sentienceapi 0.90.16__py3-none-any.whl → 0.92.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sentienceapi might be problematic. Click here for more details.

Files changed (61) hide show
  1. sentience/__init__.py +14 -5
  2. sentience/action_executor.py +215 -0
  3. sentience/actions.py +408 -25
  4. sentience/agent.py +802 -293
  5. sentience/agent_config.py +3 -0
  6. sentience/async_api.py +83 -1142
  7. sentience/base_agent.py +95 -0
  8. sentience/browser.py +484 -1
  9. sentience/browser_evaluator.py +299 -0
  10. sentience/cloud_tracing.py +457 -33
  11. sentience/conversational_agent.py +77 -43
  12. sentience/element_filter.py +136 -0
  13. sentience/expect.py +98 -2
  14. sentience/extension/background.js +56 -185
  15. sentience/extension/content.js +117 -289
  16. sentience/extension/injected_api.js +799 -1374
  17. sentience/extension/manifest.json +1 -1
  18. sentience/extension/pkg/sentience_core.js +190 -396
  19. sentience/extension/pkg/sentience_core_bg.wasm +0 -0
  20. sentience/extension/release.json +47 -47
  21. sentience/formatting.py +9 -53
  22. sentience/inspector.py +183 -1
  23. sentience/llm_interaction_handler.py +191 -0
  24. sentience/llm_provider.py +74 -52
  25. sentience/llm_provider_utils.py +120 -0
  26. sentience/llm_response_builder.py +153 -0
  27. sentience/models.py +60 -1
  28. sentience/overlay.py +109 -2
  29. sentience/protocols.py +228 -0
  30. sentience/query.py +1 -1
  31. sentience/read.py +95 -3
  32. sentience/recorder.py +223 -3
  33. sentience/schemas/trace_v1.json +102 -9
  34. sentience/screenshot.py +48 -2
  35. sentience/sentience_methods.py +86 -0
  36. sentience/snapshot.py +291 -38
  37. sentience/snapshot_diff.py +141 -0
  38. sentience/text_search.py +119 -5
  39. sentience/trace_event_builder.py +129 -0
  40. sentience/trace_file_manager.py +197 -0
  41. sentience/trace_indexing/index_schema.py +95 -7
  42. sentience/trace_indexing/indexer.py +117 -14
  43. sentience/tracer_factory.py +119 -6
  44. sentience/tracing.py +172 -8
  45. sentience/utils/__init__.py +40 -0
  46. sentience/utils/browser.py +46 -0
  47. sentience/utils/element.py +257 -0
  48. sentience/utils/formatting.py +59 -0
  49. sentience/utils.py +1 -1
  50. sentience/visual_agent.py +2056 -0
  51. sentience/wait.py +68 -2
  52. {sentienceapi-0.90.16.dist-info → sentienceapi-0.92.2.dist-info}/METADATA +2 -1
  53. sentienceapi-0.92.2.dist-info/RECORD +65 -0
  54. sentience/extension/test-content.js +0 -4
  55. sentienceapi-0.90.16.dist-info/RECORD +0 -50
  56. {sentienceapi-0.90.16.dist-info → sentienceapi-0.92.2.dist-info}/WHEEL +0 -0
  57. {sentienceapi-0.90.16.dist-info → sentienceapi-0.92.2.dist-info}/entry_points.txt +0 -0
  58. {sentienceapi-0.90.16.dist-info → sentienceapi-0.92.2.dist-info}/licenses/LICENSE +0 -0
  59. {sentienceapi-0.90.16.dist-info → sentienceapi-0.92.2.dist-info}/licenses/LICENSE-APACHE +0 -0
  60. {sentienceapi-0.90.16.dist-info → sentienceapi-0.92.2.dist-info}/licenses/LICENSE-MIT +0 -0
  61. {sentienceapi-0.90.16.dist-info → sentienceapi-0.92.2.dist-info}/top_level.txt +0 -0
sentience/llm_provider.py CHANGED
@@ -1,3 +1,5 @@
1
+ from typing import Optional
2
+
1
3
  """
2
4
  LLM Provider abstraction layer for Sentience SDK
3
5
  Enables "Bring Your Own Brain" (BYOB) pattern - plug in any LLM provider
@@ -6,6 +8,9 @@ Enables "Bring Your Own Brain" (BYOB) pattern - plug in any LLM provider
6
8
  from abc import ABC, abstractmethod
7
9
  from dataclasses import dataclass
8
10
 
11
+ from .llm_provider_utils import get_api_key_from_env, handle_provider_error, require_package
12
+ from .llm_response_builder import LLMResponseBuilder
13
+
9
14
 
10
15
  @dataclass
11
16
  class LLMResponse:
@@ -31,6 +36,15 @@ class LLMProvider(ABC):
31
36
  - Any other completion API
32
37
  """
33
38
 
39
+ def __init__(self, model: str):
40
+ """
41
+ Initialize LLM provider with model name.
42
+
43
+ Args:
44
+ model: Model identifier (e.g., "gpt-4o", "claude-3-sonnet")
45
+ """
46
+ self._model_name = model
47
+
34
48
  @abstractmethod
35
49
  def generate(self, system_prompt: str, user_prompt: str, **kwargs) -> LLMResponse:
36
50
  """
@@ -95,13 +109,16 @@ class OpenAIProvider(LLMProvider):
95
109
  base_url: Custom API base URL (for compatible APIs)
96
110
  organization: OpenAI organization ID
97
111
  """
98
- try:
99
- from openai import OpenAI
100
- except ImportError:
101
- raise ImportError("OpenAI package not installed. Install with: pip install openai")
112
+ super().__init__(model) # Initialize base class with model name
113
+
114
+ OpenAI = require_package(
115
+ "openai",
116
+ "openai",
117
+ "OpenAI",
118
+ "pip install openai",
119
+ )
102
120
 
103
121
  self.client = OpenAI(api_key=api_key, base_url=base_url, organization=organization)
104
- self._model_name = model
105
122
 
106
123
  def generate(
107
124
  self,
@@ -148,12 +165,15 @@ class OpenAIProvider(LLMProvider):
148
165
  api_params.update(kwargs)
149
166
 
150
167
  # Call OpenAI API
151
- response = self.client.chat.completions.create(**api_params)
168
+ try:
169
+ response = self.client.chat.completions.create(**api_params)
170
+ except Exception as e:
171
+ handle_provider_error(e, "OpenAI", "generate response")
152
172
 
153
173
  choice = response.choices[0]
154
174
  usage = response.usage
155
175
 
156
- return LLMResponse(
176
+ return LLMResponseBuilder.from_openai_format(
157
177
  content=choice.message.content,
158
178
  prompt_tokens=usage.prompt_tokens if usage else None,
159
179
  completion_tokens=usage.completion_tokens if usage else None,
@@ -191,15 +211,16 @@ class AnthropicProvider(LLMProvider):
191
211
  api_key: Anthropic API key (or set ANTHROPIC_API_KEY env var)
192
212
  model: Model name (claude-3-opus, claude-3-sonnet, claude-3-haiku, etc.)
193
213
  """
194
- try:
195
- from anthropic import Anthropic
196
- except ImportError:
197
- raise ImportError(
198
- "Anthropic package not installed. Install with: pip install anthropic"
199
- )
214
+ super().__init__(model) # Initialize base class with model name
215
+
216
+ Anthropic = require_package(
217
+ "anthropic",
218
+ "anthropic",
219
+ "Anthropic",
220
+ "pip install anthropic",
221
+ )
200
222
 
201
223
  self.client = Anthropic(api_key=api_key)
202
- self._model_name = model
203
224
 
204
225
  def generate(
205
226
  self,
@@ -237,21 +258,19 @@ class AnthropicProvider(LLMProvider):
237
258
  api_params.update(kwargs)
238
259
 
239
260
  # Call Anthropic API
240
- response = self.client.messages.create(**api_params)
261
+ try:
262
+ response = self.client.messages.create(**api_params)
263
+ except Exception as e:
264
+ handle_provider_error(e, "Anthropic", "generate response")
241
265
 
242
266
  content = response.content[0].text if response.content else ""
243
267
 
244
- return LLMResponse(
268
+ return LLMResponseBuilder.from_anthropic_format(
245
269
  content=content,
246
- prompt_tokens=response.usage.input_tokens if hasattr(response, "usage") else None,
247
- completion_tokens=response.usage.output_tokens if hasattr(response, "usage") else None,
248
- total_tokens=(
249
- (response.usage.input_tokens + response.usage.output_tokens)
250
- if hasattr(response, "usage")
251
- else None
252
- ),
270
+ input_tokens=response.usage.input_tokens if hasattr(response, "usage") else None,
271
+ output_tokens=response.usage.output_tokens if hasattr(response, "usage") else None,
253
272
  model_name=response.model,
254
- finish_reason=response.stop_reason,
273
+ stop_reason=response.stop_reason,
255
274
  )
256
275
 
257
276
  def supports_json_mode(self) -> bool:
@@ -285,13 +304,16 @@ class GLMProvider(LLMProvider):
285
304
  api_key: Zhipu AI API key (or set GLM_API_KEY env var)
286
305
  model: Model name (glm-4-plus, glm-4, glm-4-air, glm-4-flash, etc.)
287
306
  """
288
- try:
289
- from zhipuai import ZhipuAI
290
- except ImportError:
291
- raise ImportError("ZhipuAI package not installed. Install with: pip install zhipuai")
307
+ super().__init__(model) # Initialize base class with model name
308
+
309
+ ZhipuAI = require_package(
310
+ "zhipuai",
311
+ "zhipuai",
312
+ "ZhipuAI",
313
+ "pip install zhipuai",
314
+ )
292
315
 
293
316
  self.client = ZhipuAI(api_key=api_key)
294
- self._model_name = model
295
317
 
296
318
  def generate(
297
319
  self,
@@ -333,12 +355,15 @@ class GLMProvider(LLMProvider):
333
355
  api_params.update(kwargs)
334
356
 
335
357
  # Call GLM API
336
- response = self.client.chat.completions.create(**api_params)
358
+ try:
359
+ response = self.client.chat.completions.create(**api_params)
360
+ except Exception as e:
361
+ handle_provider_error(e, "GLM", "generate response")
337
362
 
338
363
  choice = response.choices[0]
339
364
  usage = response.usage
340
365
 
341
- return LLMResponse(
366
+ return LLMResponseBuilder.from_openai_format(
342
367
  content=choice.message.content,
343
368
  prompt_tokens=usage.prompt_tokens if usage else None,
344
369
  completion_tokens=usage.completion_tokens if usage else None,
@@ -378,25 +403,20 @@ class GeminiProvider(LLMProvider):
378
403
  api_key: Google API key (or set GEMINI_API_KEY or GOOGLE_API_KEY env var)
379
404
  model: Model name (gemini-2.0-flash-exp, gemini-1.5-pro, gemini-1.5-flash, etc.)
380
405
  """
381
- try:
382
- import google.generativeai as genai
383
- except ImportError:
384
- raise ImportError(
385
- "Google Generative AI package not installed. Install with: pip install google-generativeai"
386
- )
406
+ super().__init__(model) # Initialize base class with model name
387
407
 
388
- # Configure API key
408
+ genai = require_package(
409
+ "google-generativeai",
410
+ "google.generativeai",
411
+ install_command="pip install google-generativeai",
412
+ )
413
+
414
+ # Configure API key (check parameter first, then environment variables)
415
+ api_key = get_api_key_from_env(["GEMINI_API_KEY", "GOOGLE_API_KEY"], api_key)
389
416
  if api_key:
390
417
  genai.configure(api_key=api_key)
391
- else:
392
- import os
393
-
394
- api_key = os.getenv("GEMINI_API_KEY") or os.getenv("GOOGLE_API_KEY")
395
- if api_key:
396
- genai.configure(api_key=api_key)
397
418
 
398
419
  self.genai = genai
399
- self._model_name = model
400
420
  self.model = genai.GenerativeModel(model)
401
421
 
402
422
  def generate(
@@ -435,7 +455,10 @@ class GeminiProvider(LLMProvider):
435
455
  generation_config.update(kwargs)
436
456
 
437
457
  # Call Gemini API
438
- response = self.model.generate_content(full_prompt, generation_config=generation_config)
458
+ try:
459
+ response = self.model.generate_content(full_prompt, generation_config=generation_config)
460
+ except Exception as e:
461
+ handle_provider_error(e, "Gemini", "generate response")
439
462
 
440
463
  # Extract content
441
464
  content = response.text if response.text else ""
@@ -450,13 +473,12 @@ class GeminiProvider(LLMProvider):
450
473
  completion_tokens = response.usage_metadata.candidates_token_count
451
474
  total_tokens = response.usage_metadata.total_token_count
452
475
 
453
- return LLMResponse(
476
+ return LLMResponseBuilder.from_gemini_format(
454
477
  content=content,
455
478
  prompt_tokens=prompt_tokens,
456
479
  completion_tokens=completion_tokens,
457
480
  total_tokens=total_tokens,
458
481
  model_name=self._model_name,
459
- finish_reason=None, # Gemini uses different finish reason format
460
482
  )
461
483
 
462
484
  def supports_json_mode(self) -> bool:
@@ -503,6 +525,9 @@ class LocalLLMProvider(LLMProvider):
503
525
  load_in_8bit: Use 8-bit quantization (saves 50% memory)
504
526
  torch_dtype: Data type ("auto", "float16", "bfloat16", "float32")
505
527
  """
528
+ super().__init__(model_name) # Initialize base class with model name
529
+
530
+ # Import required packages with consistent error handling
506
531
  try:
507
532
  import torch
508
533
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
@@ -512,8 +537,6 @@ class LocalLLMProvider(LLMProvider):
512
537
  "Install with: pip install transformers torch"
513
538
  )
514
539
 
515
- self._model_name = model_name
516
-
517
540
  # Load tokenizer
518
541
  self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
519
542
 
@@ -620,11 +643,10 @@ class LocalLLMProvider(LLMProvider):
620
643
  generated_tokens = outputs[0][input_length:]
621
644
  response_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
622
645
 
623
- return LLMResponse(
646
+ return LLMResponseBuilder.from_local_format(
624
647
  content=response_text,
625
648
  prompt_tokens=input_length,
626
649
  completion_tokens=len(generated_tokens),
627
- total_tokens=input_length + len(generated_tokens),
628
650
  model_name=self._model_name,
629
651
  )
630
652
 
@@ -0,0 +1,120 @@
1
+ """
2
+ LLM Provider utility functions for common initialization and error handling.
3
+
4
+ This module provides helper functions to reduce duplication across LLM provider implementations.
5
+ """
6
+
7
+ import os
8
+ from collections.abc import Callable
9
+ from typing import Any, Optional, TypeVar
10
+
11
+ T = TypeVar("T")
12
+
13
+
14
+ def require_package(
15
+ package_name: str,
16
+ module_name: str,
17
+ class_name: str | None = None,
18
+ install_command: str | None = None,
19
+ ) -> Any:
20
+ """
21
+ Import a package with consistent error handling.
22
+
23
+ Args:
24
+ package_name: Name of the package (for error messages)
25
+ module_name: Module name to import (e.g., "openai", "google.generativeai")
26
+ class_name: Optional class name to import from module (e.g., "OpenAI")
27
+ install_command: Installation command (defaults to "pip install {package_name}")
28
+
29
+ Returns:
30
+ Imported module or class
31
+
32
+ Raises:
33
+ ImportError: If package is not installed, with helpful message
34
+
35
+ Example:
36
+ >>> OpenAI = require_package("openai", "openai", "OpenAI", "pip install openai")
37
+ >>> genai = require_package("google-generativeai", "google.generativeai", install_command="pip install google-generativeai")
38
+ """
39
+ if install_command is None:
40
+ install_command = f"pip install {package_name}"
41
+
42
+ try:
43
+ if class_name:
44
+ # Import specific class: from module import class
45
+ module = __import__(module_name, fromlist=[class_name])
46
+ return getattr(module, class_name)
47
+ else:
48
+ # Import entire module
49
+ return __import__(module_name)
50
+ except ImportError:
51
+ raise ImportError(f"{package_name} package not installed. Install with: {install_command}")
52
+
53
+
54
+ def get_api_key_from_env(
55
+ env_vars: list[str],
56
+ api_key: str | None = None,
57
+ ) -> str | None:
58
+ """
59
+ Get API key from parameter or environment variables.
60
+
61
+ Args:
62
+ env_vars: List of environment variable names to check (in order)
63
+ api_key: Optional API key parameter (takes precedence)
64
+
65
+ Returns:
66
+ API key string or None if not found
67
+
68
+ Example:
69
+ >>> key = get_api_key_from_env(["OPENAI_API_KEY"], api_key="sk-...")
70
+ >>> # Returns "sk-..." if provided, otherwise checks OPENAI_API_KEY env var
71
+ """
72
+ if api_key:
73
+ return api_key
74
+
75
+ for env_var in env_vars:
76
+ value = os.getenv(env_var)
77
+ if value:
78
+ return value
79
+
80
+ return None
81
+
82
+
83
+ def handle_provider_error(
84
+ error: Exception,
85
+ provider_name: str,
86
+ operation: str = "operation",
87
+ ) -> None:
88
+ """
89
+ Standardize error handling for LLM provider operations.
90
+
91
+ Args:
92
+ error: Exception that occurred
93
+ provider_name: Name of the provider (e.g., "OpenAI", "Anthropic")
94
+ operation: Description of the operation that failed
95
+
96
+ Raises:
97
+ RuntimeError: With standardized error message
98
+
99
+ Example:
100
+ >>> try:
101
+ ... response = client.chat.completions.create(...)
102
+ ... except Exception as e:
103
+ ... handle_provider_error(e, "OpenAI", "generate response")
104
+ """
105
+ error_msg = str(error)
106
+ if "api key" in error_msg.lower() or "authentication" in error_msg.lower():
107
+ raise RuntimeError(
108
+ f"{provider_name} API key is invalid or missing. "
109
+ f"Please check your API key configuration."
110
+ ) from error
111
+ elif "rate limit" in error_msg.lower() or "429" in error_msg:
112
+ raise RuntimeError(
113
+ f"{provider_name} rate limit exceeded. Please try again later."
114
+ ) from error
115
+ elif "model" in error_msg.lower() and "not found" in error_msg.lower():
116
+ raise RuntimeError(
117
+ f"{provider_name} model not found. Please check the model name."
118
+ ) from error
119
+ else:
120
+ raise RuntimeError(f"{provider_name} {operation} failed: {error_msg}") from error
@@ -0,0 +1,153 @@
1
+ """
2
+ LLM Response building utilities for consistent response construction.
3
+
4
+ This module provides helper functions for building LLMResponse objects
5
+ from various provider API responses.
6
+ """
7
+
8
+ from typing import Any, Optional
9
+
10
+ # Import LLMResponse here to avoid circular dependency
11
+ # We import it inside functions to break the cycle
12
+
13
+
14
+ class LLMResponseBuilder:
15
+ """
16
+ Helper for building LLMResponse objects with consistent structure.
17
+
18
+ Provides static methods for building responses from different provider formats.
19
+ """
20
+
21
+ @staticmethod
22
+ def from_openai_format(
23
+ content: str,
24
+ prompt_tokens: int | None = None,
25
+ completion_tokens: int | None = None,
26
+ total_tokens: int | None = None,
27
+ model_name: str | None = None,
28
+ finish_reason: str | None = None,
29
+ ) -> "LLMResponse":
30
+ """
31
+ Build LLMResponse from OpenAI-style API response.
32
+
33
+ Args:
34
+ content: Response text content
35
+ prompt_tokens: Number of prompt tokens
36
+ completion_tokens: Number of completion tokens
37
+ total_tokens: Total tokens (or sum of prompt + completion)
38
+ model_name: Model identifier
39
+ finish_reason: Finish reason (stop, length, etc.)
40
+
41
+ Returns:
42
+ LLMResponse object
43
+ """
44
+ from .llm_provider import LLMResponse # Import here to avoid circular dependency
45
+
46
+ return LLMResponse(
47
+ content=content,
48
+ prompt_tokens=prompt_tokens,
49
+ completion_tokens=completion_tokens,
50
+ total_tokens=total_tokens
51
+ or (
52
+ (prompt_tokens + completion_tokens) if prompt_tokens and completion_tokens else None
53
+ ),
54
+ model_name=model_name,
55
+ finish_reason=finish_reason,
56
+ )
57
+
58
+ @staticmethod
59
+ def from_anthropic_format(
60
+ content: str,
61
+ input_tokens: int | None = None,
62
+ output_tokens: int | None = None,
63
+ model_name: str | None = None,
64
+ stop_reason: str | None = None,
65
+ ) -> "LLMResponse":
66
+ """
67
+ Build LLMResponse from Anthropic-style API response.
68
+
69
+ Args:
70
+ content: Response text content
71
+ input_tokens: Number of input tokens
72
+ output_tokens: Number of output tokens
73
+ model_name: Model identifier
74
+ stop_reason: Stop reason (end_turn, max_tokens, etc.)
75
+
76
+ Returns:
77
+ LLMResponse object
78
+ """
79
+ from .llm_provider import LLMResponse # Import here to avoid circular dependency
80
+
81
+ return LLMResponse(
82
+ content=content,
83
+ prompt_tokens=input_tokens,
84
+ completion_tokens=output_tokens,
85
+ total_tokens=(input_tokens + output_tokens) if input_tokens and output_tokens else None,
86
+ model_name=model_name,
87
+ finish_reason=stop_reason,
88
+ )
89
+
90
+ @staticmethod
91
+ def from_gemini_format(
92
+ content: str,
93
+ prompt_tokens: int | None = None,
94
+ completion_tokens: int | None = None,
95
+ total_tokens: int | None = None,
96
+ model_name: str | None = None,
97
+ ) -> "LLMResponse":
98
+ """
99
+ Build LLMResponse from Gemini-style API response.
100
+
101
+ Args:
102
+ content: Response text content
103
+ prompt_tokens: Number of prompt tokens
104
+ completion_tokens: Number of completion tokens
105
+ total_tokens: Total tokens
106
+ model_name: Model identifier
107
+
108
+ Returns:
109
+ LLMResponse object
110
+ """
111
+ from .llm_provider import LLMResponse # Import here to avoid circular dependency
112
+
113
+ return LLMResponse(
114
+ content=content,
115
+ prompt_tokens=prompt_tokens,
116
+ completion_tokens=completion_tokens,
117
+ total_tokens=total_tokens
118
+ or (
119
+ (prompt_tokens + completion_tokens) if prompt_tokens and completion_tokens else None
120
+ ),
121
+ model_name=model_name,
122
+ finish_reason=None, # Gemini uses different finish reason format
123
+ )
124
+
125
+ @staticmethod
126
+ def from_local_format(
127
+ content: str,
128
+ prompt_tokens: int,
129
+ completion_tokens: int,
130
+ model_name: str,
131
+ ) -> "LLMResponse":
132
+ """
133
+ Build LLMResponse from local model generation.
134
+
135
+ Args:
136
+ content: Response text content
137
+ prompt_tokens: Number of prompt tokens
138
+ completion_tokens: Number of completion tokens
139
+ model_name: Model identifier
140
+
141
+ Returns:
142
+ LLMResponse object
143
+ """
144
+ from .llm_provider import LLMResponse # Import here to avoid circular dependency
145
+
146
+ return LLMResponse(
147
+ content=content,
148
+ prompt_tokens=prompt_tokens,
149
+ completion_tokens=completion_tokens,
150
+ total_tokens=prompt_tokens + completion_tokens,
151
+ model_name=model_name,
152
+ finish_reason=None,
153
+ )
sentience/models.py CHANGED
@@ -2,7 +2,8 @@
2
2
  Pydantic models for Sentience SDK - matches spec/snapshot.schema.json
3
3
  """
4
4
 
5
- from typing import Literal, Optional
5
+ from dataclasses import dataclass
6
+ from typing import Any, Literal, Optional
6
7
 
7
8
  from pydantic import BaseModel, Field
8
9
 
@@ -50,6 +51,9 @@ class Element(BaseModel):
50
51
  ml_probability: float | None = None # Confidence score from ONNX model (0.0 - 1.0)
51
52
  ml_score: float | None = None # Raw logit score (optional, for debugging)
52
53
 
54
+ # Diff status for frontend Diff Overlay feature
55
+ diff_status: Literal["ADDED", "REMOVED", "MODIFIED", "MOVED"] | None = None
56
+
53
57
 
54
58
  class Snapshot(BaseModel):
55
59
  """Snapshot response from extension"""
@@ -410,3 +414,58 @@ class TextRectSearchResult(BaseModel):
410
414
  )
411
415
  viewport: Viewport | None = Field(None, description="Current viewport dimensions")
412
416
  error: str | None = Field(None, description="Error message if status is 'error'")
417
+
418
+
419
+ class ReadResult(BaseModel):
420
+ """Result of read() or read_async() operation"""
421
+
422
+ status: Literal["success", "error"]
423
+ url: str
424
+ format: Literal["raw", "text", "markdown"]
425
+ content: str
426
+ length: int
427
+ error: str | None = None
428
+
429
+
430
+ class TraceStats(BaseModel):
431
+ """Execution statistics for trace completion"""
432
+
433
+ total_steps: int
434
+ total_events: int
435
+ duration_ms: int | None = None
436
+ final_status: Literal["success", "failure", "partial", "unknown"]
437
+ started_at: str | None = None
438
+ ended_at: str | None = None
439
+
440
+
441
+ class StepExecutionResult(BaseModel):
442
+ """Result of executing a single step in ConversationalAgent"""
443
+
444
+ success: bool
445
+ action: str
446
+ data: dict[str, Any] # Flexible data field for step-specific results
447
+ error: str | None = None
448
+
449
+
450
+ class ExtractionResult(BaseModel):
451
+ """Result of extracting information from a page"""
452
+
453
+ found: bool
454
+ data: dict[str, Any] # Extracted data fields
455
+ summary: str # Brief description of what was found
456
+
457
+
458
+ @dataclass
459
+ class ScreenshotMetadata:
460
+ """
461
+ Metadata for a stored screenshot.
462
+
463
+ Used by CloudTraceSink to track screenshots before upload.
464
+ All fields are required for type safety.
465
+ """
466
+
467
+ sequence: int
468
+ format: Literal["png", "jpeg"]
469
+ size_bytes: int
470
+ step_id: str | None
471
+ filepath: str