sequenzo 0.1.17__cp39-cp39-macosx_10_9_universal2.whl → 0.1.18__cp39-cp39-macosx_10_9_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sequenzo might be problematic. Click here for more details.
- sequenzo/__init__.py +25 -1
- sequenzo/big_data/clara/clara.py +1 -1
- sequenzo/big_data/clara/utils/get_weighted_diss.c +157 -157
- sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so +0 -0
- sequenzo/clustering/hierarchical_clustering.py +202 -8
- sequenzo/define_sequence_data.py +34 -2
- sequenzo/dissimilarity_measures/c_code.cpython-39-darwin.so +0 -0
- sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
- sequenzo/dissimilarity_measures/src/DHDdistance.cpp +13 -37
- sequenzo/dissimilarity_measures/src/LCPdistance.cpp +13 -37
- sequenzo/dissimilarity_measures/src/OMdistance.cpp +12 -47
- sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +103 -67
- sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +41 -16
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +4 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +7 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +10 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +127 -43
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +30 -2
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +14 -5
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +111 -54
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +131 -9
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +11 -113
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +39 -7
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +336 -30
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +9 -37
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +58 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +1 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +35 -2
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +3 -1
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +17 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +13 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +18 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +13 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +8 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +363 -34
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +7 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +13 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +41 -4
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +252 -16
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +9 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +12 -1
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +7 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +78 -1
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +3 -1
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +13 -2
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +5 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +5 -1
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +2 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +64 -1
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +36 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +40 -31
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +8 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +6 -0
- sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +157 -157
- sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqconc.c +157 -157
- sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqdss.c +157 -157
- sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqdur.c +157 -157
- sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqlength.c +157 -157
- sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so +0 -0
- sequenzo/sequence_characteristics/__init__.py +4 -0
- sequenzo/sequence_characteristics/complexity_index.py +17 -57
- sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +177 -111
- sequenzo/sequence_characteristics/plot_characteristics.py +30 -11
- sequenzo/sequence_characteristics/simple_characteristics.py +1 -0
- sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +9 -3
- sequenzo/sequence_characteristics/turbulence.py +47 -67
- sequenzo/sequence_characteristics/variance_of_spell_durations.py +19 -9
- sequenzo/sequence_characteristics/within_sequence_entropy.py +5 -58
- sequenzo/visualization/plot_sequence_index.py +58 -35
- sequenzo/visualization/plot_state_distribution.py +57 -36
- sequenzo/with_event_history_analysis/__init__.py +35 -0
- sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
- sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
- {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/METADATA +7 -6
- {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/RECORD +86 -79
- {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/WHEEL +0 -0
- {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/licenses/LICENSE +0 -0
- {sequenzo-0.1.17.dist-info → sequenzo-0.1.18.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,283 @@
|
|
|
1
|
+
"""
|
|
2
|
+
@Author : Yuqi Liang 梁彧祺
|
|
3
|
+
@File : sequence_history_analysis.py
|
|
4
|
+
@Time : 30/09/2025 21:08
|
|
5
|
+
@Desc : Sequence History Analysis - Convert person-level sequence data to person-period format
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import pandas as pd
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def person_level_to_person_period(data, id_col="id", period_col="time", event_col="event"):
|
|
13
|
+
"""
|
|
14
|
+
Convert person-level data to person-period format.
|
|
15
|
+
|
|
16
|
+
This function expands each person's single row into multiple rows,
|
|
17
|
+
one for each time period they are observed.
|
|
18
|
+
|
|
19
|
+
Parameters
|
|
20
|
+
----------
|
|
21
|
+
data : pandas.DataFrame
|
|
22
|
+
Input data with one row per person
|
|
23
|
+
id_col : str, optional
|
|
24
|
+
Name of the ID column (default: "id")
|
|
25
|
+
period_col : str, optional
|
|
26
|
+
Name of the time period column (default: "time")
|
|
27
|
+
event_col : str, optional
|
|
28
|
+
Name of the event indicator column (default: "event")
|
|
29
|
+
|
|
30
|
+
Returns
|
|
31
|
+
-------
|
|
32
|
+
pandas.DataFrame
|
|
33
|
+
Expanded data with one row per person-period
|
|
34
|
+
|
|
35
|
+
Examples
|
|
36
|
+
--------
|
|
37
|
+
>>> data = pd.DataFrame({'id': [1, 2], 'time': [3, 2], 'event': [True, False]})
|
|
38
|
+
>>> person_level_to_person_period(data)
|
|
39
|
+
id time event
|
|
40
|
+
0 1 1 False
|
|
41
|
+
1 1 2 False
|
|
42
|
+
2 1 3 True
|
|
43
|
+
3 2 1 False
|
|
44
|
+
4 2 2 False
|
|
45
|
+
"""
|
|
46
|
+
# Check for missing values in critical columns
|
|
47
|
+
if data[[id_col, period_col, event_col]].isna().any().any():
|
|
48
|
+
raise ValueError("Cannot handle missing data in the time or event variables")
|
|
49
|
+
|
|
50
|
+
# Create an index that repeats each row based on the time value
|
|
51
|
+
# For example, if time=3, that row will be repeated 3 times
|
|
52
|
+
index = np.repeat(np.arange(len(data)), data[period_col].values)
|
|
53
|
+
|
|
54
|
+
# Find the cumulative sum to identify which rows should have the event
|
|
55
|
+
idmax = np.cumsum(data[period_col].values) - 1
|
|
56
|
+
|
|
57
|
+
# Expand the data by repeating rows
|
|
58
|
+
dat = data.iloc[index].copy()
|
|
59
|
+
dat.reset_index(drop=True, inplace=True)
|
|
60
|
+
|
|
61
|
+
# Create sequential time periods for each ID (1, 2, 3, ...)
|
|
62
|
+
dat[period_col] = dat.groupby(id_col).cumcount() + 1
|
|
63
|
+
|
|
64
|
+
# Set all events to False initially
|
|
65
|
+
dat[event_col] = False
|
|
66
|
+
|
|
67
|
+
# Set events to True only at the final period for each person
|
|
68
|
+
# Convert to bool to avoid dtype incompatibility warning
|
|
69
|
+
dat.loc[idmax, event_col] = data[event_col].values.astype(bool)
|
|
70
|
+
|
|
71
|
+
return dat
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def _extract_sequence_dataframe(seqdata):
|
|
75
|
+
"""
|
|
76
|
+
Extract sequence DataFrame from various input types.
|
|
77
|
+
|
|
78
|
+
Parameters
|
|
79
|
+
----------
|
|
80
|
+
seqdata : SequenceData, pandas.DataFrame, or numpy.ndarray
|
|
81
|
+
Input sequence data
|
|
82
|
+
|
|
83
|
+
Returns
|
|
84
|
+
-------
|
|
85
|
+
pandas.DataFrame
|
|
86
|
+
Sequence data as a DataFrame
|
|
87
|
+
"""
|
|
88
|
+
# Check if input is a SequenceData object
|
|
89
|
+
if hasattr(seqdata, 'seqdata'):
|
|
90
|
+
# This is a SequenceData object
|
|
91
|
+
return seqdata.seqdata.copy()
|
|
92
|
+
elif isinstance(seqdata, pd.DataFrame):
|
|
93
|
+
return seqdata.copy()
|
|
94
|
+
else:
|
|
95
|
+
# Assume it's array-like
|
|
96
|
+
return pd.DataFrame(seqdata)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def seqsha(seqdata, time, event, include_present=False, align_end=False, covar=None):
|
|
100
|
+
"""
|
|
101
|
+
Sequence History Analysis: Create person-period format with sequence history.
|
|
102
|
+
|
|
103
|
+
This function converts sequence data into a person-period format where each
|
|
104
|
+
row represents a time point for a person, with columns showing their sequence
|
|
105
|
+
history up to that point.
|
|
106
|
+
|
|
107
|
+
Parameters
|
|
108
|
+
----------
|
|
109
|
+
seqdata : SequenceData, pandas.DataFrame, or numpy.ndarray
|
|
110
|
+
Sequence data where each row is a person and each column is a time point.
|
|
111
|
+
Can be a SequenceData object, DataFrame, or array.
|
|
112
|
+
time : array-like
|
|
113
|
+
Duration or time until event for each person. Length should equal the
|
|
114
|
+
number of sequences. Each value indicates how many time periods that
|
|
115
|
+
person is observed. For example, if all persons are observed for the
|
|
116
|
+
full sequence length, use: np.full(n_persons, sequence_length)
|
|
117
|
+
event : array-like
|
|
118
|
+
Event indicator for each person (True/False or 1/0). Length should
|
|
119
|
+
equal the number of sequences.
|
|
120
|
+
include_present : bool, optional
|
|
121
|
+
If True, include the current time point in the history (default: False)
|
|
122
|
+
If False, only include past time points (recommended for most analyses)
|
|
123
|
+
align_end : bool, optional
|
|
124
|
+
If True, align sequences from the end (right-aligned) (default: False)
|
|
125
|
+
If False, align sequences from the start (left-aligned)
|
|
126
|
+
covar : pandas.DataFrame or numpy.ndarray, optional
|
|
127
|
+
Additional covariates to merge with the output (default: None)
|
|
128
|
+
Should have the same number of rows as seqdata
|
|
129
|
+
|
|
130
|
+
Returns
|
|
131
|
+
-------
|
|
132
|
+
pandas.DataFrame
|
|
133
|
+
Person-period data with the following columns:
|
|
134
|
+
- id: Person identifier
|
|
135
|
+
- time: Time period within person
|
|
136
|
+
- event: Event indicator (True only at the final period for each person)
|
|
137
|
+
- Sequence history columns (varies based on align_end parameter)
|
|
138
|
+
- Additional covariate columns (if covar is provided)
|
|
139
|
+
|
|
140
|
+
Raises
|
|
141
|
+
------
|
|
142
|
+
ValueError
|
|
143
|
+
If maximum time exceeds the length of the longest sequence
|
|
144
|
+
|
|
145
|
+
Examples
|
|
146
|
+
--------
|
|
147
|
+
Example 1: Basic usage with DataFrame
|
|
148
|
+
>>> import pandas as pd
|
|
149
|
+
>>> import numpy as np
|
|
150
|
+
>>> seqdata = pd.DataFrame([[1, 2, 3, 4], [1, 1, 2, 2]])
|
|
151
|
+
>>> time = np.array([3, 2])
|
|
152
|
+
>>> event = np.array([True, False])
|
|
153
|
+
>>> result = seqsha(seqdata, time, event)
|
|
154
|
+
|
|
155
|
+
Example 2: Usage with SequenceData object (recommended)
|
|
156
|
+
>>> from sequenzo import SequenceData, load_dataset
|
|
157
|
+
>>> df = load_dataset('pairfam_family')
|
|
158
|
+
>>> time_cols = [str(i) for i in range(1, 265)]
|
|
159
|
+
>>> seq_data = SequenceData(df, time=time_cols, id_col='id',
|
|
160
|
+
... states=list(range(1, 10)))
|
|
161
|
+
>>> # All persons observed for 264 months
|
|
162
|
+
>>> time = np.full(len(df), 264)
|
|
163
|
+
>>> event = df['highschool'].values
|
|
164
|
+
>>> result = seqsha(seq_data, time, event)
|
|
165
|
+
|
|
166
|
+
Example 3: With covariates
|
|
167
|
+
>>> covar = df[['sex', 'yeduc', 'east']]
|
|
168
|
+
>>> result = seqsha(seq_data, time, event, covar=covar)
|
|
169
|
+
|
|
170
|
+
Example 4: Right-aligned sequences
|
|
171
|
+
>>> result = seqsha(seq_data, time, event, align_end=True)
|
|
172
|
+
|
|
173
|
+
Notes
|
|
174
|
+
-----
|
|
175
|
+
- The time parameter represents observation duration, not calendar time
|
|
176
|
+
- When include_present=False (default), only past states are included
|
|
177
|
+
- Use align_end=True when analyzing sequences leading up to an event
|
|
178
|
+
- Missing values in the original sequence are converted to "NA_orig"
|
|
179
|
+
"""
|
|
180
|
+
# Extract sequence DataFrame from input (handles SequenceData, DataFrame, or array)
|
|
181
|
+
seq_df = _extract_sequence_dataframe(seqdata)
|
|
182
|
+
|
|
183
|
+
# Convert time and event to numpy arrays for consistency
|
|
184
|
+
time_array = np.asarray(time)
|
|
185
|
+
event_array = np.asarray(event)
|
|
186
|
+
|
|
187
|
+
# Check that dimensions match
|
|
188
|
+
n_sequences = len(seq_df)
|
|
189
|
+
if len(time_array) != n_sequences:
|
|
190
|
+
raise ValueError(
|
|
191
|
+
f"Length of 'time' ({len(time_array)}) must match number of sequences ({n_sequences})"
|
|
192
|
+
)
|
|
193
|
+
if len(event_array) != n_sequences:
|
|
194
|
+
raise ValueError(
|
|
195
|
+
f"Length of 'event' ({len(event_array)}) must match number of sequences ({n_sequences})"
|
|
196
|
+
)
|
|
197
|
+
|
|
198
|
+
# Create base time data: one row per person with their time and event
|
|
199
|
+
basetime = pd.DataFrame({
|
|
200
|
+
'id': np.arange(1, n_sequences + 1),
|
|
201
|
+
'time': time_array,
|
|
202
|
+
'event': event_array
|
|
203
|
+
})
|
|
204
|
+
|
|
205
|
+
# Convert to person-period format (expand rows)
|
|
206
|
+
persper = person_level_to_person_period(basetime, "id", "time", "event")
|
|
207
|
+
|
|
208
|
+
# Convert sequence data to matrix and handle missing values
|
|
209
|
+
sdata = seq_df.values.astype(str)
|
|
210
|
+
sdata[pd.isna(seq_df.values)] = "NA_orig"
|
|
211
|
+
|
|
212
|
+
# Get the time periods for each row in person-period data
|
|
213
|
+
age = persper['time'].values
|
|
214
|
+
ma = int(np.max(age))
|
|
215
|
+
|
|
216
|
+
# Check if time values are valid
|
|
217
|
+
if ma > seq_df.shape[1]:
|
|
218
|
+
raise ValueError("Maximum time of event occurrence is higher than the longest sequence!")
|
|
219
|
+
|
|
220
|
+
# Create empty matrix to store past sequence states
|
|
221
|
+
past = np.full((len(persper), seq_df.shape[1]), np.nan, dtype=object)
|
|
222
|
+
|
|
223
|
+
if align_end:
|
|
224
|
+
# Right-align the sequences (align from the end)
|
|
225
|
+
start = 1 if include_present else 2
|
|
226
|
+
|
|
227
|
+
for aa in range(start, ma + 1):
|
|
228
|
+
# Find rows where time equals aa
|
|
229
|
+
cond = age == aa
|
|
230
|
+
# Get the person IDs for these rows
|
|
231
|
+
ids_a = persper.loc[cond, 'id'].values - 1 # Subtract 1 for 0-based indexing
|
|
232
|
+
|
|
233
|
+
if include_present:
|
|
234
|
+
# Include current time point: fill from (ncol-aa) to end
|
|
235
|
+
past[cond, (seq_df.shape[1] - aa):seq_df.shape[1]] = sdata[ids_a, 0:aa]
|
|
236
|
+
else:
|
|
237
|
+
# Exclude current time point: fill from (ncol-aa+1) to end
|
|
238
|
+
past[cond, (seq_df.shape[1] - aa + 1):seq_df.shape[1]] = sdata[ids_a, 0:(aa - 1)]
|
|
239
|
+
|
|
240
|
+
# Create column names counting backwards
|
|
241
|
+
col_names = [f"Tm{i}" for i in range(seq_df.shape[1], 0, -1)]
|
|
242
|
+
else:
|
|
243
|
+
# Left-align the sequences (align from the start)
|
|
244
|
+
for aa in range(1, ma + 1):
|
|
245
|
+
if include_present:
|
|
246
|
+
# Include present: use time > aa
|
|
247
|
+
cond = age > aa
|
|
248
|
+
else:
|
|
249
|
+
# Exclude present: use time >= aa
|
|
250
|
+
cond = age >= aa
|
|
251
|
+
|
|
252
|
+
# Get the person IDs for these rows
|
|
253
|
+
ids_a = persper.loc[cond, 'id'].values - 1 # Subtract 1 for 0-based indexing
|
|
254
|
+
|
|
255
|
+
# Fill in the sequence state at position aa-1 (0-based)
|
|
256
|
+
past[cond, aa - 1] = sdata[ids_a, aa - 1]
|
|
257
|
+
|
|
258
|
+
# Use original column names or create default ones
|
|
259
|
+
if seq_df.columns is not None and len(seq_df.columns) > 0:
|
|
260
|
+
col_names = [str(col) for col in seq_df.columns[:ma]]
|
|
261
|
+
# Pad with additional column names if needed
|
|
262
|
+
col_names += [f"col_{i}" for i in range(ma, seq_df.shape[1])]
|
|
263
|
+
else:
|
|
264
|
+
col_names = [f"col_{i}" for i in range(seq_df.shape[1])]
|
|
265
|
+
|
|
266
|
+
# Convert past matrix to DataFrame
|
|
267
|
+
past_df = pd.DataFrame(past, columns=col_names)
|
|
268
|
+
|
|
269
|
+
# Combine person-period data with sequence history
|
|
270
|
+
alldata = pd.concat([persper.reset_index(drop=True), past_df], axis=1)
|
|
271
|
+
|
|
272
|
+
# Add covariates if provided
|
|
273
|
+
if covar is not None:
|
|
274
|
+
# Merge covariates based on the ID (subtract 1 for 0-based indexing)
|
|
275
|
+
if isinstance(covar, pd.DataFrame):
|
|
276
|
+
covar_subset = covar.iloc[alldata['id'].values - 1].reset_index(drop=True)
|
|
277
|
+
alldata = pd.concat([alldata, covar_subset], axis=1)
|
|
278
|
+
else:
|
|
279
|
+
covar_array = np.array(covar)
|
|
280
|
+
covar_subset = covar_array[alldata['id'].values - 1]
|
|
281
|
+
alldata = pd.concat([alldata, pd.DataFrame(covar_subset)], axis=1)
|
|
282
|
+
|
|
283
|
+
return alldata
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: sequenzo
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.18
|
|
4
4
|
Summary: A fast, scalable and intuitive Python package for social sequence analysis.
|
|
5
5
|
Author-email: Yuqi Liang <yuqi.liang.1900@gmail.com>, Xinyi Li <1836724126@qq.com>, Jan Heinrich Ernst Meyerhoff-Liang <jan.meyerhoff1@gmail.com>
|
|
6
6
|
License: BSD 3-Clause License
|
|
@@ -58,6 +58,7 @@ Requires-Dist: joblib>=1.0.1
|
|
|
58
58
|
Requires-Dist: docutils>=0.17
|
|
59
59
|
Requires-Dist: tqdm<5.0.0,>=4.62.3
|
|
60
60
|
Requires-Dist: missingno<0.6.0,>=0.5.2
|
|
61
|
+
Requires-Dist: rpy2
|
|
61
62
|
Provides-Extra: dev
|
|
62
63
|
Requires-Dist: pytest>=6.2.5; extra == "dev"
|
|
63
64
|
Requires-Dist: flake8>=3.9.2; extra == "dev"
|
|
@@ -123,12 +124,12 @@ Perfect for research, policy, and business, enabling seamless analysis of catego
|
|
|
123
124
|
|
|
124
125
|
Sequenzo provides pre-built Python wheels for maximum compatibility — no need to compile from source.
|
|
125
126
|
|
|
126
|
-
| Platform | Architecture | Python Versions
|
|
127
|
+
| Platform | Architecture | Python Versions | Status |
|
|
127
128
|
|------------------|-------------------------------|-----------------------|-------------------|
|
|
128
|
-
| **macOS** | `universal2` (Intel + Apple Silicon) | 3.9, 3.11
|
|
129
|
-
| **Windows** | `AMD64` (64-bit) | 3.9, 3.10, 3.11
|
|
130
|
-
| **Linux (glibc)**| `x86_64` (standard Linux) | 3.9, 3.10, 3.11
|
|
131
|
-
| **Linux (musl)** | `x86_64` (Alpine Linux) | 3.9, 3.10, 3.11
|
|
129
|
+
| **macOS** | `universal2` (Intel + Apple Silicon) | 3.9, 3.10, 3.11, 3.12 | ✅ Pre-built wheel |
|
|
130
|
+
| **Windows** | `AMD64` (64-bit) | 3.9, 3.10, 3.11, 3.12 | ✅ Pre-built wheel |
|
|
131
|
+
| **Linux (glibc)**| `x86_64` (standard Linux) | 3.9, 3.10, 3.11, 3.12 | ✅ Pre-built wheel |
|
|
132
|
+
| **Linux (musl)** | `x86_64` (Alpine Linux) | 3.9, 3.10, 3.11, 3.12 | ✅ Pre-built wheel |
|
|
132
133
|
|
|
133
134
|
|
|
134
135
|
What do these terms mean?
|
|
@@ -1,20 +1,20 @@
|
|
|
1
|
-
sequenzo/__init__.py,sha256=
|
|
2
|
-
sequenzo/define_sequence_data.py,sha256=
|
|
1
|
+
sequenzo/__init__.py,sha256=TRZc7i5NYjA8IqdaWQV7E0xH9X8iWGo4oF1SLzrynJk,6279
|
|
2
|
+
sequenzo/define_sequence_data.py,sha256=EioGt7wKRtSt_F85icbli7CmmPzFGfRtuEa2jeAiN_I,28211
|
|
3
3
|
sequenzo/big_data/__init__.py,sha256=iSZnGboYhbvsFf75uL8D8XDucXRxYypmFNN1uX5MxJo,152
|
|
4
4
|
sequenzo/big_data/clara/__init__.py,sha256=pDR5_TSDisEhPtsA2gXGaXXBNTmWidJC_nnd9QMkz-U,700
|
|
5
|
-
sequenzo/big_data/clara/clara.py,sha256=
|
|
5
|
+
sequenzo/big_data/clara/clara.py,sha256=67KaOUrmUxzUJrSe7O3VtW4URIhYZUHe3_QlokQTGds,18824
|
|
6
6
|
sequenzo/big_data/clara/visualization.py,sha256=EpSmtAxRHVqcXlcXvSGiUuBjEETR7zK_gnLZgjlbXB8,3211
|
|
7
7
|
sequenzo/big_data/clara/utils/__init__.py,sha256=2_o1tz8HFZVKFy8w8oJWdWlVKtwGjGY3z4PQylHKjt0,726
|
|
8
8
|
sequenzo/big_data/clara/utils/aggregatecases.py,sha256=ul97pbnRlwxbFbX_0M4j-Bkyxkp7zMAKatSo4eanO24,2899
|
|
9
9
|
sequenzo/big_data/clara/utils/davies_bouldin.py,sha256=4Y6VFjqopG3CaftQ8tDxQPjxxupJ6Hgv-yTXwCvgN7w,3037
|
|
10
|
-
sequenzo/big_data/clara/utils/get_weighted_diss.c,sha256=
|
|
11
|
-
sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so,sha256=
|
|
10
|
+
sequenzo/big_data/clara/utils/get_weighted_diss.c,sha256=xKcmRuFHEVlppw71SsyzahwKO87Iu1Cq-AiioswujYI,466603
|
|
11
|
+
sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so,sha256=aYyHmzFZ0u6tpGPjw4QFNqHASqiTSfPcV5687hypdtM,104280
|
|
12
12
|
sequenzo/big_data/clara/utils/get_weighted_diss.pyx,sha256=UYR-u8MDQEuWID3inKhSpBsuxu7qTFmEwLrjNPBMmUw,430
|
|
13
13
|
sequenzo/big_data/clara/utils/wfcmdd.py,sha256=-1H6CbTteTW-CeuQ_ehVDhnKH3ozcCkUobxoCSRIpYg,7074
|
|
14
14
|
sequenzo/clustering/KMedoids.py,sha256=8EcBIeW4071b6hBa2p4p3ivanMwqUGIv97s8n0lScoQ,6181
|
|
15
15
|
sequenzo/clustering/__init__.py,sha256=duEY0Hq0-7Kc_lv0uFDK3D8IEXby-7Z0Rjff0EgO0KM,875
|
|
16
16
|
sequenzo/clustering/clustering_c_code.cpython-39-darwin.so,sha256=Fj5RvS-gmqEooFTeW6wUe4SEhMPyFmr0S0-Pajl1hGk,362760
|
|
17
|
-
sequenzo/clustering/hierarchical_clustering.py,sha256=
|
|
17
|
+
sequenzo/clustering/hierarchical_clustering.py,sha256=ZFx4jAN_aUUAJBrpAEKQov7ZL1uLaZpnpWWGSs7kf0Y,56496
|
|
18
18
|
sequenzo/clustering/src/KMedoid.cpp,sha256=Bb4LaRes004T9vyCmUknRS0NUaNr4ZoEpWvtkYGq-jw,9299
|
|
19
19
|
sequenzo/clustering/src/PAM.cpp,sha256=UFXdTy1wMWheYa-fUoi8ASQPmn0Ew-AO7fqVQVxn_E8,8357
|
|
20
20
|
sequenzo/clustering/src/PAMonce.cpp,sha256=C9HqGBRenmF2tnQofALjjU1As02dTw2oqEnuvdhoJIk,7943
|
|
@@ -46,16 +46,17 @@ sequenzo/datasets/polyadic_samplep1.csv,sha256=-2HvKSmevfqe1rWFVJlbnjousEgJRU_PH
|
|
|
46
46
|
sequenzo/datasets/polyadic_seqc1.csv,sha256=ydZ-U8NTszR4lNBN4hhsH_dHfq0w5VZSMM7t9C5Uado,7028
|
|
47
47
|
sequenzo/datasets/polyadic_seqp1.csv,sha256=sydXCR0JBKJlbMxJyGa46cic9XQstUpYFOtHaLmkp_0,7681
|
|
48
48
|
sequenzo/dissimilarity_measures/__init__.py,sha256=qkWAQ1sBpS2aayO-FSA8Zha7rQ_vjs0_KIHEB60bVg4,958
|
|
49
|
-
sequenzo/dissimilarity_measures/c_code.cpython-39-darwin.so,sha256=
|
|
49
|
+
sequenzo/dissimilarity_measures/c_code.cpython-39-darwin.so,sha256=s6h-gzYX6kK55Hf5KXr-39QXd-QyEEvwxf_Z6YLJpoY,345992
|
|
50
50
|
sequenzo/dissimilarity_measures/get_distance_matrix.py,sha256=bRlmBHkVAo48hAm9kuFarXH1p-eEXORgG-nOi96CH14,30017
|
|
51
|
-
sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py,sha256=
|
|
51
|
+
sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py,sha256=A2ohhpJw-dznmjfsjctVnO5BOzajRBm3Ffj-oPYEvJ4,9551
|
|
52
52
|
sequenzo/dissimilarity_measures/setup.py,sha256=OLo8Zw65euUVytr-SjjkOrgIHgHe98DdWCUynsTDPXQ,758
|
|
53
|
-
sequenzo/dissimilarity_measures/src/DHDdistance.cpp,sha256=
|
|
54
|
-
sequenzo/dissimilarity_measures/src/LCPdistance.cpp,sha256=
|
|
55
|
-
sequenzo/dissimilarity_measures/src/OMdistance.cpp,sha256=
|
|
56
|
-
sequenzo/dissimilarity_measures/src/OMspellDistance.cpp,sha256=
|
|
53
|
+
sequenzo/dissimilarity_measures/src/DHDdistance.cpp,sha256=RbWbSaELxlJiw5ST_JaD-wPx_sD7PGV2VdK4qEhOcxE,4714
|
|
54
|
+
sequenzo/dissimilarity_measures/src/LCPdistance.cpp,sha256=VCqRm_mbI2IOm6KiO7SACHDOpZXBTkDdyr1Fo39zJVE,3231
|
|
55
|
+
sequenzo/dissimilarity_measures/src/OMdistance.cpp,sha256=0HxjF4VFXkCtrV2zV7Kb_URVMWrjgt_W-4ugf1O7cDo,8726
|
|
56
|
+
sequenzo/dissimilarity_measures/src/OMspellDistance.cpp,sha256=EbtrWCTNK5mq5hfTJUwcgD4aUm3VbVCjzIA1J_3wNP0,9877
|
|
57
57
|
sequenzo/dissimilarity_measures/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
58
58
|
sequenzo/dissimilarity_measures/src/dist2matrix.cpp,sha256=spUINWdfJyXR3uWaQ66tLPifrZT0VPfylX5SkKdQ3RQ,1759
|
|
59
|
+
sequenzo/dissimilarity_measures/src/dp_utils.h,sha256=mghKkQlXhl3F4dXuO-4INGBkWiYfyxBawVv-PtBCkZw,4466
|
|
59
60
|
sequenzo/dissimilarity_measures/src/module.cpp,sha256=A8SheP33EUcBATXzVcb1W_bqevxYOFoj0yJxdVDLT7M,1729
|
|
60
61
|
sequenzo/dissimilarity_measures/src/setup.py,sha256=HTMiDG0P6sCLdAQBgyp8Jd5iNvQimzvNoTHE4QP0XVs,579
|
|
61
62
|
sequenzo/dissimilarity_measures/src/utils.h,sha256=Hw_VLkhFvoXLFoJ9FsdFMuflnI5Zm6-6gAwspnzA5TI,803
|
|
@@ -389,59 +390,61 @@ sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h
|
|
|
389
390
|
sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h,sha256=rsHZiQKOqWBd-ptCJyOP2Ju5uDc9Vm7V8SoUJQcSUR8,16505
|
|
390
391
|
sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h,sha256=5K91T9EDnVCqWxNogT4GN6g3ieIx9uoJ3_4Y-UkBeF0,4312
|
|
391
392
|
sequenzo/dissimilarity_measures/src/xsimd/.github/cmake-test/main.cpp,sha256=2CGojY-vyRREHQGI6-Wytz1Yq9dk5bLVvlz_FM10TXY,57
|
|
392
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp,sha256=
|
|
393
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp,sha256=
|
|
394
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp,sha256=
|
|
395
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp,sha256=
|
|
393
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp,sha256=LsMwucFe7RvswPkgXNdSuKbSqUvkRXOYLmq3LWBrrH8,2728
|
|
394
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp,sha256=G3uE_md-Y7asBipzc25gKAIOV4aCrZbnMMzUbjEpw3g,90424
|
|
395
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp,sha256=zQqo2dqAZy2O32juPWtbnAFqkAiUlv5VKHncFpIp6Fc,48668
|
|
396
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp,sha256=IeasuDjPImrarVlp6IbesQgjlIgTt3RzKzDLcvOTcEM,25719
|
|
396
397
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512cd.hpp,sha256=xBQYj_r0XVrrO5ZeGndBarz5N4kWAYaXWO9kGJmA2sk,979
|
|
397
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp,sha256=
|
|
398
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp,sha256=BXsaqGeY2m0y2tSxowpBGe9wh05GaOM8NaXho6jrGpY,11306
|
|
398
399
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512er.hpp,sha256=0Ry5oiqe9up1h5MIU07qvBP6TpZW2sN9UrqPBh0U2QE,933
|
|
399
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp,sha256=
|
|
400
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp,sha256=R4XzWQvIlkmjYcP_4h0FrpUbNgAthnkf6DADa1qyi-0,126892
|
|
400
401
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512ifma.hpp,sha256=HO39AdydUnMCg9NDElzZuml9DDHxJYPrHXMODiRrvFw,939
|
|
401
402
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512pf.hpp,sha256=Df3HEkrfatmU5GEQpdxWpZy3oSbxJqqjL3Lo8OEsDBw,933
|
|
402
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp,sha256=
|
|
403
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp,sha256=
|
|
403
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp,sha256=g5HvZjA7tTs8aq2OJnYN1eppX24evxzpOzaAhW_Laeg,3425
|
|
404
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp,sha256=_2LR8AldChNT_1nf7C_1Q4hTYC33pIxO-kbh9aFaUHc,5606
|
|
404
405
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512bw.hpp,sha256=GKWN2MD1An0VGTSxLCSVEc2WTNxxRE4FBga_khzlEFA,968
|
|
405
406
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512vbmi2.hpp,sha256=Gs2IqCq_ZgJJjWgqVKOA1EKrICB40sUTWitS1z1cZCQ,975
|
|
406
407
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avxvnni.hpp,sha256=b9XOSCmcZcNdWNxs0UUdTEMUpYSCt69Y5wC7Nt2F0sw,930
|
|
407
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp,sha256=
|
|
408
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp,sha256=
|
|
409
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp,sha256=
|
|
410
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp,sha256=
|
|
411
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp,sha256=
|
|
408
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp,sha256=X4gfm9-2oz8rY9dacrd2FCPTBaJY1Nb73PjphEjZY_g,1198
|
|
409
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp,sha256=1z6BzrXnkWgrxEMirbKYuUMWoWbfeEP-fCux2pEcpLs,5146
|
|
410
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp,sha256=ozPvnc8vxUqtNrLXa1K05WRULHlP7ZsWZrPXGEEfxws,14121
|
|
411
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp,sha256=gYgWArvPoxf4tXTZ52KKUdq9dP594g5tkBYrP4fq14c,36922
|
|
412
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp,sha256=UHZzvx6Uv2mZTzSgMw8dPsw664q5XEi3jX_0jfChOyw,3564
|
|
412
413
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx2.hpp,sha256=cU1qT6VBmLW-LUFiLJIKQQow1QsXHPOYs30RRFSXwCQ,1592
|
|
413
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp,sha256=
|
|
414
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp,sha256=
|
|
414
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp,sha256=UG5bvU7vwqryu6USHeGiwLjda9sNzRPzvXo37lqK7Xo,3816
|
|
415
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp,sha256=b8THgymg0NPIjQTcir5i9AvAg-wqsbzPJeYplVIMJm8,3461
|
|
415
416
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_i8mm_neon64.hpp,sha256=OChPwZc_MGK-9mTOMyLVszuhDKgihN8NhQaeEZCSASo,901
|
|
416
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp,sha256=
|
|
417
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp,sha256=
|
|
418
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp,sha256
|
|
419
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp,sha256=
|
|
420
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp,sha256=
|
|
421
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp,sha256=
|
|
422
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp,sha256=
|
|
417
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp,sha256=j3GZ5OK-CSxEkfmr0x7td_Noy4YXGWjumvKGEjQG4T0,2886
|
|
418
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp,sha256=BFYGefKVrYsN-t8qM2Bz26l0SDzKOce1RicwX1-zaew,141079
|
|
419
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp,sha256=YGe3vT-xZ2lNxhTU02_aadOYnK6coVe4J-2HBzJ-a1k,62146
|
|
420
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp,sha256=KKyskeg7Q96G9epwqUxTeXgwfG2OWsg1yq1VlZvrFhA,71057
|
|
421
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp,sha256=uXnw00QSIdAKsKupxUGL7P0GVEyZi9vxPtKmPJiH7Ak,38191
|
|
422
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp,sha256=wXChvyjuc0GGJ2a44Yv9_05C1nufr71LBULX-vvD_ZM,88290
|
|
423
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp,sha256=iIz3YP_trmCipgLrn6F4eLnJLEP6mHpAas4RPQ4DJX0,2447
|
|
423
424
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_1.hpp,sha256=OpXAmc-2deMiqa2PBltJ6L2ObDK8HaJPLBsEPNrOFOo,14045
|
|
424
425
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_2.hpp,sha256=gK3_yY9vcjyac0LDUFB5-i7jNQraKxC2PwmQtEukD0E,1697
|
|
425
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp,sha256=
|
|
426
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp,sha256=
|
|
427
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/
|
|
428
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/
|
|
429
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/
|
|
430
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/
|
|
431
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/
|
|
432
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/
|
|
433
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/
|
|
426
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp,sha256=PdfDhj7N1AQ077UbPpBP-K30rloTSqy7haOSYjHaoe8,8438
|
|
427
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp,sha256=_Qkr110UwsAaEjvO8IKLQcSoEQmh0nVCP_ETcI4kLjw,49170
|
|
428
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp,sha256=ClL2V7IJbjf13s2tnGPauIiVgO3Xr5CV1JH31V0s-VY,40985
|
|
429
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp,sha256=ROKyylLmspeGbBc-1RPserBSNdtcdeVWTV7y7Cv_Zco,75372
|
|
430
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp,sha256=fLlHThTIcJ4uVU1J9Ziw_1w3UEhMUJKRS1BycvOfCUo,12008
|
|
431
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp,sha256=mqcXzs6CSdv9SzfOMLx6qJ5myVvXuwa_y34M8QAkd8w,4070
|
|
432
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp,sha256=_mD-smC8FQRgWofxuuhtjhsUeFWO1fHj9XUVA6wERF8,15802
|
|
433
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp,sha256=RJJy8CsnohK2TlM-B3L_uEuR3aywVjc5_HHnyAQGJTs,8526
|
|
434
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp,sha256=7TDTegY1TC02GEMz6tolupM244dHmnjPPpi1uh17jWI,116975
|
|
435
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp,sha256=XiO9Gmzk-BrCPJHDkDgFD9XYEgVroCDIHk44NlnJcro,41564
|
|
434
436
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_rounding.hpp,sha256=h7MJ6xC3jzjX1Ur9lCutOU8SAZfHRSeFhfDmqoCF8nQ,2772
|
|
435
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/
|
|
436
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/
|
|
437
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/
|
|
438
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/
|
|
439
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/
|
|
437
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp,sha256=mygsN-TfId4EmTLEdUjqE-PjtEiHN5nmS8qBGO6sHs4,9876
|
|
438
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp,sha256=vproKQRWczMTzEqu58exB2ZBnynrnV5IhSs4qn15XhU,45215
|
|
439
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp,sha256=1tYXZvcPoIXq2JQn9zCLssZJxw78ujtCJzIgP_3aLFM,8357
|
|
440
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp,sha256=mLDtLMxrLg_VvE2VLzXgdbZaubB-i8zigxR2xwgYy2Y,10819
|
|
441
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp,sha256=wRwLPkFnMMbT2jNkN3HBzQF6Qem7cqG-btBGsN2eQbc,9243
|
|
442
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp,sha256=G4txGeFYlaJ6eJV7-ZuyfDDGwNK_xixG-yF3QYofuEE,1127
|
|
440
443
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/math/xsimd_rem_pio2.hpp,sha256=8HLQvmN5LyevGa5_oHmvh1DpIfcx5vhOyNMEemyusac,25630
|
|
441
444
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_aligned_allocator.hpp,sha256=FjurT6RViugW6JYw-dTZ4BGQeeDfoj15fjl8EdG_q44,11463
|
|
442
445
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_alignment.hpp,sha256=daZBsGCBL-dy_z6sNIaJnFMolvYyOn9XNexjKq_vNtQ,2610
|
|
443
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp,sha256=
|
|
444
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp,sha256=
|
|
446
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp,sha256=dFsghzwm8dkyfGOlAZalxpsaZ48F8OkJ4-WBQ04oQIM,1978
|
|
447
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp,sha256=BgUmz6rVac01w0MThpdEzAlX7WaLKCJph88hYDSyaVU,94022
|
|
445
448
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx2_register.hpp,sha256=Bv7gezr-leUFuxJwqNw4HN28LuvJ1MjRnfw_IaL5hsA,1441
|
|
446
449
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512bw_register.hpp,sha256=I5SuqGKd_eNjPz13FMvPPImFscpX_LKSSYiFZ_QBB7I,1658
|
|
447
450
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512cd_register.hpp,sha256=rzJzLBBiU2oykdVnL98u1lM_WVJvkDQNuGRpWos0oUo,1653
|
|
@@ -456,7 +459,7 @@ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_a
|
|
|
456
459
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_avx512vbmi2_register.hpp,sha256=ip1yV_HIBIQq0oDMYpiJLYC2D--4pvL0jN6cZAaR5xE,1871
|
|
457
460
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx_register.hpp,sha256=PALy0fEfHn5HzQXrtK06KsnBcbWTjbi3Mjwwfe4jAP4,2403
|
|
458
461
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avxvnni_register.hpp,sha256=y7c7Odk5jYAvPK7Gw_K719kgfS3WiM4BS9ap-2nhx0I,1473
|
|
459
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp,sha256=
|
|
462
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp,sha256=E3nUHaiHNOzQtAI32u144bE7AQXJRW6ODiFj0rvV-QQ,55252
|
|
460
463
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch_constant.hpp,sha256=EHJK2Wg3mR2qOKrqKXJvLSiWrWmU48zxhaNF3_SrsZ0,11442
|
|
461
464
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_common_arch.hpp,sha256=mQ1R_I4sR2tOo6MndNkpK171somx0OwEMl0wfszSdbw,1837
|
|
462
465
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_emulated_register.hpp,sha256=JHsYwTCOXgxhbKeI4lrdN9Zltzlzgl6-Uw7lGoHCfoM,2958
|
|
@@ -468,32 +471,33 @@ sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_i8mm_neon64_
|
|
|
468
471
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon64_register.hpp,sha256=dWUugWN9Gxr36Q1msPnfHP0u6EPCqc-VuLKorU_x028,1847
|
|
469
472
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon_register.hpp,sha256=c6ncY5lAnYamrQI7ezH9Mkm0QfM-3bQoUE1-wKOZmpk,5615
|
|
470
473
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_register.hpp,sha256=0nY6CpGYVZSttQiRxXbjasCX3e8gPKDYkGvmxfPBIlQ,4204
|
|
471
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp,sha256=
|
|
474
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp,sha256=uBJayrwCSnV1_uBR0wAJc5wNNNxWw__axtOdMbNxMCw,24167
|
|
472
475
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse2_register.hpp,sha256=6-HpqxXs-76kNQHXGwEQmT8UUidk7DQiAvr5g9d_TyM,2395
|
|
473
476
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse3_register.hpp,sha256=Dp8_723CrlJYil5Z5PuRzsQMhKH5uH8kA8VdtfputyE,1498
|
|
474
477
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_1_register.hpp,sha256=m_g1DYCdhUlCrXJ2CTusdSIag-BAlnVjqlw8Iyou7lA,1522
|
|
475
478
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_2_register.hpp,sha256=kT8B8i7d43i12F7mHhEg_MnJQY-gkQY85c9tPuoJaHA,1527
|
|
476
479
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_ssse3_register.hpp,sha256=RuJmgxeX0_7MI_6scYdvtIfkbrfy3ora1BPojhuUqSA,1507
|
|
477
480
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sve_register.hpp,sha256=nhyBKiLBSddra8Al0y9jU-tjnkyelnxvB6OhAhk2rAw,6734
|
|
478
|
-
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp,sha256=
|
|
481
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp,sha256=mSacRtj8YS_VoAbFdPsaYr4alCrevMfIm4uiBYIefws,9979
|
|
479
482
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_utils.hpp,sha256=waxMGI8c9_7hxfoZka-AiJpr4j8zQmVKXPhjx_L9T8U,15882
|
|
483
|
+
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp,sha256=bylgPaSUsBwou9cNz1yE2XCTlgz3cGBCs3nYcO0i16g,3450
|
|
480
484
|
sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_wasm_register.hpp,sha256=Am-0VbiA-S1zX2YXxKPgHc4dxWDDHS6_bL2ox5x7aMA,2437
|
|
481
485
|
sequenzo/dissimilarity_measures/utils/__init__.py,sha256=aZMQJGgJq4GsL1x-pQPLmL7KrJ78cHMH46GVmVE8pJ0,407
|
|
482
486
|
sequenzo/dissimilarity_measures/utils/get_LCP_length_for_2_seq.py,sha256=bJjbEQcjENSAdLv2IMRUWJC4avldwCfHrtSEnlDEACY,1470
|
|
483
|
-
sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c,sha256=
|
|
484
|
-
sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so,sha256=
|
|
487
|
+
sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c,sha256=PzcX3i6RJv5XyOHUA3K1b9kutATYj_r7UuaGKTqqPQM,578883
|
|
488
|
+
sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so,sha256=YMOUjMDtIlAq9YphSK_6A2SSONSZuhkGUw21MIOwFL0,145144
|
|
485
489
|
sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.pyx,sha256=pwImh8jgNcbLLb0y1uhYAYNwXP93JPIh-DQ5frVjZUE,3216
|
|
486
|
-
sequenzo/dissimilarity_measures/utils/seqconc.c,sha256=
|
|
487
|
-
sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so,sha256=
|
|
490
|
+
sequenzo/dissimilarity_measures/utils/seqconc.c,sha256=FiNsssiU_sAXJP_qHwy7CZYtSXzNqb6aZn1XOZ2nyAQ,488207
|
|
491
|
+
sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so,sha256=Ti8ROt1od4aNCBq4heuicwV6ctAtpUjP8gypzVUY280,123440
|
|
488
492
|
sequenzo/dissimilarity_measures/utils/seqconc.pyx,sha256=7X8jv1kXq9o2pCnBNu5X_NZ0aMpWtxhhqnMsUJzqANo,770
|
|
489
|
-
sequenzo/dissimilarity_measures/utils/seqdss.c,sha256=
|
|
490
|
-
sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so,sha256=
|
|
493
|
+
sequenzo/dissimilarity_measures/utils/seqdss.c,sha256=MyMJNB_jtklJlUKUiYPVna8ngY1fiWg4tBEWlkPhl4Y,599803
|
|
494
|
+
sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so,sha256=ngtFvz01SskGCDynesoovEg-E1L9pa8Sr9txcVo6hlA,153192
|
|
491
495
|
sequenzo/dissimilarity_measures/utils/seqdss.pyx,sha256=THl9-bw63NqgXAv9_OhlB6DF92A0moszCoA32XyyA0Q,1232
|
|
492
|
-
sequenzo/dissimilarity_measures/utils/seqdur.c,sha256=
|
|
493
|
-
sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so,sha256=
|
|
496
|
+
sequenzo/dissimilarity_measures/utils/seqdur.c,sha256=Jk9r0WeJIcXUy1lt89QVxX2tXwEsuoE8GfaGCRy9DOE,524109
|
|
497
|
+
sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so,sha256=SGvyGzMJVrsQiKtZ2_kdJFbEmMXcPJVMmYBEenzifUI,126136
|
|
494
498
|
sequenzo/dissimilarity_measures/utils/seqdur.pyx,sha256=RyBqjdO8SdiCYg7cScdT6uEWPjYX_e7-KUrlQkRkBC0,1288
|
|
495
|
-
sequenzo/dissimilarity_measures/utils/seqlength.c,sha256=
|
|
496
|
-
sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so,sha256=
|
|
499
|
+
sequenzo/dissimilarity_measures/utils/seqlength.c,sha256=icw9znQ5OSsxP-70VEETrKQyjrqKR7aOA94DTRVTWWA,476176
|
|
500
|
+
sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so,sha256=RJkt5mRt6Be2KNUJIVpx3Uc78wwL02iGBMcZg3QhfpM,121904
|
|
497
501
|
sequenzo/dissimilarity_measures/utils/seqlength.pyx,sha256=y-792z6X1L4zychHJj5IQVHOfM5JibQ_ITFnkYHJO3c,564
|
|
498
502
|
sequenzo/multidomain/__init__.py,sha256=bVnbkJXuXj8y5lHreRBQnL1JFcrmlsz2TSt-qFfmWm8,734
|
|
499
503
|
sequenzo/multidomain/association_between_domains.py,sha256=V4I_ILAAwf3cfz2i0HdLF8otAqPtF2LfjcCKo1IkfHA,10855
|
|
@@ -506,15 +510,15 @@ sequenzo/prefix_tree/__init__.py,sha256=YxMzr5UwM22DmpMDMAmKYI-vjhikDI8Gft_cJ9h1
|
|
|
506
510
|
sequenzo/prefix_tree/individual_level_indicators.py,sha256=9JPINoPU50UGh9-D2QOAr7GQsxAkZ6qDmhKQtVwvZsU,52788
|
|
507
511
|
sequenzo/prefix_tree/system_level_indicators.py,sha256=tGnzRRqwzJbGv-vjOMAzdh6arN6QJkdsybe0Yif57ug,17507
|
|
508
512
|
sequenzo/prefix_tree/utils.py,sha256=7DETf9i_OclRnWel680qD4wO1b8SffJVKq2Kx0zkTaQ,1489
|
|
509
|
-
sequenzo/sequence_characteristics/__init__.py,sha256=
|
|
510
|
-
sequenzo/sequence_characteristics/complexity_index.py,sha256=
|
|
511
|
-
sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py,sha256=
|
|
512
|
-
sequenzo/sequence_characteristics/plot_characteristics.py,sha256=
|
|
513
|
-
sequenzo/sequence_characteristics/simple_characteristics.py,sha256=
|
|
514
|
-
sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py,sha256=
|
|
515
|
-
sequenzo/sequence_characteristics/turbulence.py,sha256=
|
|
516
|
-
sequenzo/sequence_characteristics/variance_of_spell_durations.py,sha256=
|
|
517
|
-
sequenzo/sequence_characteristics/within_sequence_entropy.py,sha256=
|
|
513
|
+
sequenzo/sequence_characteristics/__init__.py,sha256=dPdBD7K-dhsuLoVYhDDVUj9_DYBLPxSUh9GPJ8y2P4k,1224
|
|
514
|
+
sequenzo/sequence_characteristics/complexity_index.py,sha256=KZ9TpaHtSIkbaqiOqEGRoFDYenrcuIzv34Du_RbL-6A,1762
|
|
515
|
+
sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py,sha256=ipyOVZ_o9xC-VYMLIPU7QcMlpJzyzAYG3qKdlBV5HS0,9302
|
|
516
|
+
sequenzo/sequence_characteristics/plot_characteristics.py,sha256=LYOCNoS5BnFVbY1r-HEJSrQyACOTkxHuxguS4wVLI9o,25612
|
|
517
|
+
sequenzo/sequence_characteristics/simple_characteristics.py,sha256=3dj8R_tDEtC7Wk58PzX4q0nXW9orW4f1hO1Lt2uXeCc,11715
|
|
518
|
+
sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py,sha256=S5vzqUrJF_tadIlgd-S-jHfwWo3agFzc1ptAB6CXfPE,1313
|
|
519
|
+
sequenzo/sequence_characteristics/turbulence.py,sha256=bixo1wcGNKYhsNmppORwv_fjy7xQxhGHo-OebG_TnYE,6217
|
|
520
|
+
sequenzo/sequence_characteristics/variance_of_spell_durations.py,sha256=hx00o_ypk3VDUU1VHOI8eN_Fy12CKlOd02NeF_fKl04,3299
|
|
521
|
+
sequenzo/sequence_characteristics/within_sequence_entropy.py,sha256=K9uhkTcy7SkW5By1lNX1DS6mREGj49ElgdPs1erJ-bI,1500
|
|
518
522
|
sequenzo/suffix_tree/__init__.py,sha256=rJTkjwxg2Ub_jGxugYmEYWatTxtKu_BTWNDZbJ-KgsI,1148
|
|
519
523
|
sequenzo/suffix_tree/individual_level_indicators.py,sha256=W36tEQEEmzu67gf5BLmau8Ja6-1BEBG5ArzZqbKc-PM,67211
|
|
520
524
|
sequenzo/suffix_tree/system_level_indicators.py,sha256=N4DrjM9fBHFqqcjDN1TAkwbkoDnlZSK2F8F2ERCizIQ,16962
|
|
@@ -524,14 +528,17 @@ sequenzo/visualization/plot_mean_time.py,sha256=5K1iBNCYTs4JrPlxaiZ1WF-0p-paDHPf
|
|
|
524
528
|
sequenzo/visualization/plot_modal_state.py,sha256=wTAhdlu4px-dJdxM9LSSgDQioW46r-N08pt2hhSeU9c,9919
|
|
525
529
|
sequenzo/visualization/plot_most_frequent_sequences.py,sha256=UbkCjPUCKRAVY06Hm8HVSBI9_8iKFxkBdWwoMNmy0BE,6317
|
|
526
530
|
sequenzo/visualization/plot_relative_frequency.py,sha256=tUNyIxc8C0SPjRJJYormBbTxWjvbox-pjaH9suzjRwU,16423
|
|
527
|
-
sequenzo/visualization/plot_sequence_index.py,sha256=
|
|
531
|
+
sequenzo/visualization/plot_sequence_index.py,sha256=qc4h6JzQrDeiBsGvK6Cdn3HwDZFLfNzPqyFOon1ZQ6Q,41079
|
|
528
532
|
sequenzo/visualization/plot_single_medoid.py,sha256=yqKzUANkmA-f-oreDZuAVAzMrALxn_uGjg815HAjKag,5971
|
|
529
|
-
sequenzo/visualization/plot_state_distribution.py,sha256=
|
|
533
|
+
sequenzo/visualization/plot_state_distribution.py,sha256=8uH533kwyqxIeGPM4eFJBWJ2eRgqEFPH3EiPJECzvS8,25978
|
|
530
534
|
sequenzo/visualization/plot_transition_matrix.py,sha256=0DDOBZ2xu7lLb4Pz_18FvIaylkI8_7DttdXy_In6KTk,6895
|
|
531
535
|
sequenzo/visualization/utils/__init__.py,sha256=brrYzeIQm_cEM_TgA8_eRdckzN9WP1pj9g-f1qBzRLY,734
|
|
532
536
|
sequenzo/visualization/utils/utils.py,sha256=9Z1L3PVL-Z41fvCW4tLJ5DaUVHO6C6PAJYlT2Q1jY4k,10249
|
|
533
|
-
sequenzo
|
|
534
|
-
sequenzo
|
|
535
|
-
sequenzo
|
|
536
|
-
sequenzo-0.1.
|
|
537
|
-
sequenzo-0.1.
|
|
537
|
+
sequenzo/with_event_history_analysis/__init__.py,sha256=B2EZhtJ7NEzO8piDwfSbh0l87fQ0ZuesPO5GNJEXKPo,730
|
|
538
|
+
sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py,sha256=wtsKnq-82bJhRH78cy49Nzo3yGJKoFD4RckoZ7D-SS8,37301
|
|
539
|
+
sequenzo/with_event_history_analysis/sequence_history_analysis.py,sha256=vv5y2u9cpzhmNJX_fSYgLmFOncPvB7DVhWujljII1vA,10902
|
|
540
|
+
sequenzo-0.1.18.dist-info/licenses/LICENSE,sha256=URRMyLHVeGF2kyDLC1xbRKBBIjDHJyWqF4nWpzfBX10,1497
|
|
541
|
+
sequenzo-0.1.18.dist-info/METADATA,sha256=agISMeP5a8Y5jRZ2BXm5bdDCqib-0ag1QTlZ4zo8bKI,12626
|
|
542
|
+
sequenzo-0.1.18.dist-info/WHEEL,sha256=Q9x5RaJ3mFaLYQ0AssqccH-ZQbedr2DD19gIJkZDXGM,112
|
|
543
|
+
sequenzo-0.1.18.dist-info/top_level.txt,sha256=yM8eczbPzqB1bRHMYLptvjjQ3p5tYhY6VjgWHUIi9vw,9
|
|
544
|
+
sequenzo-0.1.18.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|