semantio 0.0.4__py3-none-any.whl → 0.0.5__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
semantio/agent.py CHANGED
@@ -16,6 +16,7 @@ from .tools.base_tool import BaseTool
16
16
  from pathlib import Path
17
17
  import importlib
18
18
  import os
19
+ from .memory import Memory
19
20
 
20
21
  # Configure logging
21
22
  logging.basicConfig(level=logging.INFO)
@@ -48,6 +49,13 @@ class Agent(BaseModel):
48
49
  semantic_model: Optional[Any] = Field(None, description="SentenceTransformer model for semantic matching.")
49
50
  team: Optional[List['Agent']] = Field(None, description="List of assistants in the team.")
50
51
  auto_tool: bool = Field(False, description="Whether to automatically detect and call tools.")
52
+ memory: Memory = Field(default_factory=Memory)
53
+ memory_config: Dict = Field(
54
+ default_factory=lambda: {
55
+ "max_context_length": 4000,
56
+ "summarization_threshold": 3000
57
+ }
58
+ )
51
59
 
52
60
  # Allow arbitrary types
53
61
  model_config = ConfigDict(arbitrary_types_allowed=True)
@@ -56,6 +64,11 @@ class Agent(BaseModel):
56
64
  super().__init__(**kwargs)
57
65
  # Initialize the model and tools here if needed
58
66
  self._initialize_model()
67
+ # Initialize memory with config
68
+ self.memory = Memory(
69
+ max_context_length=self.memory_config.get("max_context_length", 4000),
70
+ summarization_threshold=self.memory_config.get("summarization_threshold", 3000)
71
+ )
59
72
  # Initialize tools as an empty list if not provided
60
73
  if self.tools is None:
61
74
  self.tools = []
@@ -218,20 +231,31 @@ class Agent(BaseModel):
218
231
  markdown: bool = False,
219
232
  team: Optional[List['Agent']] = None,
220
233
  **kwargs,
221
- ) -> Union[str, Dict]: # Add return type hint
234
+ ) -> Union[str, Dict]:
222
235
  """Print the agent's response to the console and return it."""
236
+
237
+ # Store user message if provided
238
+ if message and isinstance(message, str):
239
+ self.memory.add_message(role="user", content=message)
223
240
 
224
241
  if stream:
225
242
  # Handle streaming response
226
243
  response = ""
227
244
  for chunk in self._stream_response(message, markdown=markdown, **kwargs):
228
- print(chunk)
245
+ print(chunk, end="", flush=True)
229
246
  response += chunk
247
+ # Store agent response
248
+ if response:
249
+ self.memory.add_message(role="assistant", content=response)
250
+ print() # New line after streaming
230
251
  return response
231
252
  else:
232
253
  # Generate and return the response
233
254
  response = self._generate_response(message, markdown=markdown, team=team, **kwargs)
234
255
  print(response) # Print the response to the console
256
+ # Store agent response
257
+ if response:
258
+ self.memory.add_message(role="assistant", content=response)
235
259
  return response
236
260
 
237
261
 
@@ -294,12 +318,10 @@ class Agent(BaseModel):
294
318
  # Use the specified team if provided
295
319
  if team is not None:
296
320
  return self._generate_team_response(message, team, markdown=markdown, **kwargs)
297
-
298
321
  # Initialize tool_outputs as an empty dictionary
299
322
  tool_outputs = {}
300
323
  responses = []
301
324
  tool_calls = []
302
-
303
325
  # Use the LLM to analyze the query and dynamically select tools when auto_tool is enabled
304
326
  if self.auto_tool:
305
327
  tool_calls = self._analyze_query_and_select_tools(message)
@@ -347,13 +369,17 @@ class Agent(BaseModel):
347
369
  try:
348
370
  # Prepare the context for the LLM
349
371
  context = {
372
+ "conversation_history": self.memory.get_context(self.llm_instance),
350
373
  "tool_outputs": tool_outputs,
351
374
  "rag_context": self.rag.retrieve(message) if self.rag else None,
352
- "knowledge_base_context": self._find_all_relevant_keys(message, self._flatten_data(self.knowledge_base)) if self.knowledge_base else None,
375
+ "knowledge_base": self._get_knowledge_context(message) if self.knowledge_base else None,
353
376
  }
354
-
377
+ # 3. Build a memory-aware prompt.
378
+ prompt = self._build_memory_prompt(message, context)
379
+ # To (convert MemoryEntry objects to dicts and remove metadata):
380
+ memory_entries = [{"role": e.role, "content": e.content} for e in self.memory.storage.retrieve()]
355
381
  # Generate a response using the LLM
356
- llm_response = self.llm_instance.generate(prompt=message, context=context, **kwargs)
382
+ llm_response = self.llm_instance.generate(prompt=prompt, context=context, memory=memory_entries, **kwargs)
357
383
  responses.append(f"**Analysis:**\n\n{llm_response}")
358
384
  except Exception as e:
359
385
  logger.error(f"Failed to generate LLM response: {e}")
@@ -363,25 +389,30 @@ class Agent(BaseModel):
363
389
  # Retrieve relevant context using RAG
364
390
  rag_context = self.rag.retrieve(message) if self.rag else None
365
391
  # Retrieve relevant context from the knowledge base (API result)
366
- knowledge_base_context = None
367
- if self.knowledge_base:
368
- # Flatten the knowledge base
369
- flattened_data = self._flatten_data(self.knowledge_base)
370
- # Find all relevant key-value pairs in the knowledge base
371
- relevant_values = self._find_all_relevant_keys(message, flattened_data)
372
- if relevant_values:
373
- knowledge_base_context = ", ".join(relevant_values)
392
+ # knowledge_base_context = None
393
+ # if self.knowledge_base:
394
+ # # Flatten the knowledge base
395
+ # flattened_data = self._flatten_data(self.knowledge_base)
396
+ # # Find all relevant key-value pairs in the knowledge base
397
+ # relevant_values = self._find_all_relevant_keys(message, flattened_data)
398
+ # if relevant_values:
399
+ # knowledge_base_context = ", ".join(relevant_values)
374
400
 
375
401
  # Combine both contexts (RAG and knowledge base)
376
402
  context = {
403
+ "conversation_history": self.memory.get_context(self.llm_instance),
377
404
  "rag_context": rag_context,
378
- "knowledge_base_context": knowledge_base_context,
405
+ "knowledge_base": self._get_knowledge_context(message),
379
406
  }
380
407
  # Prepare the prompt with instructions, description, and context
381
- prompt = self._build_prompt(message, context)
408
+ # 3. Build a memory-aware prompt.
409
+ prompt = self._build_memory_prompt(message, context)
410
+ # To (convert MemoryEntry objects to dicts and remove metadata):
411
+ memory_entries = [{"role": e.role, "content": e.content} for e in self.memory.storage.retrieve()]
382
412
 
383
413
  # Generate the response using the LLM
384
- response = self.llm_instance.generate(prompt=prompt, context=context, **kwargs)
414
+ response = self.llm_instance.generate(prompt=prompt, context=context, memory=memory_entries, **kwargs)
415
+
385
416
 
386
417
  # Format the response based on the json_output flag
387
418
  if self.json_output:
@@ -394,9 +425,37 @@ class Agent(BaseModel):
394
425
  if markdown:
395
426
  return f"**Response:**\n\n{response}"
396
427
  return response
397
- # Combine all responses into a single string
398
428
  return "\n\n".join(responses)
399
429
 
430
+ # Modified prompt construction with memory integration
431
+ def _build_memory_prompt(self, user_input: str, context: dict) -> str:
432
+ """Enhanced prompt builder with memory context."""
433
+ prompt_parts = []
434
+
435
+ if self.description:
436
+ prompt_parts.append(f"# ROLE\n{self.description}")
437
+
438
+ if self.instructions:
439
+ prompt_parts.append(f"# INSTRUCTIONS\n" + "\n".join(f"- {i}" for i in self.instructions))
440
+
441
+ if context['conversation_history']:
442
+ prompt_parts.append(f"# CONVERSATION HISTORY\n{context['conversation_history']}")
443
+
444
+ if context['knowledge_base']:
445
+ prompt_parts.append(f"# KNOWLEDGE BASE\n{context['knowledge_base']}")
446
+
447
+ prompt_parts.append(f"# USER INPUT\n{user_input}")
448
+
449
+ return "\n\n".join(prompt_parts)
450
+
451
+ def _get_knowledge_context(self, message: str) -> str:
452
+ """Retrieve and format knowledge base context."""
453
+ if not self.knowledge_base:
454
+ return ""
455
+
456
+ flattened = self._flatten_data(self.knowledge_base)
457
+ relevant = self._find_all_relevant_keys(message, flattened)
458
+ return "\n".join(f"- {item}" for item in relevant) if relevant else ""
400
459
  def _generate_team_response(self, message: str, team: List['Agent'], markdown: bool = False, **kwargs) -> str:
401
460
  """Generate a response using a team of assistants."""
402
461
  responses = []
@@ -543,17 +602,21 @@ class Agent(BaseModel):
543
602
  """Run the agent in a CLI app."""
544
603
  from rich.prompt import Prompt
545
604
 
605
+ # Print initial message if provided
546
606
  if message:
547
607
  self.print_response(message=message, **kwargs)
548
608
 
549
609
  _exit_on = exit_on or ["exit", "quit", "bye"]
550
610
  while True:
551
- message = Prompt.ask(f"[bold] {self.emoji} {self.user_name} [/bold]")
552
- if message in _exit_on:
611
+ try:
612
+ message = Prompt.ask(f"[bold] {self.emoji} {self.user_name} [/bold]")
613
+ if message in _exit_on:
614
+ break
615
+ self.print_response(message=message, **kwargs)
616
+ except KeyboardInterrupt:
617
+ print("\n\nSession ended. Goodbye!")
553
618
  break
554
619
 
555
- self.print_response(message=message, **kwargs)
556
-
557
620
  def _generate_api(self):
558
621
  """Generate an API for the agent if api=True."""
559
622
  from .api.api_generator import APIGenerator
semantio/memory.py CHANGED
@@ -1,11 +1,54 @@
1
- from typing import List, Dict
2
-
1
+ from .models import MemoryEntry
2
+ from .storage import BaseMemoryStorage, InMemoryStorage, FileStorage
3
+ from typing import List, Dict, Optional
4
+ from .llm.base_llm import BaseLLM
3
5
  class Memory:
4
- def __init__(self):
5
- self.history = []
6
+ def __init__(
7
+ self,
8
+ storage: BaseMemoryStorage = InMemoryStorage(),
9
+ max_context_length: int = 4000,
10
+ summarization_threshold: int = 3000
11
+ ):
12
+ self.storage = storage
13
+ self.max_context_length = max_context_length
14
+ self.summarization_threshold = summarization_threshold
15
+ self._current_context = ""
16
+
17
+ def add_message(self, role: str, content: str, metadata: Optional[Dict] = None):
18
+ entry = MemoryEntry(
19
+ role=role,
20
+ content=content,
21
+ metadata=metadata or {}
22
+ )
23
+ self.storage.store(entry)
24
+ self._manage_context()
25
+
26
+ def get_context(self, llm: Optional[BaseLLM] = None) -> str:
27
+ if len(self._current_context) < self.summarization_threshold:
28
+ return self._current_context
29
+
30
+ # Automatic summarization when context grows too large
31
+ if llm:
32
+ return self.summarize(llm)
33
+ return self._current_context[:self.max_context_length]
34
+ def _manage_context(self):
35
+ # Include roles in the conversation history
36
+ full_history = "\n".join([f"{e.role}: {e.content}" for e in self.storage.retrieve()])
37
+ if len(full_history) > self.max_context_length:
38
+ self._current_context = full_history[-self.max_context_length:]
39
+ else:
40
+ self._current_context = full_history
6
41
 
7
- def add_message(self, role: str, content: str):
8
- self.history.append({"role": role, "content": content})
42
+ def summarize(self, llm: BaseLLM) -> str:
43
+ # Include roles in the history for summarization
44
+ history = "\n".join([f"{e.role}: {e.content}" for e in self.storage.retrieve()])
45
+ prompt = f"""
46
+ Summarize this conversation history maintaining key details and references:
47
+ {history[-self.summarization_threshold:]}
48
+ """
49
+ self._current_context = llm.generate(prompt)
50
+ return self._current_context
9
51
 
10
- def get_history(self) -> List[Dict]:
11
- return self.history
52
+ def clear(self):
53
+ self.storage = InMemoryStorage()
54
+ self._current_context = ""
semantio/models.py ADDED
@@ -0,0 +1,9 @@
1
+ from pydantic import BaseModel, Field
2
+ from datetime import datetime
3
+ from typing import Dict
4
+
5
+ class MemoryEntry(BaseModel):
6
+ role: str # "user" or "assistant"
7
+ content: str
8
+ timestamp: datetime = Field(default_factory=datetime.now)
9
+ metadata: Dict = Field(default_factory=dict)
@@ -0,0 +1,5 @@
1
+ from .base_storage import BaseMemoryStorage
2
+ from .in_memory_storage import InMemoryStorage
3
+ from .local_storage import FileStorage
4
+
5
+ __all__ = ['BaseMemoryStorage', 'InMemoryStorage', 'FileStorage']
@@ -0,0 +1,12 @@
1
+ from abc import ABC, abstractmethod
2
+ from typing import List, Optional
3
+ from ..models import MemoryEntry
4
+
5
+ class BaseMemoryStorage(ABC):
6
+ @abstractmethod
7
+ def store(self, entry: MemoryEntry):
8
+ pass
9
+
10
+ @abstractmethod
11
+ def retrieve(self, query: Optional[str] = None, limit: int = 20) -> List[MemoryEntry]:
12
+ pass
@@ -0,0 +1,14 @@
1
+ # hashai/storage/in_memory_storage.py
2
+ from typing import List, Optional
3
+ from ..models import MemoryEntry
4
+ from .base_storage import BaseMemoryStorage
5
+
6
+ class InMemoryStorage(BaseMemoryStorage):
7
+ def __init__(self):
8
+ self.history: List[MemoryEntry] = []
9
+
10
+ def store(self, entry: MemoryEntry):
11
+ self.history.append(entry)
12
+
13
+ def retrieve(self, query: Optional[str] = None, limit: int = 10) -> List[MemoryEntry]:
14
+ return self.history[-limit:]
@@ -0,0 +1,29 @@
1
+ import json
2
+ from typing import List, Optional
3
+ from ..models import MemoryEntry
4
+ from .base_storage import BaseMemoryStorage
5
+
6
+ class FileStorage(BaseMemoryStorage):
7
+ def __init__(self, file_path: str = "memory.json"):
8
+ self.file_path = file_path
9
+ self.history = self._load_from_file()
10
+
11
+ def _load_from_file(self) -> List[MemoryEntry]:
12
+ try:
13
+ with open(self.file_path, "r") as f:
14
+ data = json.load(f)
15
+ return [MemoryEntry(**entry) for entry in data]
16
+ except (FileNotFoundError, json.JSONDecodeError):
17
+ return []
18
+
19
+ def _save_to_file(self):
20
+ with open(self.file_path, "w") as f:
21
+ data = [entry.dict() for entry in self.history]
22
+ json.dump(data, f, default=str)
23
+
24
+ def store(self, entry: MemoryEntry):
25
+ self.history.append(entry)
26
+ self._save_to_file()
27
+
28
+ def retrieve(self, query: Optional[str] = None, limit: int = 20) -> List[MemoryEntry]:
29
+ return self.history[-limit:]
@@ -1,6 +1,6 @@
1
1
  MIT License
2
2
 
3
- Copyright (c) 2025 Syenah
3
+ Copyright (c) 2025 Syenah (Semantio)
4
4
 
5
5
  Permission is hereby granted, free of charge, to any person obtaining a copy
6
6
  of this software and associated documentation files (the "Software"), to deal
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: semantio
3
- Version: 0.0.4
3
+ Version: 0.0.5
4
4
  Summary: A powerful SDK for building AI agents
5
5
  Home-page: https://github.com/Syenah/semantio
6
6
  Author: Rakesh
@@ -1,6 +1,7 @@
1
1
  semantio/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- semantio/agent.py,sha256=hKytSI5LqNnxqVvwI2hOINqPgrdhUXY9MS_90_crZPs,28584
3
- semantio/memory.py,sha256=eNAwyAokppHzMcIyFgOw2hT2wnLQBd9GL4T5eallNV4,281
2
+ semantio/agent.py,sha256=uPFz1WP2eb-z-tryQOX8necS8_tv4Il6qxNmZux9hNk,31709
3
+ semantio/memory.py,sha256=en9n3UySnj4rA0x3uR1sEdEzA7EkboQNbEHQ5KuEehw,2115
4
+ semantio/models.py,sha256=7hmP-F_aSU8WvsG3NGeC_hep-rUbiSbjUFMDVbpKxQE,289
4
5
  semantio/rag.py,sha256=ROy3Pa1NURcDs6qQZ8IMoa5Xlzt6I-msEq0C1p8UgB0,472
5
6
  semantio/api/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
7
  semantio/api/api_generator.py,sha256=Q-USITEpluRESEaQuOmF7m1vhLKYU9P8eGlQppKT9J4,829
@@ -19,9 +20,11 @@ semantio/llm/gemini.py,sha256=er3zv1jOvWQBGbPuv4fS4pR_c_abHyhroe-rkXupOO4,1959
19
20
  semantio/llm/groq.py,sha256=1AH30paKzDIQjBjWPQPN44QwFHsIOVwI-a587-cDIVc,4285
20
21
  semantio/llm/mistral.py,sha256=NpvaB1cE6-jMEBdT0mTf6Ca4Qq2LS8QivDKI6AgdRjE,1061
21
22
  semantio/llm/openai.py,sha256=I3ab-d_zFxm-TDhYk6t1PzDtElPJEEQ2eSiARBNIGi4,5174
22
- semantio/storage/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
+ semantio/storage/__init__.py,sha256=bGSJjA1qk6DUDrBijmWcQk3Y1a2K00MPoKI5KH43Ang,196
24
+ semantio/storage/base_storage.py,sha256=R9tQfidVZlCN6CyvnhB-Tc2lIZ7yQsyX4cbMoud64XM,336
23
25
  semantio/storage/cloud_storage.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
- semantio/storage/local_storage.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
+ semantio/storage/in_memory_storage.py,sha256=aZT8rRHF6Kz_udaqf0rux7XRFKf9Hr3d4c3Ylry7J14,474
27
+ semantio/storage/local_storage.py,sha256=Z8jCPo2MwZ8tuhQywWkHyxTrdSyYtzAPSNd46DTCth8,1007
25
28
  semantio/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
29
  semantio/tools/base_tool.py,sha256=xBNSa_8a8WmA4BGRLG2dE7wj9GnBcZo7-P2SyD86GvY,571
27
30
  semantio/tools/crypto.py,sha256=mut1ztvpPcUUP3b563dh_FmKtP68KmNis3Qm8WENj8w,5559
@@ -34,9 +37,9 @@ semantio/utils/date_utils.py,sha256=x3oqRGv6ee_KCJ0LvCqqZh_FSgS6YGOHBwZQS4TJetY,
34
37
  semantio/utils/file_utils.py,sha256=b_cMuJINEGk9ikNuNHSn9lsmICWwvtnCDZ03ndH_S2I,1779
35
38
  semantio/utils/logger.py,sha256=TmGbP8BRjLMWjXi2GWzZ0RIXt70x9qX3FuIqghCNlwM,510
36
39
  semantio/utils/validation_utils.py,sha256=iwoxEb4Q5ILqV6tbesMjPWPCCoL3AmPLejGUy6q8YvQ,1284
37
- semantio-0.0.4.dist-info/LICENSE,sha256=teQbWD2Zlcl1_Fo29o2tNbs6G26hbCQiUzds5fQGYlY,1063
38
- semantio-0.0.4.dist-info/METADATA,sha256=youxODbkR3gNERG-mD7zbUbe5ix-0lUiWCHUI1_Y5IY,6913
39
- semantio-0.0.4.dist-info/WHEEL,sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o,92
40
- semantio-0.0.4.dist-info/entry_points.txt,sha256=zbPgevSLwcLpdRHqI_atE8EOt8lK2vRF1AoDflDTo18,53
41
- semantio-0.0.4.dist-info/top_level.txt,sha256=Yte_6mb-bh-I_lQwMjk1GijZkxPoX4Zmp3kBftC1ZlA,9
42
- semantio-0.0.4.dist-info/RECORD,,
40
+ semantio-0.0.5.dist-info/LICENSE,sha256=mziLlfb9hZ8HKxm9V6BiHpmgJvmcDvswu1QBlDB-6vU,1074
41
+ semantio-0.0.5.dist-info/METADATA,sha256=PtDbsZ-tWXbte0RR40K5O_OklMKZiUsb-3dxGlmjklQ,6913
42
+ semantio-0.0.5.dist-info/WHEEL,sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o,92
43
+ semantio-0.0.5.dist-info/entry_points.txt,sha256=zbPgevSLwcLpdRHqI_atE8EOt8lK2vRF1AoDflDTo18,53
44
+ semantio-0.0.5.dist-info/top_level.txt,sha256=Yte_6mb-bh-I_lQwMjk1GijZkxPoX4Zmp3kBftC1ZlA,9
45
+ semantio-0.0.5.dist-info/RECORD,,