sequenzo 0.1.17__cp312-cp312-macosx_10_13_universal2.whl → 0.1.19__cp312-cp312-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (423) hide show
  1. sequenzo/__init__.py +64 -8
  2. sequenzo/big_data/clara/clara.py +1 -1
  3. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  4. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-312-darwin.so +0 -0
  5. sequenzo/clustering/KMedoids.py +39 -0
  6. sequenzo/clustering/hierarchical_clustering.py +304 -8
  7. sequenzo/define_sequence_data.py +44 -3
  8. sequenzo/dissimilarity_measures/c_code.cpython-312-darwin.so +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  10. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  11. sequenzo/dissimilarity_measures/src/DHDdistance.cpp +13 -37
  12. sequenzo/dissimilarity_measures/src/LCPdistance.cpp +13 -37
  13. sequenzo/dissimilarity_measures/src/OMdistance.cpp +12 -47
  14. sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +103 -67
  15. sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
  16. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +41 -16
  17. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +4 -0
  18. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +7 -0
  19. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +10 -0
  20. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +127 -43
  21. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +30 -2
  22. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
  23. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +14 -5
  24. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +111 -54
  25. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +131 -9
  26. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +11 -113
  27. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +39 -7
  28. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +336 -30
  29. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +9 -37
  30. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +58 -0
  31. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +1 -0
  32. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +35 -2
  33. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +3 -1
  34. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +17 -0
  35. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +13 -0
  36. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +18 -0
  37. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +13 -0
  38. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +8 -0
  39. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +363 -34
  40. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +7 -0
  41. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +13 -0
  42. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +41 -4
  43. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +252 -16
  44. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +9 -0
  45. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +12 -1
  46. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +7 -0
  47. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
  48. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +78 -1
  49. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +3 -1
  50. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +13 -2
  51. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +5 -0
  52. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +5 -1
  53. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +2 -0
  54. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +64 -1
  55. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +36 -0
  56. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +40 -31
  57. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +8 -0
  58. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
  59. sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +6 -0
  60. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  61. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-312-darwin.so +0 -0
  62. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  63. sequenzo/dissimilarity_measures/utils/seqconc.cpython-312-darwin.so +0 -0
  64. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  65. sequenzo/dissimilarity_measures/utils/seqdss.cpython-312-darwin.so +0 -0
  66. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  67. sequenzo/dissimilarity_measures/utils/seqdur.cpython-312-darwin.so +0 -0
  68. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  69. sequenzo/dissimilarity_measures/utils/seqlength.cpython-312-darwin.so +0 -0
  70. sequenzo/multidomain/cat.py +0 -53
  71. sequenzo/multidomain/idcd.py +0 -1
  72. sequenzo/openmp_setup.py +233 -0
  73. sequenzo/sequence_characteristics/__init__.py +4 -0
  74. sequenzo/sequence_characteristics/complexity_index.py +17 -57
  75. sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +177 -111
  76. sequenzo/sequence_characteristics/plot_characteristics.py +30 -11
  77. sequenzo/sequence_characteristics/simple_characteristics.py +1 -0
  78. sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +9 -3
  79. sequenzo/sequence_characteristics/turbulence.py +47 -67
  80. sequenzo/sequence_characteristics/variance_of_spell_durations.py +19 -9
  81. sequenzo/sequence_characteristics/within_sequence_entropy.py +5 -58
  82. sequenzo/visualization/plot_sequence_index.py +58 -35
  83. sequenzo/visualization/plot_state_distribution.py +57 -36
  84. sequenzo/visualization/plot_transition_matrix.py +21 -22
  85. sequenzo/with_event_history_analysis/__init__.py +35 -0
  86. sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
  87. sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
  88. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/METADATA +48 -14
  89. sequenzo-0.1.19.dist-info/RECORD +215 -0
  90. sequenzo/dissimilarity_measures/setup.py +0 -35
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  172. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  173. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  174. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  175. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  176. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  177. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  178. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  179. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  180. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  181. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  182. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  183. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  184. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  185. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  186. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  187. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  188. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  189. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  190. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  191. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  192. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  193. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  194. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  195. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  196. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  197. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  198. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  199. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  200. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  201. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  202. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  203. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  204. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  205. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  206. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  207. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  208. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  209. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  210. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  211. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  212. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  213. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  214. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  215. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  216. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  217. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  218. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  219. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  220. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  221. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  222. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  223. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  224. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  225. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  226. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  227. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  228. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  229. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  230. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  231. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  232. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  233. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  234. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  235. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  236. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  237. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  238. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  239. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  240. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  241. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  242. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  243. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  244. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  245. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  246. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  247. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  248. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  249. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  250. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  251. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  396. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  397. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  398. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  399. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  400. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  401. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  402. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  403. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  404. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  405. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  406. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  407. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  408. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  409. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  410. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  411. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  412. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  413. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  414. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  415. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  416. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  417. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  418. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  419. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  420. sequenzo-0.1.17.dist-info/RECORD +0 -537
  421. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  422. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  423. {sequenzo-0.1.17.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,1959 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_BESSEL_FUNCTIONS_H
11
- #define EIGEN_BESSEL_FUNCTIONS_H
12
-
13
- namespace Eigen {
14
- namespace internal {
15
-
16
- // Parts of this code are based on the Cephes Math Library.
17
- //
18
- // Cephes Math Library Release 2.8: June, 2000
19
- // Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
20
- //
21
- // Permission has been kindly provided by the original author
22
- // to incorporate the Cephes software into the Eigen codebase:
23
- //
24
- // From: Stephen Moshier
25
- // To: Eugene Brevdo
26
- // Subject: Re: Permission to wrap several cephes functions in Eigen
27
- //
28
- // Hello Eugene,
29
- //
30
- // Thank you for writing.
31
- //
32
- // If your licensing is similar to BSD, the formal way that has been
33
- // handled is simply to add a statement to the effect that you are incorporating
34
- // the Cephes software by permission of the author.
35
- //
36
- // Good luck with your project,
37
- // Steve
38
-
39
-
40
- /****************************************************************************
41
- * Implementation of Bessel function, based on Cephes *
42
- ****************************************************************************/
43
-
44
- template <typename Scalar>
45
- struct bessel_i0e_retval {
46
- typedef Scalar type;
47
- };
48
-
49
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
50
- struct generic_i0e {
51
- EIGEN_DEVICE_FUNC
52
- static EIGEN_STRONG_INLINE T run(const T&) {
53
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
54
- THIS_TYPE_IS_NOT_SUPPORTED);
55
- return ScalarType(0);
56
- }
57
- };
58
-
59
- template <typename T>
60
- struct generic_i0e<T, float> {
61
- EIGEN_DEVICE_FUNC
62
- static EIGEN_STRONG_INLINE T run(const T& x) {
63
- /* i0ef.c
64
- *
65
- * Modified Bessel function of order zero,
66
- * exponentially scaled
67
- *
68
- *
69
- *
70
- * SYNOPSIS:
71
- *
72
- * float x, y, i0ef();
73
- *
74
- * y = i0ef( x );
75
- *
76
- *
77
- *
78
- * DESCRIPTION:
79
- *
80
- * Returns exponentially scaled modified Bessel function
81
- * of order zero of the argument.
82
- *
83
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
84
- *
85
- *
86
- *
87
- * ACCURACY:
88
- *
89
- * Relative error:
90
- * arithmetic domain # trials peak rms
91
- * IEEE 0,30 100000 3.7e-7 7.0e-8
92
- * See i0f().
93
- *
94
- */
95
-
96
- const float A[] = {-1.30002500998624804212E-8f, 6.04699502254191894932E-8f,
97
- -2.67079385394061173391E-7f, 1.11738753912010371815E-6f,
98
- -4.41673835845875056359E-6f, 1.64484480707288970893E-5f,
99
- -5.75419501008210370398E-5f, 1.88502885095841655729E-4f,
100
- -5.76375574538582365885E-4f, 1.63947561694133579842E-3f,
101
- -4.32430999505057594430E-3f, 1.05464603945949983183E-2f,
102
- -2.37374148058994688156E-2f, 4.93052842396707084878E-2f,
103
- -9.49010970480476444210E-2f, 1.71620901522208775349E-1f,
104
- -3.04682672343198398683E-1f, 6.76795274409476084995E-1f};
105
-
106
- const float B[] = {3.39623202570838634515E-9f, 2.26666899049817806459E-8f,
107
- 2.04891858946906374183E-7f, 2.89137052083475648297E-6f,
108
- 6.88975834691682398426E-5f, 3.36911647825569408990E-3f,
109
- 8.04490411014108831608E-1f};
110
- T y = pabs(x);
111
- T y_le_eight = internal::pchebevl<T, 18>::run(
112
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A);
113
- T y_gt_eight = pmul(
114
- internal::pchebevl<T, 7>::run(
115
- psub(pdiv(pset1<T>(32.0f), y), pset1<T>(2.0f)), B),
116
- prsqrt(y));
117
- // TODO: Perhaps instead check whether all packet elements are in
118
- // [-8, 8] and evaluate a branch based off of that. It's possible
119
- // in practice most elements are in this region.
120
- return pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
121
- }
122
- };
123
-
124
- template <typename T>
125
- struct generic_i0e<T, double> {
126
- EIGEN_DEVICE_FUNC
127
- static EIGEN_STRONG_INLINE T run(const T& x) {
128
- /* i0e.c
129
- *
130
- * Modified Bessel function of order zero,
131
- * exponentially scaled
132
- *
133
- *
134
- *
135
- * SYNOPSIS:
136
- *
137
- * double x, y, i0e();
138
- *
139
- * y = i0e( x );
140
- *
141
- *
142
- *
143
- * DESCRIPTION:
144
- *
145
- * Returns exponentially scaled modified Bessel function
146
- * of order zero of the argument.
147
- *
148
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
149
- *
150
- *
151
- *
152
- * ACCURACY:
153
- *
154
- * Relative error:
155
- * arithmetic domain # trials peak rms
156
- * IEEE 0,30 30000 5.4e-16 1.2e-16
157
- * See i0().
158
- *
159
- */
160
-
161
- const double A[] = {-4.41534164647933937950E-18, 3.33079451882223809783E-17,
162
- -2.43127984654795469359E-16, 1.71539128555513303061E-15,
163
- -1.16853328779934516808E-14, 7.67618549860493561688E-14,
164
- -4.85644678311192946090E-13, 2.95505266312963983461E-12,
165
- -1.72682629144155570723E-11, 9.67580903537323691224E-11,
166
- -5.18979560163526290666E-10, 2.65982372468238665035E-9,
167
- -1.30002500998624804212E-8, 6.04699502254191894932E-8,
168
- -2.67079385394061173391E-7, 1.11738753912010371815E-6,
169
- -4.41673835845875056359E-6, 1.64484480707288970893E-5,
170
- -5.75419501008210370398E-5, 1.88502885095841655729E-4,
171
- -5.76375574538582365885E-4, 1.63947561694133579842E-3,
172
- -4.32430999505057594430E-3, 1.05464603945949983183E-2,
173
- -2.37374148058994688156E-2, 4.93052842396707084878E-2,
174
- -9.49010970480476444210E-2, 1.71620901522208775349E-1,
175
- -3.04682672343198398683E-1, 6.76795274409476084995E-1};
176
- const double B[] = {
177
- -7.23318048787475395456E-18, -4.83050448594418207126E-18,
178
- 4.46562142029675999901E-17, 3.46122286769746109310E-17,
179
- -2.82762398051658348494E-16, -3.42548561967721913462E-16,
180
- 1.77256013305652638360E-15, 3.81168066935262242075E-15,
181
- -9.55484669882830764870E-15, -4.15056934728722208663E-14,
182
- 1.54008621752140982691E-14, 3.85277838274214270114E-13,
183
- 7.18012445138366623367E-13, -1.79417853150680611778E-12,
184
- -1.32158118404477131188E-11, -3.14991652796324136454E-11,
185
- 1.18891471078464383424E-11, 4.94060238822496958910E-10,
186
- 3.39623202570838634515E-9, 2.26666899049817806459E-8,
187
- 2.04891858946906374183E-7, 2.89137052083475648297E-6,
188
- 6.88975834691682398426E-5, 3.36911647825569408990E-3,
189
- 8.04490411014108831608E-1};
190
- T y = pabs(x);
191
- T y_le_eight = internal::pchebevl<T, 30>::run(
192
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A);
193
- T y_gt_eight = pmul(
194
- internal::pchebevl<T, 25>::run(
195
- psub(pdiv(pset1<T>(32.0), y), pset1<T>(2.0)), B),
196
- prsqrt(y));
197
- // TODO: Perhaps instead check whether all packet elements are in
198
- // [-8, 8] and evaluate a branch based off of that. It's possible
199
- // in practice most elements are in this region.
200
- return pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
201
- }
202
- };
203
-
204
- template <typename T>
205
- struct bessel_i0e_impl {
206
- EIGEN_DEVICE_FUNC
207
- static EIGEN_STRONG_INLINE T run(const T x) {
208
- return generic_i0e<T>::run(x);
209
- }
210
- };
211
-
212
- template <typename Scalar>
213
- struct bessel_i0_retval {
214
- typedef Scalar type;
215
- };
216
-
217
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
218
- struct generic_i0 {
219
- EIGEN_DEVICE_FUNC
220
- static EIGEN_STRONG_INLINE T run(const T& x) {
221
- return pmul(
222
- pexp(pabs(x)),
223
- generic_i0e<T, ScalarType>::run(x));
224
- }
225
- };
226
-
227
- template <typename T>
228
- struct bessel_i0_impl {
229
- EIGEN_DEVICE_FUNC
230
- static EIGEN_STRONG_INLINE T run(const T x) {
231
- return generic_i0<T>::run(x);
232
- }
233
- };
234
-
235
- template <typename Scalar>
236
- struct bessel_i1e_retval {
237
- typedef Scalar type;
238
- };
239
-
240
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type >
241
- struct generic_i1e {
242
- EIGEN_DEVICE_FUNC
243
- static EIGEN_STRONG_INLINE T run(const T&) {
244
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
245
- THIS_TYPE_IS_NOT_SUPPORTED);
246
- return ScalarType(0);
247
- }
248
- };
249
-
250
- template <typename T>
251
- struct generic_i1e<T, float> {
252
- EIGEN_DEVICE_FUNC
253
- static EIGEN_STRONG_INLINE T run(const T& x) {
254
- /* i1ef.c
255
- *
256
- * Modified Bessel function of order one,
257
- * exponentially scaled
258
- *
259
- *
260
- *
261
- * SYNOPSIS:
262
- *
263
- * float x, y, i1ef();
264
- *
265
- * y = i1ef( x );
266
- *
267
- *
268
- *
269
- * DESCRIPTION:
270
- *
271
- * Returns exponentially scaled modified Bessel function
272
- * of order one of the argument.
273
- *
274
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
275
- *
276
- *
277
- *
278
- * ACCURACY:
279
- *
280
- * Relative error:
281
- * arithmetic domain # trials peak rms
282
- * IEEE 0, 30 30000 1.5e-6 1.5e-7
283
- * See i1().
284
- *
285
- */
286
- const float A[] = {9.38153738649577178388E-9f, -4.44505912879632808065E-8f,
287
- 2.00329475355213526229E-7f, -8.56872026469545474066E-7f,
288
- 3.47025130813767847674E-6f, -1.32731636560394358279E-5f,
289
- 4.78156510755005422638E-5f, -1.61760815825896745588E-4f,
290
- 5.12285956168575772895E-4f, -1.51357245063125314899E-3f,
291
- 4.15642294431288815669E-3f, -1.05640848946261981558E-2f,
292
- 2.47264490306265168283E-2f, -5.29459812080949914269E-2f,
293
- 1.02643658689847095384E-1f, -1.76416518357834055153E-1f,
294
- 2.52587186443633654823E-1f};
295
-
296
- const float B[] = {-3.83538038596423702205E-9f, -2.63146884688951950684E-8f,
297
- -2.51223623787020892529E-7f, -3.88256480887769039346E-6f,
298
- -1.10588938762623716291E-4f, -9.76109749136146840777E-3f,
299
- 7.78576235018280120474E-1f};
300
-
301
-
302
- T y = pabs(x);
303
- T y_le_eight = pmul(y, internal::pchebevl<T, 17>::run(
304
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A));
305
- T y_gt_eight = pmul(
306
- internal::pchebevl<T, 7>::run(
307
- psub(pdiv(pset1<T>(32.0f), y),
308
- pset1<T>(2.0f)), B),
309
- prsqrt(y));
310
- // TODO: Perhaps instead check whether all packet elements are in
311
- // [-8, 8] and evaluate a branch based off of that. It's possible
312
- // in practice most elements are in this region.
313
- y = pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
314
- return pselect(pcmp_lt(x, pset1<T>(0.0f)), pnegate(y), y);
315
- }
316
- };
317
-
318
- template <typename T>
319
- struct generic_i1e<T, double> {
320
- EIGEN_DEVICE_FUNC
321
- static EIGEN_STRONG_INLINE T run(const T& x) {
322
- /* i1e.c
323
- *
324
- * Modified Bessel function of order one,
325
- * exponentially scaled
326
- *
327
- *
328
- *
329
- * SYNOPSIS:
330
- *
331
- * double x, y, i1e();
332
- *
333
- * y = i1e( x );
334
- *
335
- *
336
- *
337
- * DESCRIPTION:
338
- *
339
- * Returns exponentially scaled modified Bessel function
340
- * of order one of the argument.
341
- *
342
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
343
- *
344
- *
345
- *
346
- * ACCURACY:
347
- *
348
- * Relative error:
349
- * arithmetic domain # trials peak rms
350
- * IEEE 0, 30 30000 2.0e-15 2.0e-16
351
- * See i1().
352
- *
353
- */
354
- const double A[] = {2.77791411276104639959E-18, -2.11142121435816608115E-17,
355
- 1.55363195773620046921E-16, -1.10559694773538630805E-15,
356
- 7.60068429473540693410E-15, -5.04218550472791168711E-14,
357
- 3.22379336594557470981E-13, -1.98397439776494371520E-12,
358
- 1.17361862988909016308E-11, -6.66348972350202774223E-11,
359
- 3.62559028155211703701E-10, -1.88724975172282928790E-9,
360
- 9.38153738649577178388E-9, -4.44505912879632808065E-8,
361
- 2.00329475355213526229E-7, -8.56872026469545474066E-7,
362
- 3.47025130813767847674E-6, -1.32731636560394358279E-5,
363
- 4.78156510755005422638E-5, -1.61760815825896745588E-4,
364
- 5.12285956168575772895E-4, -1.51357245063125314899E-3,
365
- 4.15642294431288815669E-3, -1.05640848946261981558E-2,
366
- 2.47264490306265168283E-2, -5.29459812080949914269E-2,
367
- 1.02643658689847095384E-1, -1.76416518357834055153E-1,
368
- 2.52587186443633654823E-1};
369
- const double B[] = {
370
- 7.51729631084210481353E-18, 4.41434832307170791151E-18,
371
- -4.65030536848935832153E-17, -3.20952592199342395980E-17,
372
- 2.96262899764595013876E-16, 3.30820231092092828324E-16,
373
- -1.88035477551078244854E-15, -3.81440307243700780478E-15,
374
- 1.04202769841288027642E-14, 4.27244001671195135429E-14,
375
- -2.10154184277266431302E-14, -4.08355111109219731823E-13,
376
- -7.19855177624590851209E-13, 2.03562854414708950722E-12,
377
- 1.41258074366137813316E-11, 3.25260358301548823856E-11,
378
- -1.89749581235054123450E-11, -5.58974346219658380687E-10,
379
- -3.83538038596423702205E-9, -2.63146884688951950684E-8,
380
- -2.51223623787020892529E-7, -3.88256480887769039346E-6,
381
- -1.10588938762623716291E-4, -9.76109749136146840777E-3,
382
- 7.78576235018280120474E-1};
383
- T y = pabs(x);
384
- T y_le_eight = pmul(y, internal::pchebevl<T, 29>::run(
385
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A));
386
- T y_gt_eight = pmul(
387
- internal::pchebevl<T, 25>::run(
388
- psub(pdiv(pset1<T>(32.0), y),
389
- pset1<T>(2.0)), B),
390
- prsqrt(y));
391
- // TODO: Perhaps instead check whether all packet elements are in
392
- // [-8, 8] and evaluate a branch based off of that. It's possible
393
- // in practice most elements are in this region.
394
- y = pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
395
- return pselect(pcmp_lt(x, pset1<T>(0.0)), pnegate(y), y);
396
- }
397
- };
398
-
399
- template <typename T>
400
- struct bessel_i1e_impl {
401
- EIGEN_DEVICE_FUNC
402
- static EIGEN_STRONG_INLINE T run(const T x) {
403
- return generic_i1e<T>::run(x);
404
- }
405
- };
406
-
407
- template <typename T>
408
- struct bessel_i1_retval {
409
- typedef T type;
410
- };
411
-
412
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
413
- struct generic_i1 {
414
- EIGEN_DEVICE_FUNC
415
- static EIGEN_STRONG_INLINE T run(const T& x) {
416
- return pmul(
417
- pexp(pabs(x)),
418
- generic_i1e<T, ScalarType>::run(x));
419
- }
420
- };
421
-
422
- template <typename T>
423
- struct bessel_i1_impl {
424
- EIGEN_DEVICE_FUNC
425
- static EIGEN_STRONG_INLINE T run(const T x) {
426
- return generic_i1<T>::run(x);
427
- }
428
- };
429
-
430
- template <typename T>
431
- struct bessel_k0e_retval {
432
- typedef T type;
433
- };
434
-
435
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
436
- struct generic_k0e {
437
- EIGEN_DEVICE_FUNC
438
- static EIGEN_STRONG_INLINE T run(const T&) {
439
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
440
- THIS_TYPE_IS_NOT_SUPPORTED);
441
- return ScalarType(0);
442
- }
443
- };
444
-
445
- template <typename T>
446
- struct generic_k0e<T, float> {
447
- EIGEN_DEVICE_FUNC
448
- static EIGEN_STRONG_INLINE T run(const T& x) {
449
- /* k0ef.c
450
- * Modified Bessel function, third kind, order zero,
451
- * exponentially scaled
452
- *
453
- *
454
- *
455
- * SYNOPSIS:
456
- *
457
- * float x, y, k0ef();
458
- *
459
- * y = k0ef( x );
460
- *
461
- *
462
- *
463
- * DESCRIPTION:
464
- *
465
- * Returns exponentially scaled modified Bessel function
466
- * of the third kind of order zero of the argument.
467
- *
468
- *
469
- *
470
- * ACCURACY:
471
- *
472
- * Relative error:
473
- * arithmetic domain # trials peak rms
474
- * IEEE 0, 30 30000 8.1e-7 7.8e-8
475
- * See k0().
476
- *
477
- */
478
-
479
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
480
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
481
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
482
- -5.35327393233902768720E-1f};
483
-
484
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
485
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
486
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
487
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
488
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
489
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
490
- const T two = pset1<T>(2.0);
491
- T x_le_two = internal::pchebevl<T, 7>::run(
492
- pmadd(x, x, pset1<T>(-2.0)), A);
493
- x_le_two = pmadd(
494
- generic_i0<T, float>::run(x), pnegate(
495
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
496
- x_le_two = pmul(pexp(x), x_le_two);
497
- T x_gt_two = pmul(
498
- internal::pchebevl<T, 10>::run(
499
- psub(pdiv(pset1<T>(8.0), x), two), B),
500
- prsqrt(x));
501
- return pselect(
502
- pcmp_le(x, pset1<T>(0.0)),
503
- MAXNUM,
504
- pselect(pcmp_le(x, two), x_le_two, x_gt_two));
505
- }
506
- };
507
-
508
- template <typename T>
509
- struct generic_k0e<T, double> {
510
- EIGEN_DEVICE_FUNC
511
- static EIGEN_STRONG_INLINE T run(const T& x) {
512
- /* k0e.c
513
- * Modified Bessel function, third kind, order zero,
514
- * exponentially scaled
515
- *
516
- *
517
- *
518
- * SYNOPSIS:
519
- *
520
- * double x, y, k0e();
521
- *
522
- * y = k0e( x );
523
- *
524
- *
525
- *
526
- * DESCRIPTION:
527
- *
528
- * Returns exponentially scaled modified Bessel function
529
- * of the third kind of order zero of the argument.
530
- *
531
- *
532
- *
533
- * ACCURACY:
534
- *
535
- * Relative error:
536
- * arithmetic domain # trials peak rms
537
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
538
- * See k0().
539
- *
540
- */
541
-
542
- const double A[] = {
543
- 1.37446543561352307156E-16,
544
- 4.25981614279661018399E-14,
545
- 1.03496952576338420167E-11,
546
- 1.90451637722020886025E-9,
547
- 2.53479107902614945675E-7,
548
- 2.28621210311945178607E-5,
549
- 1.26461541144692592338E-3,
550
- 3.59799365153615016266E-2,
551
- 3.44289899924628486886E-1,
552
- -5.35327393233902768720E-1};
553
- const double B[] = {
554
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
555
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
556
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
557
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
558
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
559
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
560
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
561
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
562
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
563
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
564
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
565
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
566
- 2.44030308206595545468E0
567
- };
568
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
569
- const T two = pset1<T>(2.0);
570
- T x_le_two = internal::pchebevl<T, 10>::run(
571
- pmadd(x, x, pset1<T>(-2.0)), A);
572
- x_le_two = pmadd(
573
- generic_i0<T, double>::run(x), pmul(
574
- pset1<T>(-1.0), plog(pmul(pset1<T>(0.5), x))), x_le_two);
575
- x_le_two = pmul(pexp(x), x_le_two);
576
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
577
- T x_gt_two = pmul(
578
- internal::pchebevl<T, 25>::run(
579
- psub(pdiv(pset1<T>(8.0), x), two), B),
580
- prsqrt(x));
581
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
582
- }
583
- };
584
-
585
- template <typename T>
586
- struct bessel_k0e_impl {
587
- EIGEN_DEVICE_FUNC
588
- static EIGEN_STRONG_INLINE T run(const T x) {
589
- return generic_k0e<T>::run(x);
590
- }
591
- };
592
-
593
- template <typename T>
594
- struct bessel_k0_retval {
595
- typedef T type;
596
- };
597
-
598
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
599
- struct generic_k0 {
600
- EIGEN_DEVICE_FUNC
601
- static EIGEN_STRONG_INLINE T run(const T&) {
602
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
603
- THIS_TYPE_IS_NOT_SUPPORTED);
604
- return ScalarType(0);
605
- }
606
- };
607
-
608
- template <typename T>
609
- struct generic_k0<T, float> {
610
- EIGEN_DEVICE_FUNC
611
- static EIGEN_STRONG_INLINE T run(const T& x) {
612
- /* k0f.c
613
- * Modified Bessel function, third kind, order zero
614
- *
615
- *
616
- *
617
- * SYNOPSIS:
618
- *
619
- * float x, y, k0f();
620
- *
621
- * y = k0f( x );
622
- *
623
- *
624
- *
625
- * DESCRIPTION:
626
- *
627
- * Returns modified Bessel function of the third kind
628
- * of order zero of the argument.
629
- *
630
- * The range is partitioned into the two intervals [0,8] and
631
- * (8, infinity). Chebyshev polynomial expansions are employed
632
- * in each interval.
633
- *
634
- *
635
- *
636
- * ACCURACY:
637
- *
638
- * Tested at 2000 random points between 0 and 8. Peak absolute
639
- * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
640
- * Relative error:
641
- * arithmetic domain # trials peak rms
642
- * IEEE 0, 30 30000 7.8e-7 8.5e-8
643
- *
644
- * ERROR MESSAGES:
645
- *
646
- * message condition value returned
647
- * K0 domain x <= 0 MAXNUM
648
- *
649
- */
650
-
651
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
652
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
653
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
654
- -5.35327393233902768720E-1f};
655
-
656
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
657
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
658
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
659
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
660
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
661
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
662
- const T two = pset1<T>(2.0);
663
- T x_le_two = internal::pchebevl<T, 7>::run(
664
- pmadd(x, x, pset1<T>(-2.0)), A);
665
- x_le_two = pmadd(
666
- generic_i0<T, float>::run(x), pnegate(
667
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
668
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
669
- T x_gt_two = pmul(
670
- pmul(
671
- pexp(pnegate(x)),
672
- internal::pchebevl<T, 10>::run(
673
- psub(pdiv(pset1<T>(8.0), x), two), B)),
674
- prsqrt(x));
675
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
676
- }
677
- };
678
-
679
- template <typename T>
680
- struct generic_k0<T, double> {
681
- EIGEN_DEVICE_FUNC
682
- static EIGEN_STRONG_INLINE T run(const T& x) {
683
- /*
684
- *
685
- * Modified Bessel function, third kind, order zero,
686
- * exponentially scaled
687
- *
688
- *
689
- *
690
- * SYNOPSIS:
691
- *
692
- * double x, y, k0();
693
- *
694
- * y = k0( x );
695
- *
696
- *
697
- *
698
- * DESCRIPTION:
699
- *
700
- * Returns exponentially scaled modified Bessel function
701
- * of the third kind of order zero of the argument.
702
- *
703
- *
704
- *
705
- * ACCURACY:
706
- *
707
- * Relative error:
708
- * arithmetic domain # trials peak rms
709
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
710
- * See k0().
711
- *
712
- */
713
- const double A[] = {
714
- 1.37446543561352307156E-16,
715
- 4.25981614279661018399E-14,
716
- 1.03496952576338420167E-11,
717
- 1.90451637722020886025E-9,
718
- 2.53479107902614945675E-7,
719
- 2.28621210311945178607E-5,
720
- 1.26461541144692592338E-3,
721
- 3.59799365153615016266E-2,
722
- 3.44289899924628486886E-1,
723
- -5.35327393233902768720E-1};
724
- const double B[] = {
725
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
726
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
727
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
728
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
729
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
730
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
731
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
732
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
733
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
734
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
735
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
736
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
737
- 2.44030308206595545468E0
738
- };
739
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
740
- const T two = pset1<T>(2.0);
741
- T x_le_two = internal::pchebevl<T, 10>::run(
742
- pmadd(x, x, pset1<T>(-2.0)), A);
743
- x_le_two = pmadd(
744
- generic_i0<T, double>::run(x), pnegate(
745
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
746
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
747
- T x_gt_two = pmul(
748
- pmul(
749
- pexp(-x),
750
- internal::pchebevl<T, 25>::run(
751
- psub(pdiv(pset1<T>(8.0), x), two), B)),
752
- prsqrt(x));
753
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
754
- }
755
- };
756
-
757
- template <typename T>
758
- struct bessel_k0_impl {
759
- EIGEN_DEVICE_FUNC
760
- static EIGEN_STRONG_INLINE T run(const T x) {
761
- return generic_k0<T>::run(x);
762
- }
763
- };
764
-
765
- template <typename T>
766
- struct bessel_k1e_retval {
767
- typedef T type;
768
- };
769
-
770
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
771
- struct generic_k1e {
772
- EIGEN_DEVICE_FUNC
773
- static EIGEN_STRONG_INLINE T run(const T&) {
774
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
775
- THIS_TYPE_IS_NOT_SUPPORTED);
776
- return ScalarType(0);
777
- }
778
- };
779
-
780
- template <typename T>
781
- struct generic_k1e<T, float> {
782
- EIGEN_DEVICE_FUNC
783
- static EIGEN_STRONG_INLINE T run(const T& x) {
784
- /* k1ef.c
785
- *
786
- * Modified Bessel function, third kind, order one,
787
- * exponentially scaled
788
- *
789
- *
790
- *
791
- * SYNOPSIS:
792
- *
793
- * float x, y, k1ef();
794
- *
795
- * y = k1ef( x );
796
- *
797
- *
798
- *
799
- * DESCRIPTION:
800
- *
801
- * Returns exponentially scaled modified Bessel function
802
- * of the third kind of order one of the argument:
803
- *
804
- * k1e(x) = exp(x) * k1(x).
805
- *
806
- *
807
- *
808
- * ACCURACY:
809
- *
810
- * Relative error:
811
- * arithmetic domain # trials peak rms
812
- * IEEE 0, 30 30000 4.9e-7 6.7e-8
813
- * See k1().
814
- *
815
- */
816
-
817
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
818
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
819
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
820
- 1.52530022733894777053E0f};
821
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
822
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
823
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
824
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
825
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
826
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
827
- const T two = pset1<T>(2.0);
828
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
829
- pmadd(x, x, pset1<T>(-2.0)), A), x);
830
- x_le_two = pmadd(
831
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
832
- x_le_two = pmul(x_le_two, pexp(x));
833
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
834
- T x_gt_two = pmul(
835
- internal::pchebevl<T, 10>::run(
836
- psub(pdiv(pset1<T>(8.0), x), two), B),
837
- prsqrt(x));
838
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
839
- }
840
- };
841
-
842
- template <typename T>
843
- struct generic_k1e<T, double> {
844
- EIGEN_DEVICE_FUNC
845
- static EIGEN_STRONG_INLINE T run(const T& x) {
846
- /* k1e.c
847
- *
848
- * Modified Bessel function, third kind, order one,
849
- * exponentially scaled
850
- *
851
- *
852
- *
853
- * SYNOPSIS:
854
- *
855
- * double x, y, k1e();
856
- *
857
- * y = k1e( x );
858
- *
859
- *
860
- *
861
- * DESCRIPTION:
862
- *
863
- * Returns exponentially scaled modified Bessel function
864
- * of the third kind of order one of the argument:
865
- *
866
- * k1e(x) = exp(x) * k1(x).
867
- *
868
- *
869
- *
870
- * ACCURACY:
871
- *
872
- * Relative error:
873
- * arithmetic domain # trials peak rms
874
- * IEEE 0, 30 30000 7.8e-16 1.2e-16
875
- * See k1().
876
- *
877
- */
878
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
879
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
880
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
881
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
882
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
883
- 1.52530022733894777053E0};
884
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
885
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
886
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
887
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
888
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
889
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
890
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
891
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
892
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
893
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
894
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
895
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
896
- 2.72062619048444266945E0};
897
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
898
- const T two = pset1<T>(2.0);
899
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
900
- pmadd(x, x, pset1<T>(-2.0)), A), x);
901
- x_le_two = pmadd(
902
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
903
- x_le_two = pmul(x_le_two, pexp(x));
904
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
905
- T x_gt_two = pmul(
906
- internal::pchebevl<T, 25>::run(
907
- psub(pdiv(pset1<T>(8.0), x), two), B),
908
- prsqrt(x));
909
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
910
- }
911
- };
912
-
913
- template <typename T>
914
- struct bessel_k1e_impl {
915
- EIGEN_DEVICE_FUNC
916
- static EIGEN_STRONG_INLINE T run(const T x) {
917
- return generic_k1e<T>::run(x);
918
- }
919
- };
920
-
921
- template <typename T>
922
- struct bessel_k1_retval {
923
- typedef T type;
924
- };
925
-
926
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
927
- struct generic_k1 {
928
- EIGEN_DEVICE_FUNC
929
- static EIGEN_STRONG_INLINE T run(const T&) {
930
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
931
- THIS_TYPE_IS_NOT_SUPPORTED);
932
- return ScalarType(0);
933
- }
934
- };
935
-
936
- template <typename T>
937
- struct generic_k1<T, float> {
938
- EIGEN_DEVICE_FUNC
939
- static EIGEN_STRONG_INLINE T run(const T& x) {
940
- /* k1f.c
941
- * Modified Bessel function, third kind, order one
942
- *
943
- *
944
- *
945
- * SYNOPSIS:
946
- *
947
- * float x, y, k1f();
948
- *
949
- * y = k1f( x );
950
- *
951
- *
952
- *
953
- * DESCRIPTION:
954
- *
955
- * Computes the modified Bessel function of the third kind
956
- * of order one of the argument.
957
- *
958
- * The range is partitioned into the two intervals [0,2] and
959
- * (2, infinity). Chebyshev polynomial expansions are employed
960
- * in each interval.
961
- *
962
- *
963
- *
964
- * ACCURACY:
965
- *
966
- * Relative error:
967
- * arithmetic domain # trials peak rms
968
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
969
- *
970
- * ERROR MESSAGES:
971
- *
972
- * message condition value returned
973
- * k1 domain x <= 0 MAXNUM
974
- *
975
- */
976
-
977
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
978
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
979
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
980
- 1.52530022733894777053E0f};
981
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
982
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
983
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
984
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
985
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
986
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
987
- const T two = pset1<T>(2.0);
988
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
989
- pmadd(x, x, pset1<T>(-2.0)), A), x);
990
- x_le_two = pmadd(
991
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
992
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
993
- T x_gt_two = pmul(
994
- pexp(pnegate(x)),
995
- pmul(
996
- internal::pchebevl<T, 10>::run(
997
- psub(pdiv(pset1<T>(8.0), x), two), B),
998
- prsqrt(x)));
999
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1000
- }
1001
- };
1002
-
1003
- template <typename T>
1004
- struct generic_k1<T, double> {
1005
- EIGEN_DEVICE_FUNC
1006
- static EIGEN_STRONG_INLINE T run(const T& x) {
1007
- /* k1.c
1008
- * Modified Bessel function, third kind, order one
1009
- *
1010
- *
1011
- *
1012
- * SYNOPSIS:
1013
- *
1014
- * float x, y, k1f();
1015
- *
1016
- * y = k1f( x );
1017
- *
1018
- *
1019
- *
1020
- * DESCRIPTION:
1021
- *
1022
- * Computes the modified Bessel function of the third kind
1023
- * of order one of the argument.
1024
- *
1025
- * The range is partitioned into the two intervals [0,2] and
1026
- * (2, infinity). Chebyshev polynomial expansions are employed
1027
- * in each interval.
1028
- *
1029
- *
1030
- *
1031
- * ACCURACY:
1032
- *
1033
- * Relative error:
1034
- * arithmetic domain # trials peak rms
1035
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
1036
- *
1037
- * ERROR MESSAGES:
1038
- *
1039
- * message condition value returned
1040
- * k1 domain x <= 0 MAXNUM
1041
- *
1042
- */
1043
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
1044
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
1045
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
1046
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
1047
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
1048
- 1.52530022733894777053E0};
1049
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
1050
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
1051
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
1052
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
1053
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
1054
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
1055
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
1056
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
1057
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
1058
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
1059
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
1060
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
1061
- 2.72062619048444266945E0};
1062
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
1063
- const T two = pset1<T>(2.0);
1064
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
1065
- pmadd(x, x, pset1<T>(-2.0)), A), x);
1066
- x_le_two = pmadd(
1067
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
1068
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
1069
- T x_gt_two = pmul(
1070
- pexp(-x),
1071
- pmul(
1072
- internal::pchebevl<T, 25>::run(
1073
- psub(pdiv(pset1<T>(8.0), x), two), B),
1074
- prsqrt(x)));
1075
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1076
- }
1077
- };
1078
-
1079
- template <typename T>
1080
- struct bessel_k1_impl {
1081
- EIGEN_DEVICE_FUNC
1082
- static EIGEN_STRONG_INLINE T run(const T x) {
1083
- return generic_k1<T>::run(x);
1084
- }
1085
- };
1086
-
1087
- template <typename T>
1088
- struct bessel_j0_retval {
1089
- typedef T type;
1090
- };
1091
-
1092
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1093
- struct generic_j0 {
1094
- EIGEN_DEVICE_FUNC
1095
- static EIGEN_STRONG_INLINE T run(const T&) {
1096
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1097
- THIS_TYPE_IS_NOT_SUPPORTED);
1098
- return ScalarType(0);
1099
- }
1100
- };
1101
-
1102
- template <typename T>
1103
- struct generic_j0<T, float> {
1104
- EIGEN_DEVICE_FUNC
1105
- static EIGEN_STRONG_INLINE T run(const T& x) {
1106
- /* j0f.c
1107
- * Bessel function of order zero
1108
- *
1109
- *
1110
- *
1111
- * SYNOPSIS:
1112
- *
1113
- * float x, y, j0f();
1114
- *
1115
- * y = j0f( x );
1116
- *
1117
- *
1118
- *
1119
- * DESCRIPTION:
1120
- *
1121
- * Returns Bessel function of order zero of the argument.
1122
- *
1123
- * The domain is divided into the intervals [0, 2] and
1124
- * (2, infinity). In the first interval the following polynomial
1125
- * approximation is used:
1126
- *
1127
- *
1128
- * 2 2 2
1129
- * (w - r ) (w - r ) (w - r ) P(w)
1130
- * 1 2 3
1131
- *
1132
- * 2
1133
- * where w = x and the three r's are zeros of the function.
1134
- *
1135
- * In the second interval, the modulus and phase are approximated
1136
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1137
- * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
1138
- *
1139
- * j0(x) = Modulus(x) cos( Phase(x) ).
1140
- *
1141
- *
1142
- *
1143
- * ACCURACY:
1144
- *
1145
- * Absolute error:
1146
- * arithmetic domain # trials peak rms
1147
- * IEEE 0, 2 100000 1.3e-7 3.6e-8
1148
- * IEEE 2, 32 100000 1.9e-7 5.4e-8
1149
- *
1150
- */
1151
-
1152
- const float JP[] = {-6.068350350393235E-008f, 6.388945720783375E-006f,
1153
- -3.969646342510940E-004f, 1.332913422519003E-002f,
1154
- -1.729150680240724E-001f};
1155
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1156
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1157
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1158
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1159
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1160
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1161
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1162
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1163
- const T DR1 = pset1<T>(5.78318596294678452118f);
1164
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1165
- T y = pabs(x);
1166
- T z = pmul(y, y);
1167
- T y_le_two = pselect(
1168
- pcmp_lt(y, pset1<T>(1.0e-3f)),
1169
- pmadd(z, pset1<T>(-0.25f), pset1<T>(1.0f)),
1170
- pmul(psub(z, DR1), internal::ppolevl<T, 4>::run(z, JP)));
1171
- T q = pdiv(pset1<T>(1.0f), y);
1172
- T w = prsqrt(y);
1173
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1174
- w = pmul(q, q);
1175
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH), NEG_PIO4F);
1176
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1177
- return pselect(pcmp_le(y, pset1<T>(2.0)), y_le_two, y_gt_two);
1178
- }
1179
- };
1180
-
1181
- template <typename T>
1182
- struct generic_j0<T, double> {
1183
- EIGEN_DEVICE_FUNC
1184
- static EIGEN_STRONG_INLINE T run(const T& x) {
1185
- /* j0.c
1186
- * Bessel function of order zero
1187
- *
1188
- *
1189
- *
1190
- * SYNOPSIS:
1191
- *
1192
- * double x, y, j0();
1193
- *
1194
- * y = j0( x );
1195
- *
1196
- *
1197
- *
1198
- * DESCRIPTION:
1199
- *
1200
- * Returns Bessel function of order zero of the argument.
1201
- *
1202
- * The domain is divided into the intervals [0, 5] and
1203
- * (5, infinity). In the first interval the following rational
1204
- * approximation is used:
1205
- *
1206
- *
1207
- * 2 2
1208
- * (w - r ) (w - r ) P (w) / Q (w)
1209
- * 1 2 3 8
1210
- *
1211
- * 2
1212
- * where w = x and the two r's are zeros of the function.
1213
- *
1214
- * In the second interval, the Hankel asymptotic expansion
1215
- * is employed with two rational functions of degree 6/6
1216
- * and 7/7.
1217
- *
1218
- *
1219
- *
1220
- * ACCURACY:
1221
- *
1222
- * Absolute error:
1223
- * arithmetic domain # trials peak rms
1224
- * DEC 0, 30 10000 4.4e-17 6.3e-18
1225
- * IEEE 0, 30 60000 4.2e-16 1.1e-16
1226
- *
1227
- */
1228
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1229
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1230
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1231
- 9.99999999999999997821E-1};
1232
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1233
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1234
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1235
- 1.00000000000000000218E0};
1236
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1237
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1238
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1239
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1240
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1241
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1242
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1243
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1244
- const double RP[] = {-4.79443220978201773821E9, 1.95617491946556577543E12,
1245
- -2.49248344360967716204E14, 9.70862251047306323952E15};
1246
- const double RQ[] = {1.00000000000000000000E0, 4.99563147152651017219E2,
1247
- 1.73785401676374683123E5, 4.84409658339962045305E7,
1248
- 1.11855537045356834862E10, 2.11277520115489217587E12,
1249
- 3.10518229857422583814E14, 3.18121955943204943306E16,
1250
- 1.71086294081043136091E18};
1251
- const T DR1 = pset1<T>(5.78318596294678452118E0);
1252
- const T DR2 = pset1<T>(3.04712623436620863991E1);
1253
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1254
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* pi / 4 */
1255
-
1256
- T y = pabs(x);
1257
- T z = pmul(y, y);
1258
- T y_le_five = pselect(
1259
- pcmp_lt(y, pset1<T>(1.0e-5)),
1260
- pmadd(z, pset1<T>(-0.25), pset1<T>(1.0)),
1261
- pmul(pmul(psub(z, DR1), psub(z, DR2)),
1262
- pdiv(internal::ppolevl<T, 3>::run(z, RP),
1263
- internal::ppolevl<T, 8>::run(z, RQ))));
1264
- T s = pdiv(pset1<T>(25.0), z);
1265
- T p = pdiv(
1266
- internal::ppolevl<T, 6>::run(s, PP),
1267
- internal::ppolevl<T, 6>::run(s, PQ));
1268
- T q = pdiv(
1269
- internal::ppolevl<T, 7>::run(s, QP),
1270
- internal::ppolevl<T, 7>::run(s, QQ));
1271
- T yn = padd(y, NEG_PIO4);
1272
- T w = pdiv(pset1<T>(-5.0), y);
1273
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1274
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1275
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1276
- }
1277
- };
1278
-
1279
- template <typename T>
1280
- struct bessel_j0_impl {
1281
- EIGEN_DEVICE_FUNC
1282
- static EIGEN_STRONG_INLINE T run(const T x) {
1283
- return generic_j0<T>::run(x);
1284
- }
1285
- };
1286
-
1287
- template <typename T>
1288
- struct bessel_y0_retval {
1289
- typedef T type;
1290
- };
1291
-
1292
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1293
- struct generic_y0 {
1294
- EIGEN_DEVICE_FUNC
1295
- static EIGEN_STRONG_INLINE T run(const T&) {
1296
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1297
- THIS_TYPE_IS_NOT_SUPPORTED);
1298
- return ScalarType(0);
1299
- }
1300
- };
1301
-
1302
- template <typename T>
1303
- struct generic_y0<T, float> {
1304
- EIGEN_DEVICE_FUNC
1305
- static EIGEN_STRONG_INLINE T run(const T& x) {
1306
- /* j0f.c
1307
- * Bessel function of the second kind, order zero
1308
- *
1309
- *
1310
- *
1311
- * SYNOPSIS:
1312
- *
1313
- * float x, y, y0f();
1314
- *
1315
- * y = y0f( x );
1316
- *
1317
- *
1318
- *
1319
- * DESCRIPTION:
1320
- *
1321
- * Returns Bessel function of the second kind, of order
1322
- * zero, of the argument.
1323
- *
1324
- * The domain is divided into the intervals [0, 2] and
1325
- * (2, infinity). In the first interval a rational approximation
1326
- * R(x) is employed to compute
1327
- *
1328
- * 2 2 2
1329
- * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
1330
- * 1 2 3
1331
- *
1332
- * Thus a call to j0() is required. The three zeros are removed
1333
- * from R(x) to improve its numerical stability.
1334
- *
1335
- * In the second interval, the modulus and phase are approximated
1336
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1337
- * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
1338
- *
1339
- * y0(x) = Modulus(x) sin( Phase(x) ).
1340
- *
1341
- *
1342
- *
1343
- *
1344
- * ACCURACY:
1345
- *
1346
- * Absolute error, when y0(x) < 1; else relative error:
1347
- *
1348
- * arithmetic domain # trials peak rms
1349
- * IEEE 0, 2 100000 2.4e-7 3.4e-8
1350
- * IEEE 2, 32 100000 1.8e-7 5.3e-8
1351
- *
1352
- */
1353
-
1354
- const float YP[] = {9.454583683980369E-008f, -9.413212653797057E-006f,
1355
- 5.344486707214273E-004f, -1.584289289821316E-002f,
1356
- 1.707584643733568E-001f};
1357
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1358
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1359
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1360
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1361
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1362
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1363
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1364
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1365
- const T YZ1 = pset1<T>(0.43221455686510834878f);
1366
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2 / pi */
1367
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1368
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1369
- T z = pmul(x, x);
1370
- T x_le_two = pmul(TWOOPI, pmul(plog(x), generic_j0<T, float>::run(x)));
1371
- x_le_two = pmadd(
1372
- psub(z, YZ1), internal::ppolevl<T, 4>::run(z, YP), x_le_two);
1373
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_two);
1374
- T q = pdiv(pset1<T>(1.0), x);
1375
- T w = prsqrt(x);
1376
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1377
- T u = pmul(q, q);
1378
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(u, PH), NEG_PIO4F);
1379
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1380
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1381
- }
1382
- };
1383
-
1384
- template <typename T>
1385
- struct generic_y0<T, double> {
1386
- EIGEN_DEVICE_FUNC
1387
- static EIGEN_STRONG_INLINE T run(const T& x) {
1388
- /* j0.c
1389
- * Bessel function of the second kind, order zero
1390
- *
1391
- *
1392
- *
1393
- * SYNOPSIS:
1394
- *
1395
- * double x, y, y0();
1396
- *
1397
- * y = y0( x );
1398
- *
1399
- *
1400
- *
1401
- * DESCRIPTION:
1402
- *
1403
- * Returns Bessel function of the second kind, of order
1404
- * zero, of the argument.
1405
- *
1406
- * The domain is divided into the intervals [0, 5] and
1407
- * (5, infinity). In the first interval a rational approximation
1408
- * R(x) is employed to compute
1409
- * y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
1410
- * Thus a call to j0() is required.
1411
- *
1412
- * In the second interval, the Hankel asymptotic expansion
1413
- * is employed with two rational functions of degree 6/6
1414
- * and 7/7.
1415
- *
1416
- *
1417
- *
1418
- * ACCURACY:
1419
- *
1420
- * Absolute error, when y0(x) < 1; else relative error:
1421
- *
1422
- * arithmetic domain # trials peak rms
1423
- * DEC 0, 30 9400 7.0e-17 7.9e-18
1424
- * IEEE 0, 30 30000 1.3e-15 1.6e-16
1425
- *
1426
- */
1427
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1428
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1429
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1430
- 9.99999999999999997821E-1};
1431
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1432
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1433
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1434
- 1.00000000000000000218E0};
1435
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1436
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1437
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1438
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1439
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1440
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1441
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1442
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1443
- const double YP[] = {1.55924367855235737965E4, -1.46639295903971606143E7,
1444
- 5.43526477051876500413E9, -9.82136065717911466409E11,
1445
- 8.75906394395366999549E13, -3.46628303384729719441E15,
1446
- 4.42733268572569800351E16, -1.84950800436986690637E16};
1447
- const double YQ[] = {1.00000000000000000000E0, 1.04128353664259848412E3,
1448
- 6.26107330137134956842E5, 2.68919633393814121987E8,
1449
- 8.64002487103935000337E10, 2.02979612750105546709E13,
1450
- 3.17157752842975028269E15, 2.50596256172653059228E17};
1451
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1452
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2 / pi */
1453
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* -pi / 4 */
1454
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1455
-
1456
- T z = pmul(x, x);
1457
- T x_le_five = pdiv(internal::ppolevl<T, 7>::run(z, YP),
1458
- internal::ppolevl<T, 7>::run(z, YQ));
1459
- x_le_five = pmadd(
1460
- pmul(TWOOPI, plog(x)), generic_j0<T, double>::run(x), x_le_five);
1461
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1462
- T s = pdiv(pset1<T>(25.0), z);
1463
- T p = pdiv(
1464
- internal::ppolevl<T, 6>::run(s, PP),
1465
- internal::ppolevl<T, 6>::run(s, PQ));
1466
- T q = pdiv(
1467
- internal::ppolevl<T, 7>::run(s, QP),
1468
- internal::ppolevl<T, 7>::run(s, QQ));
1469
- T xn = padd(x, NEG_PIO4);
1470
- T w = pdiv(pset1<T>(5.0), x);
1471
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1472
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1473
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1474
- }
1475
- };
1476
-
1477
- template <typename T>
1478
- struct bessel_y0_impl {
1479
- EIGEN_DEVICE_FUNC
1480
- static EIGEN_STRONG_INLINE T run(const T x) {
1481
- return generic_y0<T>::run(x);
1482
- }
1483
- };
1484
-
1485
- template <typename T>
1486
- struct bessel_j1_retval {
1487
- typedef T type;
1488
- };
1489
-
1490
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1491
- struct generic_j1 {
1492
- EIGEN_DEVICE_FUNC
1493
- static EIGEN_STRONG_INLINE T run(const T&) {
1494
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1495
- THIS_TYPE_IS_NOT_SUPPORTED);
1496
- return ScalarType(0);
1497
- }
1498
- };
1499
-
1500
- template <typename T>
1501
- struct generic_j1<T, float> {
1502
- EIGEN_DEVICE_FUNC
1503
- static EIGEN_STRONG_INLINE T run(const T& x) {
1504
- /* j1f.c
1505
- * Bessel function of order one
1506
- *
1507
- *
1508
- *
1509
- * SYNOPSIS:
1510
- *
1511
- * float x, y, j1f();
1512
- *
1513
- * y = j1f( x );
1514
- *
1515
- *
1516
- *
1517
- * DESCRIPTION:
1518
- *
1519
- * Returns Bessel function of order one of the argument.
1520
- *
1521
- * The domain is divided into the intervals [0, 2] and
1522
- * (2, infinity). In the first interval a polynomial approximation
1523
- * 2
1524
- * (w - r ) x P(w)
1525
- * 1
1526
- * 2
1527
- * is used, where w = x and r is the first zero of the function.
1528
- *
1529
- * In the second interval, the modulus and phase are approximated
1530
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1531
- * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is
1532
- *
1533
- * j0(x) = Modulus(x) cos( Phase(x) ).
1534
- *
1535
- *
1536
- *
1537
- * ACCURACY:
1538
- *
1539
- * Absolute error:
1540
- * arithmetic domain # trials peak rms
1541
- * IEEE 0, 2 100000 1.2e-7 2.5e-8
1542
- * IEEE 2, 32 100000 2.0e-7 5.3e-8
1543
- *
1544
- *
1545
- */
1546
-
1547
- const float JP[] = {-4.878788132172128E-009f, 6.009061827883699E-007f,
1548
- -4.541343896997497E-005f, 1.937383947804541E-003f,
1549
- -3.405537384615824E-002f};
1550
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1551
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1552
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1553
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1554
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1555
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1556
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1557
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1558
- const T Z1 = pset1<T>(1.46819706421238932572E1f);
1559
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1560
-
1561
- T y = pabs(x);
1562
- T z = pmul(y, y);
1563
- T y_le_two = pmul(
1564
- psub(z, Z1),
1565
- pmul(x, internal::ppolevl<T, 4>::run(z, JP)));
1566
- T q = pdiv(pset1<T>(1.0f), y);
1567
- T w = prsqrt(y);
1568
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1569
- w = pmul(q, q);
1570
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1571
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1572
- // j1 is an odd function. This implementation differs from cephes to
1573
- // take this fact in to account. Cephes returns -j1(x) for y > 2 range.
1574
- y_gt_two = pselect(
1575
- pcmp_lt(x, pset1<T>(0.0f)), pnegate(y_gt_two), y_gt_two);
1576
- return pselect(pcmp_le(y, pset1<T>(2.0f)), y_le_two, y_gt_two);
1577
- }
1578
- };
1579
-
1580
- template <typename T>
1581
- struct generic_j1<T, double> {
1582
- EIGEN_DEVICE_FUNC
1583
- static EIGEN_STRONG_INLINE T run(const T& x) {
1584
- /* j1.c
1585
- * Bessel function of order one
1586
- *
1587
- *
1588
- *
1589
- * SYNOPSIS:
1590
- *
1591
- * double x, y, j1();
1592
- *
1593
- * y = j1( x );
1594
- *
1595
- *
1596
- *
1597
- * DESCRIPTION:
1598
- *
1599
- * Returns Bessel function of order one of the argument.
1600
- *
1601
- * The domain is divided into the intervals [0, 8] and
1602
- * (8, infinity). In the first interval a 24 term Chebyshev
1603
- * expansion is used. In the second, the asymptotic
1604
- * trigonometric representation is employed using two
1605
- * rational functions of degree 5/5.
1606
- *
1607
- *
1608
- *
1609
- * ACCURACY:
1610
- *
1611
- * Absolute error:
1612
- * arithmetic domain # trials peak rms
1613
- * DEC 0, 30 10000 4.0e-17 1.1e-17
1614
- * IEEE 0, 30 30000 2.6e-16 1.1e-16
1615
- *
1616
- */
1617
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1618
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1619
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1620
- 1.00000000000000000254E0};
1621
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1622
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1623
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1624
- 9.99999999999999997461E-1};
1625
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1626
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1627
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1628
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1629
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1630
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1631
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1632
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1633
- const double RP[] = {-8.99971225705559398224E8, 4.52228297998194034323E11,
1634
- -7.27494245221818276015E13, 3.68295732863852883286E15};
1635
- const double RQ[] = {1.00000000000000000000E0, 6.20836478118054335476E2,
1636
- 2.56987256757748830383E5, 8.35146791431949253037E7,
1637
- 2.21511595479792499675E10, 4.74914122079991414898E12,
1638
- 7.84369607876235854894E14, 8.95222336184627338078E16,
1639
- 5.32278620332680085395E18};
1640
- const T Z1 = pset1<T>(1.46819706421238932572E1);
1641
- const T Z2 = pset1<T>(4.92184563216946036703E1);
1642
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1643
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1644
- T y = pabs(x);
1645
- T z = pmul(y, y);
1646
- T y_le_five = pdiv(internal::ppolevl<T, 3>::run(z, RP),
1647
- internal::ppolevl<T, 8>::run(z, RQ));
1648
- y_le_five = pmul(pmul(pmul(y_le_five, x), psub(z, Z1)), psub(z, Z2));
1649
- T s = pdiv(pset1<T>(25.0), z);
1650
- T p = pdiv(
1651
- internal::ppolevl<T, 6>::run(s, PP),
1652
- internal::ppolevl<T, 6>::run(s, PQ));
1653
- T q = pdiv(
1654
- internal::ppolevl<T, 7>::run(s, QP),
1655
- internal::ppolevl<T, 7>::run(s, QQ));
1656
- T yn = padd(y, NEG_THPIO4);
1657
- T w = pdiv(pset1<T>(-5.0), y);
1658
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1659
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1660
- // j1 is an odd function. This implementation differs from cephes to
1661
- // take this fact in to account. Cephes returns -j1(x) for y > 5 range.
1662
- y_gt_five = pselect(
1663
- pcmp_lt(x, pset1<T>(0.0)), pnegate(y_gt_five), y_gt_five);
1664
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1665
- }
1666
- };
1667
-
1668
- template <typename T>
1669
- struct bessel_j1_impl {
1670
- EIGEN_DEVICE_FUNC
1671
- static EIGEN_STRONG_INLINE T run(const T x) {
1672
- return generic_j1<T>::run(x);
1673
- }
1674
- };
1675
-
1676
- template <typename T>
1677
- struct bessel_y1_retval {
1678
- typedef T type;
1679
- };
1680
-
1681
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1682
- struct generic_y1 {
1683
- EIGEN_DEVICE_FUNC
1684
- static EIGEN_STRONG_INLINE T run(const T&) {
1685
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1686
- THIS_TYPE_IS_NOT_SUPPORTED);
1687
- return ScalarType(0);
1688
- }
1689
- };
1690
-
1691
- template <typename T>
1692
- struct generic_y1<T, float> {
1693
- EIGEN_DEVICE_FUNC
1694
- static EIGEN_STRONG_INLINE T run(const T& x) {
1695
- /* j1f.c
1696
- * Bessel function of second kind of order one
1697
- *
1698
- *
1699
- *
1700
- * SYNOPSIS:
1701
- *
1702
- * double x, y, y1();
1703
- *
1704
- * y = y1( x );
1705
- *
1706
- *
1707
- *
1708
- * DESCRIPTION:
1709
- *
1710
- * Returns Bessel function of the second kind of order one
1711
- * of the argument.
1712
- *
1713
- * The domain is divided into the intervals [0, 2] and
1714
- * (2, infinity). In the first interval a rational approximation
1715
- * R(x) is employed to compute
1716
- *
1717
- * 2
1718
- * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) .
1719
- * 1
1720
- *
1721
- * Thus a call to j1() is required.
1722
- *
1723
- * In the second interval, the modulus and phase are approximated
1724
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1725
- * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is
1726
- *
1727
- * y0(x) = Modulus(x) sin( Phase(x) ).
1728
- *
1729
- *
1730
- *
1731
- *
1732
- * ACCURACY:
1733
- *
1734
- * Absolute error:
1735
- * arithmetic domain # trials peak rms
1736
- * IEEE 0, 2 100000 2.2e-7 4.6e-8
1737
- * IEEE 2, 32 100000 1.9e-7 5.3e-8
1738
- *
1739
- * (error criterion relative when |y1| > 1).
1740
- *
1741
- */
1742
-
1743
- const float YP[] = {8.061978323326852E-009f, -9.496460629917016E-007f,
1744
- 6.719543806674249E-005f, -2.641785726447862E-003f,
1745
- 4.202369946500099E-002f};
1746
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1747
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1748
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1749
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1750
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1751
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1752
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1753
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1754
- const T YO1 = pset1<T>(4.66539330185668857532f);
1755
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1756
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2/pi */
1757
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1758
-
1759
- T z = pmul(x, x);
1760
- T x_le_two = pmul(psub(z, YO1), internal::ppolevl<T, 4>::run(z, YP));
1761
- x_le_two = pmadd(
1762
- x_le_two, x,
1763
- pmul(TWOOPI, pmadd(
1764
- generic_j1<T, float>::run(x), plog(x),
1765
- pdiv(pset1<T>(-1.0f), x))));
1766
- x_le_two = pselect(pcmp_lt(x, pset1<T>(0.0f)), NEG_MAXNUM, x_le_two);
1767
-
1768
- T q = pdiv(pset1<T>(1.0), x);
1769
- T w = prsqrt(x);
1770
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1771
- w = pmul(q, q);
1772
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1773
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1774
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1775
- }
1776
- };
1777
-
1778
- template <typename T>
1779
- struct generic_y1<T, double> {
1780
- EIGEN_DEVICE_FUNC
1781
- static EIGEN_STRONG_INLINE T run(const T& x) {
1782
- /* j1.c
1783
- * Bessel function of second kind of order one
1784
- *
1785
- *
1786
- *
1787
- * SYNOPSIS:
1788
- *
1789
- * double x, y, y1();
1790
- *
1791
- * y = y1( x );
1792
- *
1793
- *
1794
- *
1795
- * DESCRIPTION:
1796
- *
1797
- * Returns Bessel function of the second kind of order one
1798
- * of the argument.
1799
- *
1800
- * The domain is divided into the intervals [0, 8] and
1801
- * (8, infinity). In the first interval a 25 term Chebyshev
1802
- * expansion is used, and a call to j1() is required.
1803
- * In the second, the asymptotic trigonometric representation
1804
- * is employed using two rational functions of degree 5/5.
1805
- *
1806
- *
1807
- *
1808
- * ACCURACY:
1809
- *
1810
- * Absolute error:
1811
- * arithmetic domain # trials peak rms
1812
- * DEC 0, 30 10000 8.6e-17 1.3e-17
1813
- * IEEE 0, 30 30000 1.0e-15 1.3e-16
1814
- *
1815
- * (error criterion relative when |y1| > 1).
1816
- *
1817
- */
1818
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1819
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1820
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1821
- 1.00000000000000000254E0};
1822
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1823
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1824
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1825
- 9.99999999999999997461E-1};
1826
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1827
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1828
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1829
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1830
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1831
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1832
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1833
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1834
- const double YP[] = {1.26320474790178026440E9, -6.47355876379160291031E11,
1835
- 1.14509511541823727583E14, -8.12770255501325109621E15,
1836
- 2.02439475713594898196E17, -7.78877196265950026825E17};
1837
- const double YQ[] = {1.00000000000000000000E0, 5.94301592346128195359E2,
1838
- 2.35564092943068577943E5, 7.34811944459721705660E7,
1839
- 1.87601316108706159478E10, 3.88231277496238566008E12,
1840
- 6.20557727146953693363E14, 6.87141087355300489866E16,
1841
- 3.97270608116560655612E18};
1842
- const T SQ2OPI = pset1<T>(.79788456080286535588);
1843
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1844
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2/pi */
1845
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1846
-
1847
- T z = pmul(x, x);
1848
- T x_le_five = pdiv(internal::ppolevl<T, 5>::run(z, YP),
1849
- internal::ppolevl<T, 8>::run(z, YQ));
1850
- x_le_five = pmadd(
1851
- x_le_five, x, pmul(
1852
- TWOOPI, pmadd(generic_j1<T, double>::run(x), plog(x),
1853
- pdiv(pset1<T>(-1.0), x))));
1854
-
1855
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1856
- T s = pdiv(pset1<T>(25.0), z);
1857
- T p = pdiv(
1858
- internal::ppolevl<T, 6>::run(s, PP),
1859
- internal::ppolevl<T, 6>::run(s, PQ));
1860
- T q = pdiv(
1861
- internal::ppolevl<T, 7>::run(s, QP),
1862
- internal::ppolevl<T, 7>::run(s, QQ));
1863
- T xn = padd(x, NEG_THPIO4);
1864
- T w = pdiv(pset1<T>(5.0), x);
1865
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1866
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1867
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1868
- }
1869
- };
1870
-
1871
- template <typename T>
1872
- struct bessel_y1_impl {
1873
- EIGEN_DEVICE_FUNC
1874
- static EIGEN_STRONG_INLINE T run(const T x) {
1875
- return generic_y1<T>::run(x);
1876
- }
1877
- };
1878
-
1879
- } // end namespace internal
1880
-
1881
- namespace numext {
1882
-
1883
- template <typename Scalar>
1884
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0, Scalar)
1885
- bessel_i0(const Scalar& x) {
1886
- return EIGEN_MATHFUNC_IMPL(bessel_i0, Scalar)::run(x);
1887
- }
1888
-
1889
- template <typename Scalar>
1890
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0e, Scalar)
1891
- bessel_i0e(const Scalar& x) {
1892
- return EIGEN_MATHFUNC_IMPL(bessel_i0e, Scalar)::run(x);
1893
- }
1894
-
1895
- template <typename Scalar>
1896
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1, Scalar)
1897
- bessel_i1(const Scalar& x) {
1898
- return EIGEN_MATHFUNC_IMPL(bessel_i1, Scalar)::run(x);
1899
- }
1900
-
1901
- template <typename Scalar>
1902
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1e, Scalar)
1903
- bessel_i1e(const Scalar& x) {
1904
- return EIGEN_MATHFUNC_IMPL(bessel_i1e, Scalar)::run(x);
1905
- }
1906
-
1907
- template <typename Scalar>
1908
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0, Scalar)
1909
- bessel_k0(const Scalar& x) {
1910
- return EIGEN_MATHFUNC_IMPL(bessel_k0, Scalar)::run(x);
1911
- }
1912
-
1913
- template <typename Scalar>
1914
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0e, Scalar)
1915
- bessel_k0e(const Scalar& x) {
1916
- return EIGEN_MATHFUNC_IMPL(bessel_k0e, Scalar)::run(x);
1917
- }
1918
-
1919
- template <typename Scalar>
1920
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1, Scalar)
1921
- bessel_k1(const Scalar& x) {
1922
- return EIGEN_MATHFUNC_IMPL(bessel_k1, Scalar)::run(x);
1923
- }
1924
-
1925
- template <typename Scalar>
1926
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1e, Scalar)
1927
- bessel_k1e(const Scalar& x) {
1928
- return EIGEN_MATHFUNC_IMPL(bessel_k1e, Scalar)::run(x);
1929
- }
1930
-
1931
- template <typename Scalar>
1932
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j0, Scalar)
1933
- bessel_j0(const Scalar& x) {
1934
- return EIGEN_MATHFUNC_IMPL(bessel_j0, Scalar)::run(x);
1935
- }
1936
-
1937
- template <typename Scalar>
1938
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y0, Scalar)
1939
- bessel_y0(const Scalar& x) {
1940
- return EIGEN_MATHFUNC_IMPL(bessel_y0, Scalar)::run(x);
1941
- }
1942
-
1943
- template <typename Scalar>
1944
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j1, Scalar)
1945
- bessel_j1(const Scalar& x) {
1946
- return EIGEN_MATHFUNC_IMPL(bessel_j1, Scalar)::run(x);
1947
- }
1948
-
1949
- template <typename Scalar>
1950
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y1, Scalar)
1951
- bessel_y1(const Scalar& x) {
1952
- return EIGEN_MATHFUNC_IMPL(bessel_y1, Scalar)::run(x);
1953
- }
1954
-
1955
- } // end namespace numext
1956
-
1957
- } // end namespace Eigen
1958
-
1959
- #endif // EIGEN_BESSEL_FUNCTIONS_H