semantio 0.0.2__py3-none-any.whl → 0.0.3__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
semantio/agent.py CHANGED
@@ -21,24 +21,24 @@ import os
21
21
  logging.basicConfig(level=logging.INFO)
22
22
  logger = logging.getLogger(__name__)
23
23
 
24
- class Assistant(BaseModel):
24
+ class Agent(BaseModel):
25
25
  # -*- Agent settings
26
- name: Optional[str] = Field(None, description="Name of the assistant.")
27
- description: Optional[str] = Field(None, description="Description of the assistant's role.")
28
- instructions: Optional[List[str]] = Field(None, description="List of instructions for the assistant.")
26
+ name: Optional[str] = Field(None, description="Name of the agent.")
27
+ description: Optional[str] = Field(None, description="Description of the agent's role.")
28
+ instructions: Optional[List[str]] = Field(None, description="List of instructions for the agent.")
29
29
  model: Optional[str] = Field(None, description="This one is not in the use.")
30
30
  show_tool_calls: bool = Field(False, description="Whether to show tool calls in the response.")
31
31
  markdown: bool = Field(False, description="Whether to format the response in markdown.")
32
- tools: Optional[List[BaseTool]] = Field(None, description="List of tools available to the assistant.")
33
- user_name: Optional[str] = Field("User", description="Name of the user interacting with the assistant.")
34
- emoji: Optional[str] = Field(":robot:", description="Emoji to represent the assistant in the CLI.")
32
+ tools: Optional[List[BaseTool]] = Field(None, description="List of tools available to the agent.")
33
+ user_name: Optional[str] = Field("User", description="Name of the user interacting with the agent.")
34
+ emoji: Optional[str] = Field(":robot:", description="Emoji to represent the agent in the CLI.")
35
35
  rag: Optional[RAG] = Field(None, description="RAG instance for context retrieval.")
36
36
  knowledge_base: Optional[Any] = Field(None, description="Knowledge base for domain-specific information.")
37
37
  llm: Optional[str] = Field(None, description="The LLM provider to use (e.g., 'groq', 'openai', 'anthropic').")
38
38
  llm_model: Optional[str] = Field(None, description="The specific model to use for the LLM provider.")
39
39
  llm_instance: Optional[BaseLLM] = Field(None, description="The LLM instance to use.")
40
40
  json_output: bool = Field(False, description="Whether to format the response as JSON.")
41
- api: bool = Field(False, description="Whether to generate an API for the assistant.")
41
+ api: bool = Field(False, description="Whether to generate an API for the agent.")
42
42
  api_config: Optional[Dict] = Field(
43
43
  None,
44
44
  description="Configuration for the API (e.g., host, port, authentication).",
@@ -46,7 +46,7 @@ class Assistant(BaseModel):
46
46
  api_generator: Optional[Any] = Field(None, description="The API generator instance.")
47
47
  expected_output: Optional[Union[str, Dict]] = Field(None, description="The expected format or structure of the output.")
48
48
  semantic_model: Optional[Any] = Field(None, description="SentenceTransformer model for semantic matching.")
49
- team: Optional[List['Assistant']] = Field(None, description="List of assistants in the team.")
49
+ team: Optional[List['Agent']] = Field(None, description="List of assistants in the team.")
50
50
  auto_tool: bool = Field(False, description="Whether to automatically detect and call tools.")
51
51
 
52
52
  # Allow arbitrary types
@@ -125,7 +125,7 @@ class Assistant(BaseModel):
125
125
  try:
126
126
  # Import the module
127
127
  module_name = file.stem
128
- module = importlib.import_module(f"hashai.tools.{module_name}")
128
+ module = importlib.import_module(f"semantio.tools.{module_name}")
129
129
 
130
130
  # Find all classes that inherit from BaseTool
131
131
  for name, obj in module.__dict__.items():
@@ -197,7 +197,7 @@ class Assistant(BaseModel):
197
197
  model_to_use = self.llm_model or default_model
198
198
 
199
199
  # Dynamically import and initialize the LLM class
200
- module_name = f"hashai.llm.{llm_provider}"
200
+ module_name = f"semantio.llm.{llm_provider}"
201
201
  llm_module = importlib.import_module(module_name)
202
202
  llm_class = getattr(llm_module, llm_class_name)
203
203
  self.llm_instance = llm_class(model=model_to_use, api_key=api_key)
@@ -214,10 +214,10 @@ class Assistant(BaseModel):
214
214
  stream: bool = False,
215
215
  markdown: bool = False,
216
216
  tools: Optional[List[BaseTool]] = None,
217
- team: Optional[List['Assistant']] = None,
217
+ team: Optional[List['Agent']] = None,
218
218
  **kwargs,
219
219
  ) -> Union[str, Dict]: # Add return type hint
220
- """Print the assistant's response to the console and return it."""
220
+ """Print the agent's response to the console and return it."""
221
221
 
222
222
  if stream:
223
223
  # Handle streaming response
@@ -234,14 +234,14 @@ class Assistant(BaseModel):
234
234
 
235
235
 
236
236
  def _stream_response(self, message: str, markdown: bool = False, **kwargs) -> Iterator[str]:
237
- """Stream the assistant's response."""
237
+ """Stream the agent's response."""
238
238
  # Simulate streaming by yielding chunks of the response
239
239
  response = self._generate_response(message, markdown=markdown, **kwargs)
240
240
  for chunk in response.split():
241
241
  yield chunk + " "
242
242
 
243
243
  def register_tool(self, tool: BaseTool):
244
- """Register a tool for the assistant."""
244
+ """Register a tool for the agent."""
245
245
  if self.tools is None:
246
246
  self.tools = []
247
247
  self.tools.append(tool)
@@ -256,7 +256,7 @@ class Assistant(BaseModel):
256
256
 
257
257
  # Create a prompt for the LLM
258
258
  prompt = f"""
259
- You are an AI assistant that helps users by selecting the most appropriate tool to answer their query. Below is a list of available tools and their functionalities:
259
+ You are an AI agent that helps users by selecting the most appropriate tool to answer their query. Below is a list of available tools and their functionalities:
260
260
 
261
261
  {self._get_tool_descriptions()}
262
262
 
@@ -290,7 +290,7 @@ class Assistant(BaseModel):
290
290
  """
291
291
  # Create a prompt for the LLM to analyze the query and select tools
292
292
  prompt = f"""
293
- You are an AI assistant that helps analyze user queries and select the most appropriate tools.
293
+ You are an AI agent that helps analyze user queries and select the most appropriate tools.
294
294
  Below is a list of available tools and their functionalities:
295
295
 
296
296
  {self._get_tool_descriptions()}
@@ -324,8 +324,8 @@ class Assistant(BaseModel):
324
324
  return []
325
325
 
326
326
 
327
- def _generate_response(self, message: str, markdown: bool = False, tools: Optional[List[BaseTool]] = None, team: Optional[List['Assistant']] = None, **kwargs) -> str:
328
- """Generate the assistant's response, including tool execution and context retrieval."""
327
+ def _generate_response(self, message: str, markdown: bool = False, tools: Optional[List[BaseTool]] = None, team: Optional[List['Agent']] = None, **kwargs) -> str:
328
+ """Generate the agent's response, including tool execution and context retrieval."""
329
329
  # Use the specified tools or team if provided
330
330
  if tools is not None:
331
331
  self.tools = tools
@@ -435,12 +435,12 @@ class Assistant(BaseModel):
435
435
  # Combine all responses into a single string
436
436
  return "\n\n".join(responses)
437
437
 
438
- def _generate_team_response(self, message: str, team: List['Assistant'], markdown: bool = False, **kwargs) -> str:
438
+ def _generate_team_response(self, message: str, team: List['Agent'], markdown: bool = False, **kwargs) -> str:
439
439
  """Generate a response using a team of assistants."""
440
440
  responses = []
441
- for assistant in team:
442
- response = assistant.print_response(message, markdown=markdown, **kwargs)
443
- responses.append(f"**{assistant.name}:**\n\n{response}")
441
+ for agent in team:
442
+ response = agent.print_response(message, markdown=markdown, **kwargs)
443
+ responses.append(f"**{agent.name}:**\n\n{response}")
444
444
  return "\n\n".join(responses)
445
445
 
446
446
  def _build_prompt(self, message: str, context: Optional[List[Dict]]) -> str:
@@ -578,7 +578,7 @@ class Assistant(BaseModel):
578
578
  exit_on: Optional[List[str]] = None,
579
579
  **kwargs,
580
580
  ):
581
- """Run the assistant in a CLI app."""
581
+ """Run the agent in a CLI app."""
582
582
  from rich.prompt import Prompt
583
583
 
584
584
  if message:
@@ -593,15 +593,15 @@ class Assistant(BaseModel):
593
593
  self.print_response(message=message, **kwargs)
594
594
 
595
595
  def _generate_api(self):
596
- """Generate an API for the assistant if api=True."""
596
+ """Generate an API for the agent if api=True."""
597
597
  from .api.api_generator import APIGenerator
598
598
  self.api_generator = APIGenerator(self)
599
- print(f"API generated for assistant '{self.name}'. Use `.run_api()` to start the API server.")
599
+ print(f"API generated for agent '{self.name}'. Use `.run_api()` to start the API server.")
600
600
 
601
601
  def run_api(self):
602
- """Run the API server for the assistant."""
602
+ """Run the API server for the agent."""
603
603
  if not hasattr(self, 'api_generator'):
604
- raise ValueError("API is not enabled for this assistant. Set `api=True` when initializing the assistant.")
604
+ raise ValueError("API is not enabled for this agent. Set `api=True` when initializing the agent.")
605
605
 
606
606
  # Get API configuration
607
607
  host = self.api_config.get("host", "0.0.0.0") if self.api_config else "0.0.0.0"
semantio/cli/main.py CHANGED
@@ -1,7 +1,7 @@
1
1
  import argparse
2
2
  import warnings
3
- from hashai.assistant import Assistant
4
- from hashai.llm import get_llm
3
+ from semantio.agent import Agent
4
+ from semantio.llm import get_llm
5
5
  from urllib3.exceptions import NotOpenSSLWarning
6
6
 
7
7
  # Suppress the NotOpenSSLWarning
@@ -9,7 +9,7 @@ warnings.filterwarnings("ignore", category=NotOpenSSLWarning)
9
9
 
10
10
  def main():
11
11
  parser = argparse.ArgumentParser(description="opAi CLI")
12
- parser.add_argument("--message", type=str, required=True, help="Message to send to the assistant")
12
+ parser.add_argument("--message", type=str, required=True, help="Message to send to the agent")
13
13
  parser.add_argument("--provider", type=str, required=True, help="LLM provider (e.g., groq, openai)")
14
14
  parser.add_argument("--api-key", type=str, required=True, help="API key for the LLM provider")
15
15
  parser.add_argument("--model", type=str, default=None, help="Model name (e.g., mixtral-8x7b-32768)")
@@ -22,9 +22,9 @@ def main():
22
22
 
23
23
  llm = get_llm(provider=args.provider, **llm_config)
24
24
 
25
- # Create an assistant
26
- assistant = Assistant(model=args.provider, llm=llm)
27
- assistant.print_response(args.message)
25
+ # Create an agent
26
+ agent = Agent(model=args.provider, llm=llm)
27
+ agent.print_response(args.message)
28
28
 
29
29
 
30
30
  if __name__ == "__main__":
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: semantio
3
- Version: 0.0.2
3
+ Version: 0.0.3
4
4
  Summary: A powerful SDK for building AI agents
5
5
  Home-page: https://github.com/Syenah/semantio
6
6
  Author: Rakesh
@@ -1,12 +1,12 @@
1
1
  semantio/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- semantio/agent.py,sha256=mwcKaHy-HY26hxgCRZS5LZw1semlj59qF4uYcLpyqBc,30247
2
+ semantio/agent.py,sha256=plQ4D76cnJ1FaGlEuKDeA53aW_hMDvt5sbmUuTHqvFQ,30143
3
3
  semantio/memory.py,sha256=eNAwyAokppHzMcIyFgOw2hT2wnLQBd9GL4T5eallNV4,281
4
4
  semantio/rag.py,sha256=ROy3Pa1NURcDs6qQZ8IMoa5Xlzt6I-msEq0C1p8UgB0,472
5
5
  semantio/api/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
6
  semantio/api/api_generator.py,sha256=Q-USITEpluRESEaQuOmF7m1vhLKYU9P8eGlQppKT9J4,829
7
7
  semantio/api/fastapi_app.py,sha256=DyTgKJKikMe2G6wWmyzo1rBLXQFi8UWWUMY3UGH4f24,2128
8
8
  semantio/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- semantio/cli/main.py,sha256=BvY2B2xUSV1Q-4K6eH5P1tJB2Y0aL_rm-1ZW-D0F3eU,1115
9
+ semantio/cli/main.py,sha256=jUvSfehbHWALwracEgBopMIVMraSV9QmDUFfgGcxnP0,1091
10
10
  semantio/knowledge_base/__init__.py,sha256=mvp0GFiGSjcxlkaDulAwKOCL9s6gsKTqhPKXF9N3n1g,172
11
11
  semantio/knowledge_base/document_loader.py,sha256=nix0yZJ-JJoDbhLkpg5bKDMvNrwykmknI7MRIn0N81k,1910
12
12
  semantio/knowledge_base/retriever.py,sha256=XpdzKS1UCncJImVMtG67VXMC7lp2eRzKnShjvktsFMM,1271
@@ -17,7 +17,6 @@ semantio/llm/base_llm.py,sha256=VFl_2S4kqYDuCTWIfWMbKU5aNbVqOCG33E4APOSHF90,668
17
17
  semantio/llm/deepseek.py,sha256=oxX-Uw0_lY2sstYs5KGBGFB_hAZUbZomPADdib1mY2M,1100
18
18
  semantio/llm/gemini.py,sha256=er3zv1jOvWQBGbPuv4fS4pR_c_abHyhroe-rkXupOO4,1959
19
19
  semantio/llm/groq.py,sha256=1AH30paKzDIQjBjWPQPN44QwFHsIOVwI-a587-cDIVc,4285
20
- semantio/llm/llama.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
20
  semantio/llm/mistral.py,sha256=NpvaB1cE6-jMEBdT0mTf6Ca4Qq2LS8QivDKI6AgdRjE,1061
22
21
  semantio/llm/openai.py,sha256=I3ab-d_zFxm-TDhYk6t1PzDtElPJEEQ2eSiARBNIGi4,5174
23
22
  semantio/storage/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -28,16 +27,15 @@ semantio/tools/base_tool.py,sha256=xBNSa_8a8WmA4BGRLG2dE7wj9GnBcZo7-P2SyD86GvY,5
28
27
  semantio/tools/crypto.py,sha256=mut1ztvpPcUUP3b563dh_FmKtP68KmNis3Qm8WENj8w,5559
29
28
  semantio/tools/duckduckgo.py,sha256=6mGn0js0cIsVxQlAgB8AYNLP05H8WmJKnSVosiO9iH0,5034
30
29
  semantio/tools/stocks.py,sha256=BVuK61O9OmWQjj0YdiCJY6TzpiFJ_An1UJB2RkDfX2k,5393
31
- semantio/tools/web_browser.py,sha256=LMwPFTHNTtqCp8MEHVlJJUSJa91vM7MZWIL5RDQKF4U,4980
32
30
  semantio/utils/__init__.py,sha256=Lx4X4iJpRhZzRmpQb80XXh5Ve8ZMOkadWAxXSmHpO_8,244
33
31
  semantio/utils/config.py,sha256=ZTwUTqxjW3-w94zoU7GzivWyJe0JJGvBfuB4RUOuEs8,1198
34
32
  semantio/utils/date_utils.py,sha256=x3oqRGv6ee_KCJ0LvCqqZh_FSgS6YGOHBwZQS4TJetY,1471
35
33
  semantio/utils/file_utils.py,sha256=b_cMuJINEGk9ikNuNHSn9lsmICWwvtnCDZ03ndH_S2I,1779
36
34
  semantio/utils/logger.py,sha256=TmGbP8BRjLMWjXi2GWzZ0RIXt70x9qX3FuIqghCNlwM,510
37
35
  semantio/utils/validation_utils.py,sha256=iwoxEb4Q5ILqV6tbesMjPWPCCoL3AmPLejGUy6q8YvQ,1284
38
- semantio-0.0.2.dist-info/LICENSE,sha256=teQbWD2Zlcl1_Fo29o2tNbs6G26hbCQiUzds5fQGYlY,1063
39
- semantio-0.0.2.dist-info/METADATA,sha256=LsBDOM1gPw6rbzZ_-TIf4XJxf3DEWZ7s8KDd8_cDMw0,6800
40
- semantio-0.0.2.dist-info/WHEEL,sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o,92
41
- semantio-0.0.2.dist-info/entry_points.txt,sha256=zbPgevSLwcLpdRHqI_atE8EOt8lK2vRF1AoDflDTo18,53
42
- semantio-0.0.2.dist-info/top_level.txt,sha256=Yte_6mb-bh-I_lQwMjk1GijZkxPoX4Zmp3kBftC1ZlA,9
43
- semantio-0.0.2.dist-info/RECORD,,
36
+ semantio-0.0.3.dist-info/LICENSE,sha256=teQbWD2Zlcl1_Fo29o2tNbs6G26hbCQiUzds5fQGYlY,1063
37
+ semantio-0.0.3.dist-info/METADATA,sha256=M5Q-waTknpyWrD_HV9G76jMKgPHPrBBwM5Hl8we4ulo,6800
38
+ semantio-0.0.3.dist-info/WHEEL,sha256=ewwEueio1C2XeHTvT17n8dZUJgOvyCWCt0WVNLClP9o,92
39
+ semantio-0.0.3.dist-info/entry_points.txt,sha256=zbPgevSLwcLpdRHqI_atE8EOt8lK2vRF1AoDflDTo18,53
40
+ semantio-0.0.3.dist-info/top_level.txt,sha256=Yte_6mb-bh-I_lQwMjk1GijZkxPoX4Zmp3kBftC1ZlA,9
41
+ semantio-0.0.3.dist-info/RECORD,,
semantio/llm/llama.py DELETED
File without changes
@@ -1,153 +0,0 @@
1
- from typing import Dict, Any, Optional, List
2
- from playwright.async_api import async_playwright
3
- import asyncio
4
- import logging
5
-
6
- logger = logging.getLogger(__name__)
7
-
8
- class WebBrowserTool:
9
- """
10
- A tool for performing browser automation tasks using Playwright.
11
- """
12
-
13
- def __init__(self, headless: bool = True):
14
- """
15
- Initialize the WebBrowserTool.
16
-
17
- Args:
18
- headless (bool): Whether to run the browser in headless mode (default: True).
19
- """
20
- self.headless = headless
21
- self.browser = None
22
- self.context = None
23
- self.page = None
24
-
25
- async def start(self):
26
- """
27
- Start the browser and create a new context and page.
28
- """
29
- self.playwright = await async_playwright().start()
30
- self.browser = await self.playwright.chromium.launch(headless=self.headless)
31
- self.context = await self.browser.new_context()
32
- self.page = await self.context.new_page()
33
- logger.info("Browser started successfully.")
34
-
35
- async def close(self):
36
- """
37
- Close the browser and cleanup resources.
38
- """
39
- if self.browser:
40
- await self.browser.close()
41
- await self.playwright.stop()
42
- logger.info("Browser closed successfully.")
43
-
44
- async def navigate(self, url: str) -> str:
45
- """
46
- Navigate to a specific URL.
47
-
48
- Args:
49
- url (str): The URL to navigate to.
50
-
51
- Returns:
52
- str: The page title after navigation.
53
- """
54
- if not self.page:
55
- raise RuntimeError("Browser is not started. Call start() first.")
56
-
57
- await self.page.goto(url)
58
- title = await self.page.title()
59
- logger.info(f"Navigated to {url}. Page title: {title}")
60
- return title
61
-
62
- async def fill_form(self, fields: Dict[str, str]) -> str:
63
- """
64
- Fill a form with the provided fields.
65
-
66
- Args:
67
- fields (Dict[str, str]): A dictionary of field names and values to fill.
68
-
69
- Returns:
70
- str: A success message.
71
- """
72
- if not self.page:
73
- raise RuntimeError("Browser is not started. Call start() first.")
74
-
75
- for field, value in fields.items():
76
- await self.page.fill(f'input[name="{field}"]', value)
77
- logger.info(f"Filled field '{field}' with value '{value}'.")
78
-
79
- return "Form filled successfully."
80
-
81
- async def click(self, selector: str) -> str:
82
- """
83
- Click an element on the page.
84
-
85
- Args:
86
- selector (str): The CSS selector of the element to click.
87
-
88
- Returns:
89
- str: A success message.
90
- """
91
- if not self.page:
92
- raise RuntimeError("Browser is not started. Call start() first.")
93
-
94
- await self.page.click(selector)
95
- logger.info(f"Clicked element with selector '{selector}'.")
96
- return f"Clicked element: {selector}"
97
-
98
- async def scrape(self, selector: str) -> List[Dict[str, str]]:
99
- """
100
- Scrape data from the page.
101
-
102
- Args:
103
- selector (str): The CSS selector of the elements to scrape.
104
-
105
- Returns:
106
- List[Dict[str, str]]: A list of dictionaries containing the scraped data.
107
- """
108
- if not self.page:
109
- raise RuntimeError("Browser is not started. Call start() first.")
110
-
111
- elements = await self.page.query_selector_all(selector)
112
- scraped_data = []
113
- for element in elements:
114
- text = await element.inner_text()
115
- scraped_data.append({"text": text.strip()})
116
- logger.info(f"Scraped text: {text.strip()}")
117
-
118
- return scraped_data
119
-
120
- async def execute_step(self, step: Dict[str, Any]) -> str:
121
- """
122
- Execute a browser automation step.
123
-
124
- Args:
125
- step (Dict[str, Any]): A dictionary containing the step details.
126
- - "action": The action to perform (e.g., "navigate", "fill_form", "click", "scrape").
127
- - "details": The details required for the action (e.g., URL, form fields, selector).
128
- - "website": The website to perform the action on (optional).
129
-
130
- Returns:
131
- str: The result of the step execution.
132
- """
133
- action = step.get("action")
134
- details = step.get("details")
135
- website = step.get("website", "https://www.google.com")
136
-
137
- if not self.page:
138
- await self.start()
139
-
140
- try:
141
- if action == "navigate":
142
- return await self.navigate(details)
143
- elif action == "fill_form":
144
- return await self.fill_form(details)
145
- elif action == "click":
146
- return await self.click(details)
147
- elif action == "scrape":
148
- return str(await self.scrape(details))
149
- else:
150
- return f"Unknown action: {action}"
151
- except Exception as e:
152
- logger.error(f"Error executing step: {e}")
153
- return f"Error executing step: {e}"