
  sequenzo/visualization/plot_single_medoid.py,sha256=yqKzUANkmA-f-oreDZuAVAzMrALxn_uGjg815HAjKag,5971
529
- sequenzo/visualization/plot_state_distribution.py,sha256=vMNryhsvnWFjaYwk7UdJM9N7uHon5sFigwqjnXRuwVU,24926
533
+ sequenzo/visualization/plot_state_distribution.py,sha256=8uH533kwyqxIeGPM4eFJBWJ2eRgqEFPH3EiPJECzvS8,25978
530
534
  sequenzo/visualization/plot_transition_matrix.py,sha256=0DDOBZ2xu7lLb4Pz_18FvIaylkI8_7DttdXy_In6KTk,6895
531
535
  sequenzo/visualization/utils/__init__.py,sha256=brrYzeIQm_cEM_TgA8_eRdckzN9WP1pj9g-f1qBzRLY,734
532
536
  sequenzo/visualization/utils/utils.py,sha256=9Z1L3PVL-Z41fvCW4tLJ5DaUVHO6C6PAJYlT2Q1jY4k,10249
533
- sequenzo-0.1.17.dist-info/licenses/LICENSE,sha256=URRMyLHVeGF2kyDLC1xbRKBBIjDHJyWqF4nWpzfBX10,1497
534
- sequenzo-0.1.17.dist-info/METADATA,sha256=aNjc73xss06u_8Ni7NyyxISrhXLjW6VIU4t5n-pWqYY,12599
535
- sequenzo-0.1.17.dist-info/WHEEL,sha256=Q9x5RaJ3mFaLYQ0AssqccH-ZQbedr2DD19gIJkZDXGM,112
536
- sequenzo-0.1.17.dist-info/top_level.txt,sha256=yM8eczbPzqB1bRHMYLptvjjQ3p5tYhY6VjgWHUIi9vw,9
537
- sequenzo-0.1.17.dist-info/RECORD,,
537
+ sequenzo/with_event_history_analysis/__init__.py,sha256=B2EZhtJ7NEzO8piDwfSbh0l87fQ0ZuesPO5GNJEXKPo,730
538
+ sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py,sha256=wtsKnq-82bJhRH78cy49Nzo3yGJKoFD4RckoZ7D-SS8,37301
539
+ sequenzo/with_event_history_analysis/sequence_history_analysis.py,sha256=vv5y2u9cpzhmNJX_fSYgLmFOncPvB7DVhWujljII1vA,10902
540
+ sequenzo-0.1.18.dist-info/licenses/LICENSE,sha256=URRMyLHVeGF2kyDLC1xbRKBBIjDHJyWqF4nWpzfBX10,1497
541
+ sequenzo-0.1.18.dist-info/METADATA,sha256=agISMeP5a8Y5jRZ2BXm5bdDCqib-0ag1QTlZ4zo8bKI,12626
542
+ sequenzo-0.1.18.dist-info/WHEEL,sha256=Q9x5RaJ3mFaLYQ0AssqccH-ZQbedr2DD19gIJkZDXGM,112
543
+ sequenzo-0.1.18.dist-info/top_level.txt,sha256=yM8eczbPzqB1bRHMYLptvjjQ3p5tYhY6VjgWHUIi9vw,9
544
+ sequenzo-0.1.18.dist-info/RECORD,,