semantic-link-labs 0.9.6__py3-none-any.whl → 0.9.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of semantic-link-labs might be problematic. Click here for more details.
- {semantic_link_labs-0.9.6.dist-info → semantic_link_labs-0.9.8.dist-info}/METADATA +8 -5
- {semantic_link_labs-0.9.6.dist-info → semantic_link_labs-0.9.8.dist-info}/RECORD +35 -32
- {semantic_link_labs-0.9.6.dist-info → semantic_link_labs-0.9.8.dist-info}/WHEEL +1 -1
- sempy_labs/__init__.py +4 -0
- sempy_labs/_ai.py +3 -1
- sempy_labs/_capacities.py +0 -1
- sempy_labs/_dax_query_view.py +2 -0
- sempy_labs/_delta_analyzer_history.py +298 -0
- sempy_labs/_helper_functions.py +65 -16
- sempy_labs/_icons.py +6 -6
- sempy_labs/_list_functions.py +3 -1
- sempy_labs/_model_bpa_bulk.py +10 -11
- sempy_labs/_model_bpa_rules.py +1 -1
- sempy_labs/admin/_basic_functions.py +28 -2
- sempy_labs/admin/_reports.py +1 -1
- sempy_labs/admin/_scanner.py +0 -2
- sempy_labs/admin/_tenant.py +8 -3
- sempy_labs/directlake/_generate_shared_expression.py +9 -1
- sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +82 -36
- sempy_labs/directlake/_update_directlake_partition_entity.py +3 -0
- sempy_labs/graph/_groups.py +6 -0
- sempy_labs/graph/_teams.py +2 -0
- sempy_labs/graph/_users.py +4 -0
- sempy_labs/lakehouse/__init__.py +12 -3
- sempy_labs/lakehouse/_blobs.py +231 -0
- sempy_labs/lakehouse/_shortcuts.py +22 -3
- sempy_labs/migration/_direct_lake_to_import.py +47 -10
- sempy_labs/report/__init__.py +4 -0
- sempy_labs/report/_report_functions.py +3 -3
- sempy_labs/report/_report_helper.py +17 -5
- sempy_labs/report/_reportwrapper.py +17 -8
- sempy_labs/report/_save_report.py +147 -0
- sempy_labs/tom/_model.py +156 -23
- {semantic_link_labs-0.9.6.dist-info → semantic_link_labs-0.9.8.dist-info/licenses}/LICENSE +0 -0
- {semantic_link_labs-0.9.6.dist-info → semantic_link_labs-0.9.8.dist-info}/top_level.txt +0 -0
sempy_labs/graph/_users.py
CHANGED
|
@@ -7,6 +7,7 @@ from sempy_labs._helper_functions import (
|
|
|
7
7
|
_base_api,
|
|
8
8
|
_create_dataframe,
|
|
9
9
|
)
|
|
10
|
+
from sempy._utils._log import log
|
|
10
11
|
|
|
11
12
|
|
|
12
13
|
def resolve_user_id(user: str | UUID) -> UUID:
|
|
@@ -33,6 +34,7 @@ def resolve_user_id(user: str | UUID) -> UUID:
|
|
|
33
34
|
return result.get("id")
|
|
34
35
|
|
|
35
36
|
|
|
37
|
+
@log
|
|
36
38
|
def get_user(user: str | UUID) -> pd.DataFrame:
|
|
37
39
|
"""
|
|
38
40
|
Shows properties of a given user.
|
|
@@ -70,6 +72,7 @@ def get_user(user: str | UUID) -> pd.DataFrame:
|
|
|
70
72
|
return pd.DataFrame([new_data])
|
|
71
73
|
|
|
72
74
|
|
|
75
|
+
@log
|
|
73
76
|
def list_users() -> pd.DataFrame:
|
|
74
77
|
"""
|
|
75
78
|
Shows a list of users and their properties.
|
|
@@ -120,6 +123,7 @@ def list_users() -> pd.DataFrame:
|
|
|
120
123
|
return df
|
|
121
124
|
|
|
122
125
|
|
|
126
|
+
@log
|
|
123
127
|
def send_mail(
|
|
124
128
|
user: UUID | str,
|
|
125
129
|
subject: str,
|
sempy_labs/lakehouse/__init__.py
CHANGED
|
@@ -1,12 +1,15 @@
|
|
|
1
|
-
from sempy_labs.lakehouse._get_lakehouse_columns import
|
|
2
|
-
|
|
1
|
+
from sempy_labs.lakehouse._get_lakehouse_columns import (
|
|
2
|
+
get_lakehouse_columns,
|
|
3
|
+
)
|
|
4
|
+
from sempy_labs.lakehouse._get_lakehouse_tables import (
|
|
5
|
+
get_lakehouse_tables,
|
|
6
|
+
)
|
|
3
7
|
from sempy_labs.lakehouse._lakehouse import (
|
|
4
8
|
lakehouse_attached,
|
|
5
9
|
optimize_lakehouse_tables,
|
|
6
10
|
vacuum_lakehouse_tables,
|
|
7
11
|
run_table_maintenance,
|
|
8
12
|
)
|
|
9
|
-
|
|
10
13
|
from sempy_labs.lakehouse._shortcuts import (
|
|
11
14
|
# create_shortcut,
|
|
12
15
|
create_shortcut_onelake,
|
|
@@ -14,6 +17,10 @@ from sempy_labs.lakehouse._shortcuts import (
|
|
|
14
17
|
reset_shortcut_cache,
|
|
15
18
|
list_shortcuts,
|
|
16
19
|
)
|
|
20
|
+
from sempy_labs.lakehouse._blobs import (
|
|
21
|
+
recover_lakehouse_object,
|
|
22
|
+
list_blobs,
|
|
23
|
+
)
|
|
17
24
|
|
|
18
25
|
__all__ = [
|
|
19
26
|
"get_lakehouse_columns",
|
|
@@ -27,4 +34,6 @@ __all__ = [
|
|
|
27
34
|
"reset_shortcut_cache",
|
|
28
35
|
"run_table_maintenance",
|
|
29
36
|
"list_shortcuts",
|
|
37
|
+
"recover_lakehouse_object",
|
|
38
|
+
"list_blobs",
|
|
30
39
|
]
|
|
@@ -0,0 +1,231 @@
|
|
|
1
|
+
from sempy_labs._helper_functions import (
|
|
2
|
+
resolve_workspace_id,
|
|
3
|
+
resolve_lakehouse_id,
|
|
4
|
+
_xml_to_dict,
|
|
5
|
+
_create_dataframe,
|
|
6
|
+
_update_dataframe_datatypes,
|
|
7
|
+
)
|
|
8
|
+
from sempy._utils._log import log
|
|
9
|
+
from uuid import UUID
|
|
10
|
+
from typing import Optional, List
|
|
11
|
+
import sempy_labs._icons as icons
|
|
12
|
+
import xml.etree.ElementTree as ET
|
|
13
|
+
import pandas as pd
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def _request_blob_api(
|
|
17
|
+
request: str,
|
|
18
|
+
method: str = "get",
|
|
19
|
+
payload: Optional[dict] = None,
|
|
20
|
+
status_codes: int | List[int] = 200,
|
|
21
|
+
):
|
|
22
|
+
|
|
23
|
+
import requests
|
|
24
|
+
import notebookutils
|
|
25
|
+
from sempy.fabric.exceptions import FabricHTTPException
|
|
26
|
+
|
|
27
|
+
if isinstance(status_codes, int):
|
|
28
|
+
status_codes = [status_codes]
|
|
29
|
+
|
|
30
|
+
token = notebookutils.credentials.getToken("storage")
|
|
31
|
+
|
|
32
|
+
headers = {
|
|
33
|
+
"Authorization": f"Bearer {token}",
|
|
34
|
+
"Content-Type": "application/json",
|
|
35
|
+
"x-ms-version": "2025-05-05",
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
response = requests.request(
|
|
39
|
+
method.upper(),
|
|
40
|
+
f"https://onelake.blob.fabric.microsoft.com/{request}",
|
|
41
|
+
headers=headers,
|
|
42
|
+
json=payload,
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
if response.status_code not in status_codes:
|
|
46
|
+
raise FabricHTTPException(response)
|
|
47
|
+
|
|
48
|
+
return response
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@log
|
|
52
|
+
def list_blobs(
|
|
53
|
+
lakehouse: Optional[str | UUID] = None,
|
|
54
|
+
workspace: Optional[str | UUID] = None,
|
|
55
|
+
container: Optional[str] = None,
|
|
56
|
+
) -> pd.DataFrame:
|
|
57
|
+
"""
|
|
58
|
+
Returns a list of blobs for a given lakehouse.
|
|
59
|
+
|
|
60
|
+
This function leverages the following API: `List Blobs <https://learn.microsoft.com/rest/api/storageservices/list-blobs?tabs=microsoft-entra-id>`_.
|
|
61
|
+
|
|
62
|
+
Parameters
|
|
63
|
+
----------
|
|
64
|
+
lakehouse : str | uuid.UUID, default=None
|
|
65
|
+
The Fabric lakehouse name or ID.
|
|
66
|
+
Defaults to None which resolves to the lakehouse attached to the notebook.
|
|
67
|
+
workspace : str | uuid.UUID, default=None
|
|
68
|
+
The Fabric workspace name or ID used by the lakehouse.
|
|
69
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
70
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
71
|
+
container : str, default=None
|
|
72
|
+
The container name to list blobs from. If None, lists all blobs in the lakehouse.
|
|
73
|
+
Valid values are "Tables" or "Files". If not specified, the function will list all blobs in the lakehouse.
|
|
74
|
+
|
|
75
|
+
Returns
|
|
76
|
+
-------
|
|
77
|
+
pandas.DataFrame
|
|
78
|
+
A pandas dataframe showing a list of blobs in the lakehouse.
|
|
79
|
+
"""
|
|
80
|
+
|
|
81
|
+
workspace_id = resolve_workspace_id(workspace)
|
|
82
|
+
lakehouse_id = resolve_lakehouse_id(lakehouse, workspace_id)
|
|
83
|
+
|
|
84
|
+
if container is None:
|
|
85
|
+
path_prefix = f"{workspace_id}/{lakehouse_id}"
|
|
86
|
+
else:
|
|
87
|
+
if container not in ["Tables", "Files"]:
|
|
88
|
+
raise ValueError(
|
|
89
|
+
f"{icons.red_dot} Invalid container '{container}' within the file_path parameter. Expected 'Tables' or 'Files'."
|
|
90
|
+
)
|
|
91
|
+
path_prefix = f"{workspace_id}/{lakehouse_id}/{container}"
|
|
92
|
+
|
|
93
|
+
response = _request_blob_api(
|
|
94
|
+
request=f"{path_prefix}?restype=container&comp=list&include=deleted"
|
|
95
|
+
)
|
|
96
|
+
root = ET.fromstring(response.content)
|
|
97
|
+
response_json = _xml_to_dict(root)
|
|
98
|
+
|
|
99
|
+
columns = {
|
|
100
|
+
"Blob Name": "str",
|
|
101
|
+
"Is Deleted": "bool",
|
|
102
|
+
"Deletion Id": "str",
|
|
103
|
+
"Creation Time": "datetime",
|
|
104
|
+
"Expiry Time": "datetime",
|
|
105
|
+
"Etag": "str",
|
|
106
|
+
"Resource Type": "str",
|
|
107
|
+
"Content Length": "int",
|
|
108
|
+
"Content Type": "str",
|
|
109
|
+
"Content Encoding": "str",
|
|
110
|
+
"Content Language": "str",
|
|
111
|
+
"Content CRC64": "str",
|
|
112
|
+
"Content MD5": "str",
|
|
113
|
+
"Cache Control": "str",
|
|
114
|
+
"Content Disposition": "str",
|
|
115
|
+
"Blob Type": "str",
|
|
116
|
+
"Access Tier": "str",
|
|
117
|
+
"Access Tier Inferred": "str",
|
|
118
|
+
"Server Encrypted": "bool",
|
|
119
|
+
"Deleted Time": "str",
|
|
120
|
+
"Remaining Retention Days": "str",
|
|
121
|
+
}
|
|
122
|
+
|
|
123
|
+
df = _create_dataframe(columns=columns)
|
|
124
|
+
|
|
125
|
+
for blob in (
|
|
126
|
+
response_json.get("EnumerationResults", {}).get("Blobs", {}).get("Blob", {})
|
|
127
|
+
):
|
|
128
|
+
p = blob.get("Properties", {})
|
|
129
|
+
new_data = {
|
|
130
|
+
"Blob Name": blob.get("Name"),
|
|
131
|
+
"Is Deleted": blob.get("Deleted", False),
|
|
132
|
+
"Deletion Id": blob.get("DeletionId"),
|
|
133
|
+
"Creation Time": p.get("Creation-Time"),
|
|
134
|
+
"Expiry Time": p.get("Expiry-Time"),
|
|
135
|
+
"Etag": p.get("Etag"),
|
|
136
|
+
"Resource Type": p.get("ResourceType"),
|
|
137
|
+
"Content Length": p.get("Content-Length"),
|
|
138
|
+
"Content Type": p.get("Content-Type"),
|
|
139
|
+
"Content Encoding": p.get("Content-Encoding"),
|
|
140
|
+
"Content Language": p.get("Content-Language"),
|
|
141
|
+
"Content CRC64": p.get("Content-CRC64"),
|
|
142
|
+
"Content MD5": p.get("Content-MD5"),
|
|
143
|
+
"Cache Control": p.get("Cache-Control"),
|
|
144
|
+
"Content Disposition": p.get("Content-Disposition"),
|
|
145
|
+
"Blob Type": p.get("BlobType"),
|
|
146
|
+
"Access Tier": p.get("AccessTier"),
|
|
147
|
+
"Access Tier Inferred": p.get("AccessTierInferred"),
|
|
148
|
+
"Server Encrypted": p.get("ServerEncrypted"),
|
|
149
|
+
"Deleted Time": p.get("DeletedTime"),
|
|
150
|
+
"Remaining Retention Days": p.get("RemainingRetentionDays"),
|
|
151
|
+
}
|
|
152
|
+
|
|
153
|
+
df = pd.concat([df, pd.DataFrame(new_data, index=[0])], ignore_index=True)
|
|
154
|
+
|
|
155
|
+
_update_dataframe_datatypes(dataframe=df, column_map=columns)
|
|
156
|
+
|
|
157
|
+
return df
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
@log
|
|
161
|
+
def recover_lakehouse_object(
|
|
162
|
+
file_path: str,
|
|
163
|
+
lakehouse: Optional[str | UUID] = None,
|
|
164
|
+
workspace: Optional[str | UUID] = None,
|
|
165
|
+
):
|
|
166
|
+
"""
|
|
167
|
+
Recovers an object (i.e. table, file, folder) in a lakehouse from a deleted state. Only `soft-deleted objects <https://learn.microsoft.com/fabric/onelake/onelake-disaster-recovery#soft-delete-for-onelake-files>`_ can be recovered (deleted for less than 7 days).
|
|
168
|
+
|
|
169
|
+
Parameters
|
|
170
|
+
----------
|
|
171
|
+
file_path : str
|
|
172
|
+
The file path of the object to restore. For example: "Tables/my_delta_table".
|
|
173
|
+
lakehouse : str | uuid.UUID, default=None
|
|
174
|
+
The Fabric lakehouse name or ID.
|
|
175
|
+
Defaults to None which resolves to the lakehouse attached to the notebook.
|
|
176
|
+
workspace : str | uuid.UUID, default=None
|
|
177
|
+
The Fabric workspace name or ID used by the lakehouse.
|
|
178
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
179
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
180
|
+
"""
|
|
181
|
+
|
|
182
|
+
workspace_id = resolve_workspace_id(workspace)
|
|
183
|
+
lakehouse_id = resolve_lakehouse_id(lakehouse, workspace_id)
|
|
184
|
+
|
|
185
|
+
blob_path_prefix = f"{lakehouse_id}/{file_path}"
|
|
186
|
+
|
|
187
|
+
container = file_path.split("/")[0]
|
|
188
|
+
if container not in ["Tables", "Files"]:
|
|
189
|
+
raise ValueError(
|
|
190
|
+
f"{icons.red_dot} Invalid container '{container}' within the file_path parameter. Expected 'Tables' or 'Files'."
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
df = list_blobs(lakehouse=lakehouse, workspace=workspace, container=container)
|
|
194
|
+
|
|
195
|
+
for _, r in df.iterrows():
|
|
196
|
+
blob_name = r.get("Blob Name")
|
|
197
|
+
is_deleted = r.get("Is Deleted")
|
|
198
|
+
if blob_name.startswith(blob_path_prefix) and is_deleted:
|
|
199
|
+
print(f"{icons.in_progress} Restoring the '{blob_name}' blob...")
|
|
200
|
+
_request_blob_api(
|
|
201
|
+
request=f"{workspace_id}/{lakehouse_id}/{file_path}?comp=undelete",
|
|
202
|
+
method="put",
|
|
203
|
+
)
|
|
204
|
+
print(f"{icons.green_dot} The '{blob_name}' blob has been restored.")
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
def _get_user_delegation_key():
|
|
208
|
+
|
|
209
|
+
# https://learn.microsoft.com/rest/api/storageservices/get-user-delegation-key
|
|
210
|
+
|
|
211
|
+
from datetime import datetime, timedelta, timezone
|
|
212
|
+
|
|
213
|
+
utc_now = datetime.now(timezone.utc)
|
|
214
|
+
start_time = utc_now + timedelta(minutes=2)
|
|
215
|
+
expiry_time = start_time + timedelta(minutes=45)
|
|
216
|
+
start_str = start_time.strftime("%Y-%m-%dT%H:%M:%SZ")
|
|
217
|
+
expiry_str = expiry_time.strftime("%Y-%m-%dT%H:%M:%SZ")
|
|
218
|
+
|
|
219
|
+
payload = f"""<?xml version="1.0" encoding="utf-8"?>
|
|
220
|
+
<KeyInfo>
|
|
221
|
+
<Start>{start_str}</Start>
|
|
222
|
+
<Expiry>{expiry_str}</Expiry>
|
|
223
|
+
</KeyInfo>"""
|
|
224
|
+
|
|
225
|
+
response = _request_blob_api(
|
|
226
|
+
request="restype=service&comp=userdelegationkey",
|
|
227
|
+
method="post",
|
|
228
|
+
payload=payload,
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
return response.content
|
|
@@ -24,12 +24,15 @@ def create_shortcut_onelake(
|
|
|
24
24
|
shortcut_name: Optional[str] = None,
|
|
25
25
|
source_path: str = "Tables",
|
|
26
26
|
destination_path: str = "Tables",
|
|
27
|
+
shortcut_conflict_policy: Optional[str] = None,
|
|
27
28
|
):
|
|
28
29
|
"""
|
|
29
30
|
Creates a `shortcut <https://learn.microsoft.com/fabric/onelake/onelake-shortcuts>`_ to a delta table in OneLake.
|
|
30
31
|
|
|
31
32
|
This is a wrapper function for the following API: `OneLake Shortcuts - Create Shortcut <https://learn.microsoft.com/rest/api/fabric/core/onelake-shortcuts/create-shortcut>`_.
|
|
32
33
|
|
|
34
|
+
Service Principal Authentication is supported (see `here <https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Service%20Principal.ipynb>`_ for examples).
|
|
35
|
+
|
|
33
36
|
Parameters
|
|
34
37
|
----------
|
|
35
38
|
table_name : str
|
|
@@ -51,6 +54,8 @@ def create_shortcut_onelake(
|
|
|
51
54
|
A string representing the full path to the table/file in the source lakehouse, including either "Files" or "Tables". Examples: Tables/FolderName/SubFolderName; Files/FolderName/SubFolderName.
|
|
52
55
|
destination_path: str, default="Tables"
|
|
53
56
|
A string representing the full path where the shortcut is created, including either "Files" or "Tables". Examples: Tables/FolderName/SubFolderName; Files/FolderName/SubFolderName.
|
|
57
|
+
shortcut_conflict_policy : str, default=None
|
|
58
|
+
When provided, it defines the action to take when a shortcut with the same name and path already exists. The default action is 'Abort'. Additional ShortcutConflictPolicy types may be added over time.
|
|
54
59
|
"""
|
|
55
60
|
|
|
56
61
|
if not (source_path.startswith("Files") or source_path.startswith("Tables")):
|
|
@@ -103,7 +108,8 @@ def create_shortcut_onelake(
|
|
|
103
108
|
# Check if the shortcut already exists
|
|
104
109
|
try:
|
|
105
110
|
response = _base_api(
|
|
106
|
-
request=f"/v1/workspaces/{destination_workspace_id}/items/{destination_lakehouse_id}/shortcuts/{destination_path}/{actual_shortcut_name}"
|
|
111
|
+
request=f"/v1/workspaces/{destination_workspace_id}/items/{destination_lakehouse_id}/shortcuts/{destination_path}/{actual_shortcut_name}",
|
|
112
|
+
client="fabric_sp",
|
|
107
113
|
)
|
|
108
114
|
response_json = response.json()
|
|
109
115
|
del response_json["target"]["type"]
|
|
@@ -119,11 +125,21 @@ def create_shortcut_onelake(
|
|
|
119
125
|
except FabricHTTPException:
|
|
120
126
|
pass
|
|
121
127
|
|
|
128
|
+
url = f"/v1/workspaces/{destination_workspace_id}/items/{destination_lakehouse_id}/shortcuts"
|
|
129
|
+
|
|
130
|
+
if shortcut_conflict_policy:
|
|
131
|
+
if shortcut_conflict_policy not in ["Abort", "GenerateUniqueName"]:
|
|
132
|
+
raise ValueError(
|
|
133
|
+
f"{icons.red_dot} The 'shortcut_conflict_policy' parameter must be either 'Abort' or 'GenerateUniqueName'."
|
|
134
|
+
)
|
|
135
|
+
url += f"?shortcutConflictPolicy={shortcut_conflict_policy}"
|
|
136
|
+
|
|
122
137
|
_base_api(
|
|
123
|
-
request=
|
|
138
|
+
request=url,
|
|
124
139
|
payload=payload,
|
|
125
140
|
status_codes=201,
|
|
126
141
|
method="post",
|
|
142
|
+
client="fabric_sp",
|
|
127
143
|
)
|
|
128
144
|
|
|
129
145
|
print(
|
|
@@ -211,6 +227,8 @@ def delete_shortcut(
|
|
|
211
227
|
|
|
212
228
|
This is a wrapper function for the following API: `OneLake Shortcuts - Delete Shortcut <https://learn.microsoft.com/rest/api/fabric/core/onelake-shortcuts/delete-shortcut>`_.
|
|
213
229
|
|
|
230
|
+
Service Principal Authentication is supported (see `here <https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Service%20Principal.ipynb>`_ for examples).
|
|
231
|
+
|
|
214
232
|
Parameters
|
|
215
233
|
----------
|
|
216
234
|
shortcut_name : str
|
|
@@ -234,6 +252,7 @@ def delete_shortcut(
|
|
|
234
252
|
_base_api(
|
|
235
253
|
request=f"/v1/workspaces/{workspace_id}/items/{lakehouse_id}/shortcuts/{shortcut_path}/{shortcut_name}",
|
|
236
254
|
method="delete",
|
|
255
|
+
client="fabric_sp",
|
|
237
256
|
)
|
|
238
257
|
|
|
239
258
|
print(
|
|
@@ -288,7 +307,7 @@ def list_shortcuts(
|
|
|
288
307
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
289
308
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
290
309
|
path: str, default=None
|
|
291
|
-
The path within lakehouse where to look for shortcuts. If
|
|
310
|
+
The path within lakehouse where to look for shortcuts. If provided, must start with either "Files" or "Tables". Examples: Tables/FolderName/SubFolderName; Files/FolderName/SubFolderName.
|
|
292
311
|
Defaults to None which will retun all shortcuts on the given lakehouse
|
|
293
312
|
|
|
294
313
|
Returns
|
|
@@ -1,11 +1,16 @@
|
|
|
1
1
|
import sempy
|
|
2
2
|
from uuid import UUID
|
|
3
3
|
import sempy_labs._icons as icons
|
|
4
|
+
from typing import Optional
|
|
4
5
|
|
|
5
6
|
|
|
6
|
-
def migrate_direct_lake_to_import(
|
|
7
|
+
def migrate_direct_lake_to_import(
|
|
8
|
+
dataset: str | UUID,
|
|
9
|
+
workspace: Optional[str | UUID] = None,
|
|
10
|
+
mode: str = "import",
|
|
11
|
+
):
|
|
7
12
|
"""
|
|
8
|
-
Migrates a semantic model from Direct Lake mode to import mode. After running this function, you must go to the semantic model settings and update the cloud connection. Not doing so will result in an inablity to refresh/use the semantic model.
|
|
13
|
+
Migrates a semantic model or specific table(s) from a Direct Lake mode to import or DirectQuery mode. After running this function, you must go to the semantic model settings and update the cloud connection. Not doing so will result in an inablity to refresh/use the semantic model.
|
|
9
14
|
|
|
10
15
|
Parameters
|
|
11
16
|
----------
|
|
@@ -15,12 +20,29 @@ def migrate_direct_lake_to_import(dataset: str | UUID, workspace: str | UUID):
|
|
|
15
20
|
The Fabric workspace name or ID.
|
|
16
21
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
17
22
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
23
|
+
mode : str, default="import"
|
|
24
|
+
The mode to migrate to. Can be either "import" or "directquery".
|
|
18
25
|
"""
|
|
19
26
|
|
|
20
27
|
sempy.fabric._client._utils._init_analysis_services()
|
|
21
28
|
import Microsoft.AnalysisServices.Tabular as TOM
|
|
22
29
|
from sempy_labs.tom import connect_semantic_model
|
|
23
30
|
|
|
31
|
+
modes = {
|
|
32
|
+
"import": "Import",
|
|
33
|
+
"directquery": "DirectQuery",
|
|
34
|
+
"dq": "DirectQuery",
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
# Resolve mode
|
|
38
|
+
mode = mode.lower()
|
|
39
|
+
actual_mode = modes.get(mode)
|
|
40
|
+
if actual_mode is None:
|
|
41
|
+
raise ValueError(f"Invalid mode '{mode}'. Must be one of {list(modes.keys())}.")
|
|
42
|
+
|
|
43
|
+
# if isinstance(tables, str):
|
|
44
|
+
# tables = [tables]
|
|
45
|
+
|
|
24
46
|
with connect_semantic_model(
|
|
25
47
|
dataset=dataset, workspace=workspace, readonly=False
|
|
26
48
|
) as tom:
|
|
@@ -31,7 +53,14 @@ def migrate_direct_lake_to_import(dataset: str | UUID, workspace: str | UUID):
|
|
|
31
53
|
)
|
|
32
54
|
return
|
|
33
55
|
|
|
34
|
-
|
|
56
|
+
# if tables is None:
|
|
57
|
+
table_list = [t for t in tom.model.Tables]
|
|
58
|
+
# else:
|
|
59
|
+
# table_list = [t for t in tom.model.Tables if t.Name in tables]
|
|
60
|
+
# if not table_list:
|
|
61
|
+
# raise ValueError(f"{icons.red_dot} No tables found to migrate.")
|
|
62
|
+
|
|
63
|
+
for t in table_list:
|
|
35
64
|
table_name = t.Name
|
|
36
65
|
if t.Partitions.Count == 1 and all(
|
|
37
66
|
p.Mode == TOM.ModeType.DirectLake for p in t.Partitions
|
|
@@ -51,16 +80,24 @@ def migrate_direct_lake_to_import(dataset: str | UUID, workspace: str | UUID):
|
|
|
51
80
|
table_name=table_name,
|
|
52
81
|
partition_name=partition_name,
|
|
53
82
|
expression=expression,
|
|
54
|
-
mode=
|
|
83
|
+
mode=actual_mode,
|
|
55
84
|
)
|
|
56
85
|
# Remove Direct Lake partition
|
|
57
86
|
tom.remove_object(object=p)
|
|
87
|
+
# if tables is not None:
|
|
88
|
+
# print(
|
|
89
|
+
# f"{icons.green_dot} The '{table_name}' table has been migrated to '{actual_mode}' mode."
|
|
90
|
+
# )
|
|
58
91
|
|
|
59
92
|
tom.model.Model.DefaultMode = TOM.ModeType.Import
|
|
93
|
+
# if tables is None:
|
|
94
|
+
print(
|
|
95
|
+
f"{icons.green_dot} All tables which were in Direct Lake mode have been migrated to '{actual_mode}' mode."
|
|
96
|
+
)
|
|
60
97
|
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
98
|
+
# Check
|
|
99
|
+
# for t in tom.model.Tables:
|
|
100
|
+
# if t.Partitions.Count == 1 and all(p.Mode == TOM.ModeType.Import for p in t.Partitions) and t.CalculationGroup is None:
|
|
101
|
+
# p = next(p for p in t.Partitions)
|
|
102
|
+
# print(p.Name)
|
|
103
|
+
# print(p.Source.Expression)
|
sempy_labs/report/__init__.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
from sempy_labs.report._save_report import (
|
|
2
|
+
save_report_as_pbip,
|
|
3
|
+
)
|
|
1
4
|
from sempy_labs.report._reportwrapper import (
|
|
2
5
|
ReportWrapper,
|
|
3
6
|
)
|
|
@@ -46,4 +49,5 @@ __all__ = [
|
|
|
46
49
|
"run_report_bpa",
|
|
47
50
|
"get_report_datasources",
|
|
48
51
|
"download_report",
|
|
52
|
+
"save_report_as_pbip",
|
|
49
53
|
]
|
|
@@ -116,9 +116,9 @@ def report_dependency_tree(workspace: Optional[str | UUID] = None):
|
|
|
116
116
|
dfR.rename(columns={"Name": "Report Name"}, inplace=True)
|
|
117
117
|
dfR = dfR[["Report Name", "Dataset Name"]]
|
|
118
118
|
|
|
119
|
-
report_icon = "\
|
|
120
|
-
dataset_icon = "\
|
|
121
|
-
workspace_icon = "\
|
|
119
|
+
report_icon = "\U0001f4f6"
|
|
120
|
+
dataset_icon = "\U0001f9ca"
|
|
121
|
+
workspace_icon = "\U0001f465"
|
|
122
122
|
|
|
123
123
|
node_dict = {}
|
|
124
124
|
rootNode = Node(workspace_name)
|
|
@@ -236,15 +236,27 @@ def find_entity_property_pairs(data, result=None, keys_path=None):
|
|
|
236
236
|
keys_path = []
|
|
237
237
|
|
|
238
238
|
if isinstance(data, dict):
|
|
239
|
+
expression = data.get("Expression", {})
|
|
240
|
+
source_ref = (
|
|
241
|
+
expression.get("SourceRef", {}) if isinstance(expression, dict) else {}
|
|
242
|
+
)
|
|
243
|
+
|
|
239
244
|
if (
|
|
240
|
-
|
|
245
|
+
isinstance(source_ref, dict)
|
|
246
|
+
and "Entity" in source_ref
|
|
241
247
|
and "Property" in data
|
|
242
248
|
):
|
|
243
|
-
entity =
|
|
244
|
-
property_value = data.get("Property")
|
|
245
|
-
|
|
249
|
+
entity = source_ref.get("Entity", "")
|
|
250
|
+
property_value = data.get("Property", "")
|
|
251
|
+
|
|
252
|
+
object_type = (
|
|
253
|
+
keys_path[-1].replace("HierarchyLevel", "Hierarchy")
|
|
254
|
+
if keys_path
|
|
255
|
+
else "Unknown"
|
|
256
|
+
)
|
|
246
257
|
result[property_value] = (entity, object_type)
|
|
247
|
-
keys_path
|
|
258
|
+
if keys_path:
|
|
259
|
+
keys_path.pop()
|
|
248
260
|
|
|
249
261
|
# Recursively search the rest of the dictionary
|
|
250
262
|
for key, value in data.items():
|
|
@@ -966,17 +966,25 @@ class ReportWrapper:
|
|
|
966
966
|
keys_path = []
|
|
967
967
|
|
|
968
968
|
if isinstance(data, dict):
|
|
969
|
+
expression = data.get("Expression", {})
|
|
970
|
+
source_ref = (
|
|
971
|
+
expression.get("SourceRef", {})
|
|
972
|
+
if isinstance(expression, dict)
|
|
973
|
+
else {}
|
|
974
|
+
)
|
|
969
975
|
if (
|
|
970
|
-
|
|
976
|
+
isinstance(source_ref, dict)
|
|
977
|
+
and "Entity" in source_ref
|
|
971
978
|
and "Property" in data
|
|
972
979
|
):
|
|
973
|
-
entity = (
|
|
974
|
-
|
|
975
|
-
|
|
976
|
-
|
|
980
|
+
entity = source_ref.get("Entity", "")
|
|
981
|
+
property_value = data.get("Property", "")
|
|
982
|
+
|
|
983
|
+
object_type = (
|
|
984
|
+
keys_path[-1].replace("HierarchyLevel", "Hierarchy")
|
|
985
|
+
if keys_path
|
|
986
|
+
else "Unknown"
|
|
977
987
|
)
|
|
978
|
-
property_value = data.get("Property", {})
|
|
979
|
-
object_type = keys_path[-1].replace("HierarchyLevel", "Hierarchy")
|
|
980
988
|
is_agg = keys_path[-3] == "Aggregation"
|
|
981
989
|
is_viz_calc = keys_path[-3] == "NativeVisualCalculation"
|
|
982
990
|
is_sparkline = keys_path[-3] == "SparklineData"
|
|
@@ -987,7 +995,8 @@ class ReportWrapper:
|
|
|
987
995
|
is_viz_calc,
|
|
988
996
|
is_sparkline,
|
|
989
997
|
)
|
|
990
|
-
keys_path
|
|
998
|
+
if keys_path:
|
|
999
|
+
keys_path.pop()
|
|
991
1000
|
|
|
992
1001
|
# Recursively search the rest of the dictionary
|
|
993
1002
|
for key, value in data.items():
|