semantic-link-labs 0.9.10__py3-none-any.whl → 0.9.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of semantic-link-labs might be problematic. Click here for more details.

Files changed (36) hide show
  1. {semantic_link_labs-0.9.10.dist-info → semantic_link_labs-0.9.11.dist-info}/METADATA +27 -21
  2. {semantic_link_labs-0.9.10.dist-info → semantic_link_labs-0.9.11.dist-info}/RECORD +34 -29
  3. {semantic_link_labs-0.9.10.dist-info → semantic_link_labs-0.9.11.dist-info}/WHEEL +1 -1
  4. sempy_labs/__init__.py +22 -1
  5. sempy_labs/_delta_analyzer.py +9 -8
  6. sempy_labs/_environments.py +19 -1
  7. sempy_labs/_generate_semantic_model.py +1 -1
  8. sempy_labs/_helper_functions.py +193 -134
  9. sempy_labs/_kusto.py +25 -23
  10. sempy_labs/_list_functions.py +13 -35
  11. sempy_labs/_model_bpa_rules.py +13 -3
  12. sempy_labs/_notebooks.py +44 -11
  13. sempy_labs/_semantic_models.py +93 -1
  14. sempy_labs/_sql.py +3 -2
  15. sempy_labs/_tags.py +194 -0
  16. sempy_labs/_variable_libraries.py +89 -0
  17. sempy_labs/_vpax.py +386 -0
  18. sempy_labs/admin/__init__.py +8 -0
  19. sempy_labs/admin/_tags.py +126 -0
  20. sempy_labs/directlake/_generate_shared_expression.py +5 -1
  21. sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +55 -5
  22. sempy_labs/dotnet_lib/dotnet.runtime.config.json +10 -0
  23. sempy_labs/lakehouse/__init__.py +16 -0
  24. sempy_labs/lakehouse/_blobs.py +115 -63
  25. sempy_labs/lakehouse/_get_lakehouse_tables.py +1 -13
  26. sempy_labs/lakehouse/_helper.py +211 -0
  27. sempy_labs/lakehouse/_lakehouse.py +1 -1
  28. sempy_labs/lakehouse/_livy_sessions.py +137 -0
  29. sempy_labs/report/_download_report.py +1 -1
  30. sempy_labs/report/_generate_report.py +5 -1
  31. sempy_labs/report/_reportwrapper.py +31 -18
  32. sempy_labs/tom/_model.py +83 -21
  33. sempy_labs/report/_bpareporttemplate/.pbi/localSettings.json +0 -9
  34. sempy_labs/report/_bpareporttemplate/.platform +0 -11
  35. {semantic_link_labs-0.9.10.dist-info → semantic_link_labs-0.9.11.dist-info}/licenses/LICENSE +0 -0
  36. {semantic_link_labs-0.9.10.dist-info → semantic_link_labs-0.9.11.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: semantic-link-labs
3
- Version: 0.9.10
3
+ Version: 0.9.11
4
4
  Summary: Semantic Link Labs for Microsoft Fabric
5
5
  Author: Microsoft Corporation
6
6
  License: MIT License
@@ -27,7 +27,7 @@ Dynamic: license-file
27
27
  # Semantic Link Labs
28
28
 
29
29
  [![PyPI version](https://badge.fury.io/py/semantic-link-labs.svg)](https://badge.fury.io/py/semantic-link-labs)
30
- [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.9.10&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
30
+ [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.9.11&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
31
31
  [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
32
32
  [![Downloads](https://static.pepy.tech/badge/semantic-link-labs)](https://pepy.tech/project/semantic-link-labs)
33
33
 
@@ -38,6 +38,9 @@ Dynamic: license-file
38
38
  [Read the Wiki!](https://github.com/microsoft/semantic-link-labs/wiki)
39
39
  ---
40
40
 
41
+ [See code examples!](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples)
42
+ ---
43
+
41
44
  Semantic Link Labs is a Python library designed for use in [Microsoft Fabric notebooks](https://learn.microsoft.com/fabric/data-engineering/how-to-use-notebook). This library extends the capabilities of [Semantic Link](https://learn.microsoft.com/fabric/data-science/semantic-link-overview) offering additional functionalities to seamlessly integrate and work alongside it. The goal of Semantic Link Labs is to simplify technical processes, empowering people to focus on higher level activities and allowing tasks that are better suited for machines to be efficiently handled without human intervention.
42
45
 
43
46
  If you encounter any issues, please [raise a bug](https://github.com/microsoft/semantic-link-labs/issues/new?assignees=&labels=&projects=&template=bug_report.md&title=).
@@ -51,43 +54,45 @@ Check out the video below for an introduction to Semantic Link, Semantic Link La
51
54
  ## Featured Scenarios
52
55
  * Semantic Models
53
56
  * [Migrating an import/DirectQuery semantic model to Direct Lake](https://github.com/microsoft/semantic-link-labs?tab=readme-ov-file#direct-lake-migration)
54
- * [Model Best Practice Analyzer (BPA)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.run_model_bpa)
55
- * [Vertipaq Analyzer](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.vertipaq_analyzer)
57
+ * [Model Best Practice Analyzer (BPA)](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#model-best-practice-analyzer)
58
+ * [Vertipaq Analyzer](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#vertipaq-analyzer)
56
59
  * [Tabular Object Model](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Tabular%20Object%20Model.ipynb) [(TOM)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html)
57
- * [Translate a semantic model's metadata](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.translate_semantic_model)
60
+ * [Translate a semantic model's metadata](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#translate-a-semantic-model)
58
61
  * [Check Direct Lake Guardrails](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables)
59
- * [Refresh](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Semantic%20Model%20Refresh.ipynb), [clear cache](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.clear_cache), [backup](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.backup_semantic_model), [restore](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.restore_semantic_model), [copy backup files](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.copy_semantic_model_backup_file), [move/deploy across workspaces](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.deploy_semantic_model)
62
+ * [Refresh](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Semantic%20Model%20Refresh.ipynb), [clear cache](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.clear_cache), [backup](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#backup-a-semantic-model), [restore](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#restore-a-semantic-model), [copy backup files](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.copy_semantic_model_backup_file), [move/deploy across workspaces](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.deploy_semantic_model)
60
63
  * [Run DAX queries which impersonate a user](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.evaluate_dax_impersonation)
61
64
  * [Manage Query Scale Out](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Query%20Scale%20Out.ipynb)
62
- * [Auto-generate descriptions for any/all measures in bulk](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html#sempy_labs.tom.TOMWrapper.generate_measure_descriptions)
63
- * [Warm the cache of a Direct Lake semantic model after a refresh (using columns currently in memory)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.directlake.html#sempy_labs.directlake.warm_direct_lake_cache_isresident)
64
- * [Warm the cache of a Direct Lake semantic model (via perspective)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.directlake.html#sempy_labs.directlake.warm_direct_lake_cache_perspective)
65
- * [Visualize a refresh](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Semantic%20Model%20Refresh.ipynb)
65
+ * [Auto-generate descriptions for any/all measures in bulk](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#auto-generate-measure-descriptions)
66
+ * [Warm the cache of a Direct Lake semantic model after a refresh (using columns currently in memory)](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#warm-cache-the-cache-of-a-direct-lake-semantic-model)
67
+ * [Warm the cache of a Direct Lake semantic model (via perspective)](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#warm-cache-the-cache-of-a-direct-lake-semantic-model)
68
+ * [Visualize a refresh](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#refresh-a-semantic-model)
66
69
  * [Update the connection of a Direct Lake semantic model](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.directlake.html#sempy_labs.directlake.update_direct_lake_model_connection)
67
70
  * [Dynamically generate a Direct Lake semantic model](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.directlake.html#sempy_labs.directlake.generate_direct_lake_semantic_model)
68
71
  * [Check why a Direct Lake semantic model would fallback to DirectQuery](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.directlake.html#sempy_labs.directlake.check_fallback_reason)
69
72
  * [View a measure dependency tree](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.measure_dependency_tree)
70
73
  * [View unique columns touched in a single (or multiple) DAX query(ies)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.get_dax_query_dependencies)
71
74
  * [Analyze delta tables for Direct Lake semantic models using Delta Analyzer](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Delta%20Analyzer.ipynb)
72
- * [View synonyms from the linguistic schema](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_synonyms)
75
+ * [View synonyms from the linguistic schema](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#list-the-synonyms-in-the-linguistic-metadata)
73
76
  * [Add](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html#sempy_labs.tom.TOMWrapper.add_incremental_refresh_policy), [update](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html#sempy_labs.tom.TOMWrapper.update_incremental_refresh_policy) and [view](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.tom.html#sempy_labs.tom.TOMWrapper.show_incremental_refresh_policy) an incremental refresh policy.
74
77
  * Reports
75
- * [Report Best Practice Analyzer (BPA)](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.run_report_bpa)
76
- * [View report metadata](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Report%20Analysis.ipynb)
77
- * [View semantic model objects most frequently used in Power BI reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_semantic_model_object_report_usage)
78
- * [View broken reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_report_semantic_model_objects)
79
- * [Set a report theme](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.ReportWrapper.set_theme)
80
- * [Migrate report-level measures to the semantic model](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.ReportWrapper.migrate_report_level_measures)
81
- * [Rebind reports](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.report.html#sempy_labs.report.report_rebind)
78
+ * [Report Best Practice Analyzer (BPA)](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#report-best-practice-analyzer)
79
+ * [View report metadata](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#view-report-metadata)
80
+ * [View semantic model objects most frequently used in Power BI reports](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#show-the-frequency-of-semantic-model-object-used-within-reports)
81
+ * [View broken reports](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#find-broken-visuals-in-a-power-bi-report)
82
+ * [Set a report theme](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#set-the-theme-of-a-report)
83
+ * [Migrate report-level measures to the semantic model](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#migrate-report-level-measures-to-the-semantic-model)
84
+ * [Rebind reports](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#rebind-a-report-to-a-different-semantic-model)
85
+ * [Save a report as a .pbip](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#save-a-report-as-a-pbip-file)
82
86
  * Capacities
83
87
  * [Migrating a Power BI Premium capacity (P sku) to a Fabric capacity (F sku)](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Capacity%20Migration.ipynb)
84
88
  * [Migrating a Fabric Trial capacity (FT sku) to a Fabric capacity (F sku)](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Capacity%20Migration.ipynb)
85
89
  * [Create](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.create_fabric_capacity)/[update](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.update_fabric_capacity)/[suspend](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.suspend_fabric_capacity)/[resume](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.resume_fabric_capacity) Fabric capacities
86
90
  * Lakehouses
87
- * [Optimize lakehouse tables](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.optimize_lakehouse_tables)
88
- * [Vacuum lakehouse tables](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.vacuum_lakehouse_tables)
89
- * [Create](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.create_shortcut_onelake), [delete](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.delete_shortcut), and [view shortcuts](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_shortcuts)
91
+ * [Optimize lakehouse tables](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#optimize-lakehouse-tables)
92
+ * [Vacuum lakehouse tables](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#vacuum-lakehouse-tables)
93
+ * [Create](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#create-a-onelake-shortcut), [delete](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.delete_shortcut), and [view shortcuts](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.list_shortcuts)
90
94
  * [Analyze delta tables for Direct Lake semantic models using Delta Analyzer](https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Delta%20Analyzer.ipynb)
95
+ * [Recover a soft-deleted lakehouse table/file/folder](https://github.com/microsoft/semantic-link-labs/wiki/Code-Examples#recover-a-lakehouse-object)
91
96
  * Notebooks
92
97
  * [Import a notebook from the web](https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.html#sempy_labs.import_notebook_from_web)
93
98
  * APIs
@@ -149,6 +154,7 @@ An even better way to ensure the semantic-link-labs library is available in your
149
154
  2. Select your newly created environment within the 'Environment' drop down in the navigation bar at the top of the notebook
150
155
 
151
156
  ## Version History
157
+ * [0.9.11](https://github.com/microsoft/semantic-link-labs/releases/tag/0.9.11) (May 22, 2025)
152
158
  * [0.9.10](https://github.com/microsoft/semantic-link-labs/releases/tag/0.9.10) (April 24, 2025)
153
159
  * [0.9.9](https://github.com/microsoft/semantic-link-labs/releases/tag/0.9.9) (April 7, 2025)
154
160
  * [0.9.8](https://github.com/microsoft/semantic-link-labs/releases/tag/0.9.8) (April 3, 2025)
@@ -1,5 +1,5 @@
1
- semantic_link_labs-0.9.10.dist-info/licenses/LICENSE,sha256=ws_MuBL-SCEBqPBFl9_FqZkaaydIJmxHrJG2parhU4M,1141
2
- sempy_labs/__init__.py,sha256=npRl1YYZaQziVAKhYkxcjFiCR2J--D2azy-SoDe_QtM,15745
1
+ semantic_link_labs-0.9.11.dist-info/licenses/LICENSE,sha256=ws_MuBL-SCEBqPBFl9_FqZkaaydIJmxHrJG2parhU4M,1141
2
+ sempy_labs/__init__.py,sha256=X39q1v8jygmKdGc0kfuRcn7V1MAHxzG5mDivJxON7Go,16255
3
3
  sempy_labs/_ai.py,sha256=BD1TdGOJ7T4m3x426OP-FLb7bevn-9gKY8BTEDAJDQU,16205
4
4
  sempy_labs/_authentication.py,sha256=GjtN5XqIyWXbR5Ni4hfYiUNwgFa-ySX8e-BrqE1vgGc,6903
5
5
  sempy_labs/_capacities.py,sha256=n48NYTY03zygRzcfyK1UOkSwTqKSyQefQ10IKQh-dfA,40426
@@ -11,25 +11,25 @@ sempy_labs/_data_pipelines.py,sha256=cW_WGmuWD4V9IgLprKL4TqFXgid4eTBXvEL3-IArS0w
11
11
  sempy_labs/_dataflows.py,sha256=xv-wRDUq4Bzz-BOs1Jdb4bgS9HbPLpa1GqexfA6H0mg,8053
12
12
  sempy_labs/_dax.py,sha256=Q_GylKeuHFnRB_sztZS1ON5v5tr6ua6lc9elyJYKbV8,17219
13
13
  sempy_labs/_dax_query_view.py,sha256=_zSvgystZzBj5euNTLKTg7-G77XVk0vqyqrDT72VvoM,1892
14
- sempy_labs/_delta_analyzer.py,sha256=eT74ed0vaTbuSS0BkdCGRymdyjb3UHV3M8ToPhK8K00,17390
14
+ sempy_labs/_delta_analyzer.py,sha256=d6qxZrEhn3Hfg5qMQODt7dDG5mYSY18xeXUkW_NyMgw,17281
15
15
  sempy_labs/_delta_analyzer_history.py,sha256=A50dlBd2d3ILKV7Fwj4pfIRtXKmCFslhk1gpeEw4inc,10765
16
16
  sempy_labs/_deployment_pipelines.py,sha256=SDQYkCAhOAlxBr58jYxtLFOVySiRXO0_WhfOKGDeYZQ,6254
17
17
  sempy_labs/_documentation.py,sha256=yVA8VPEzx_fmljtcvSxtB7-BeupYsfdMXXjp6Fpnyo8,5007
18
- sempy_labs/_environments.py,sha256=5I5gHU68Crs603R00NgGy3RKdr925-X05V5EPkrHFkY,4995
18
+ sempy_labs/_environments.py,sha256=c_9uU6zhVmZVTLZWuD-OdcicBJvmRQQVmqHW7EqUn_Q,5839
19
19
  sempy_labs/_eventhouses.py,sha256=WEf33difBOTGTZGh1QFmY4gv-e43uwO1V54nrsjGGyY,5376
20
20
  sempy_labs/_eventstreams.py,sha256=c8nNdRM8eeDOYXd_AtRp7zYHYaqV9p1bI2V0boUrCuA,3492
21
21
  sempy_labs/_external_data_shares.py,sha256=s2okFvtCG5FDMbMJ_q6YSlCkVVFiE9sh2imVxZq1woU,6450
22
22
  sempy_labs/_gateways.py,sha256=6JE6VeGFPKF617sf2mMkxXVOz57YHI5jAQLAF-BzRLc,17527
23
- sempy_labs/_generate_semantic_model.py,sha256=9-ziVrbG_IqPAKLnqRYAo8UrUMFw5Hufn02w_QvaKe4,18423
23
+ sempy_labs/_generate_semantic_model.py,sha256=F2NVW6kT1HnrZTqWnDZ4BRApbsUfLFDSsDbRzCJnc0o,18429
24
24
  sempy_labs/_git.py,sha256=RyaT4XzrSi-4NLJZWiWZnnNpMgrKzRNxhyY8b1O2I6c,17819
25
25
  sempy_labs/_graphQL.py,sha256=truXeIUPRKLwc4skhs3FZYNcKP9FCGKly9en0YkR4NE,2690
26
- sempy_labs/_helper_functions.py,sha256=0eNEz8JItYjBe1fwZ0ZkRKJED5ull0I6T24RzgGx-2E,67340
26
+ sempy_labs/_helper_functions.py,sha256=SbFhIT_6j8xSkFflzuWWoo_NIH_uqPuINUGvcblPy7s,68762
27
27
  sempy_labs/_icons.py,sha256=SB9EQeoFCfD4bO6fcYuJOoPRSYenSrW0rI9G5RFsH28,3579
28
28
  sempy_labs/_job_scheduler.py,sha256=_-Pifkttk1oPNxewxwWcQ4QC_Hr24GSi6nmrEXwc0pc,15814
29
29
  sempy_labs/_kql_databases.py,sha256=UtpYVBsxwWQDnqwdjq186bZzw5IlkD2S9KHA6Kw75U0,4738
30
30
  sempy_labs/_kql_querysets.py,sha256=Jjcs4SkjeirnDkG6zfsl0KRUXVzMyWii0Yn0JMWwln8,3502
31
- sempy_labs/_kusto.py,sha256=ZEwvErkLUpichnQfrIVXg2XiYvbuxcL8u-9RnsAp98M,4502
32
- sempy_labs/_list_functions.py,sha256=Yn1RZ0kMhA24vVpOr1hoet4WAQT93NZOWpMFdyV3HNw,62036
31
+ sempy_labs/_kusto.py,sha256=g3Up4j1KNdIGC2DDbvoduCdX1Pp8fAPGAlBAqOtaBeg,4544
32
+ sempy_labs/_list_functions.py,sha256=wqaeCpsYPG3SW52ipB-uTCrjWQ1xcVkcazakWtPAsHo,61035
33
33
  sempy_labs/_managed_private_endpoints.py,sha256=Vqicp_EiGg_m8aA2F__gaJiB9cwjbxQOSOi7hkS6FvQ,6907
34
34
  sempy_labs/_mirrored_databases.py,sha256=-9ZV2PdPeIc4lvFNkpPMm_9wkGIY1QLZXspYdSev5oQ,13147
35
35
  sempy_labs/_mirrored_warehouses.py,sha256=Q3WlRjUwCLz8KW1eN8MiTPeY0P52Vkuz5kgnv4GvQ3k,1739
@@ -38,20 +38,23 @@ sempy_labs/_ml_models.py,sha256=69i67MHn-_Fsq-5slLxxhCF8N2s0JBYn_CDTa1Hhhs0,3261
38
38
  sempy_labs/_model_auto_build.py,sha256=PTQo3dufzLSFcQ5shFkmBWAVSdP7cTJgpUclrcXyNbg,5105
39
39
  sempy_labs/_model_bpa.py,sha256=AoHshKqn3z2lNPwu1hKntJuCELYe1bLa_0LUzFXRjgs,22032
40
40
  sempy_labs/_model_bpa_bulk.py,sha256=hRY3dRBUtecrbscCZsEGv6TpCVqg_zAi8NmRq6dVMiE,15845
41
- sempy_labs/_model_bpa_rules.py,sha256=3rpDcsl99ji2KbozqdrAeC_1YrTvF8A-l8VhiUHK0bo,45968
41
+ sempy_labs/_model_bpa_rules.py,sha256=ZK16VqWcITiTKdd9T5Xnu-AMgodLVx0ZpanZjsC88-U,46260
42
42
  sempy_labs/_model_dependencies.py,sha256=0xGgubrq76zIvBdEqmEX_Pd6WdizXFVECBW6BPl2DZo,13162
43
43
  sempy_labs/_mounted_data_factories.py,sha256=-IBxE5XurYyeeQg7BvpXSSR1MW3rRGmue6UGpqlo96U,3906
44
- sempy_labs/_notebooks.py,sha256=GbyBDay_c4dnPmS32e8qgRrKVb3evi_omSMzq-Xk9z0,8082
44
+ sempy_labs/_notebooks.py,sha256=QbDmvxvYZEFE90lQ3Rqi70yjc5Xxg7D3ySemPPVGflY,9102
45
45
  sempy_labs/_one_lake_integration.py,sha256=9ub75-ueEFqn1iRgRd5y97SYujalsWW6ufs1du4PbDs,6303
46
46
  sempy_labs/_query_scale_out.py,sha256=nra1q8s-PKpZTlI_L0lMGO1GmdBk6sqETsBQShF1yPY,15352
47
47
  sempy_labs/_refresh_semantic_model.py,sha256=4w_uaYLbaZptmEFY7QHWzOgXcgc2ctGx8HQvt2aguxk,17360
48
- sempy_labs/_semantic_models.py,sha256=Yh9SfGZSbA9mRROo3wpy9A8sFvvGZZ1VUHjm_Ux4pqk,4455
48
+ sempy_labs/_semantic_models.py,sha256=F9v964IiXqx2qNPtNBzYrWPtXIoQH5-FI5csWJGofoQ,7934
49
49
  sempy_labs/_spark.py,sha256=SuSTjjmtzj7suDgN8Njk_pNBaStDLgIJB_1yk_e2H1Y,19340
50
- sempy_labs/_sql.py,sha256=s4VMcs1lIn39sYKRnSp6QsdRR3J-84kT_SPCKdwzAyo,8158
50
+ sempy_labs/_sql.py,sha256=6mtX0I2VTpmpMbAiqdQGPyLiLN3q3pVDTP9IW7Z3JfA,8276
51
51
  sempy_labs/_sqldatabase.py,sha256=8HV3UtsLiwexmPSjYnhnYnD6xEvgFpTG13jcOuGheuI,6470
52
+ sempy_labs/_tags.py,sha256=7DvSc3wah26DxHwUhr-yr_JhZiplrePkFaDaVIAQfV4,5666
52
53
  sempy_labs/_translations.py,sha256=i4K2PFk6-TcmAnUpqz-z_GuDv9XEp1cBs0KY-x6ja1w,16168
53
54
  sempy_labs/_utils.py,sha256=aKGnUiXSLLRQRXXv8TH_XhGcOtDsnrs0RHmQ6YZMn3o,1786
55
+ sempy_labs/_variable_libraries.py,sha256=t97gj8Mo-YjahKx6XObqh5HkhUMHUke5GdWpSzkC5ZM,3008
54
56
  sempy_labs/_vertipaq.py,sha256=1UvB79xOxeGdRFINsUsreXxtZtiatHlACAfbQhv45as,38536
57
+ sempy_labs/_vpax.py,sha256=k1UalPGdwmhL8eqH_WeOx1IkPu0Zz2xGWSBuAp4Sq0M,15432
55
58
  sempy_labs/_warehouses.py,sha256=wF38YP4-39KPsXPyexJahZPrYAyLc5xfrerJvS7My5Q,7286
56
59
  sempy_labs/_workloads.py,sha256=ifQ6Jv0_MDzjfu993bU8V7thOdW5kFyp3MjA082rsrE,4687
57
60
  sempy_labs/_workspace_identity.py,sha256=plxgcqt2aBXgLpyn1dpHhzh_5Z-gFkLK8RtId2OIX5s,2561
@@ -94,7 +97,7 @@ sempy_labs/_bpa_translation/_model/_translations_tr-TR.po,sha256=NdW-X4E0QmeLKM0
94
97
  sempy_labs/_bpa_translation/_model/_translations_uk-UA.po,sha256=3NsFN8hoor_5L6738FjpJ8o4spwp8FNFGbVItHD-_ec,43500
95
98
  sempy_labs/_bpa_translation/_model/_translations_zh-CN.po,sha256=ipMbnet7ZI5mZoC8KonYKVwGmFLHFB_9KIDOoBgSNfo,26815
96
99
  sempy_labs/_bpa_translation/_model/_translations_zu-ZA.po,sha256=5v6tVKGruqneAeMoa6F3tyg_JBL8qOpqOJofWpq2W3U,31518
97
- sempy_labs/admin/__init__.py,sha256=McI1-wyaoxcCIzffi-aWvU3ElfUgZLIEYR2tfcYI-hc,3875
100
+ sempy_labs/admin/__init__.py,sha256=XaUXm5uuTVEKtQVDfvobU8qM-QlL5hFd_kVH_o0el4w,4016
98
101
  sempy_labs/admin/_activities.py,sha256=YfISDzhXro9glEa_yJmoYv-2q2M1DIkoyNzgLl7eWuI,6695
99
102
  sempy_labs/admin/_apps.py,sha256=PUEQlXbzVR9u3ZUQUhpfU3J-hfa8A2nTGFBpCqzMdW0,4085
100
103
  sempy_labs/admin/_artifacts.py,sha256=hGTMY0t4qxK1zs89PIZQaNP5QHRCIWAOvp2FiWHtQpE,2249
@@ -109,6 +112,7 @@ sempy_labs/admin/_items.py,sha256=BO4X_hpp94u4FUSn6Rb25gsRz1TgQAvLKLSwtzOLlVw,88
109
112
  sempy_labs/admin/_reports.py,sha256=nPDoC90Yzc67CtiuL4WYBYkGYuUQOnZAy0PCU0aYKj8,7857
110
113
  sempy_labs/admin/_scanner.py,sha256=0mKi0ihJETdsSaeHFBEq3drcCS8J_enWWkIMBMECz64,4370
111
114
  sempy_labs/admin/_shared.py,sha256=srgkqttbMbK5XXjOt4zeAV8rMCvK7zEus55HsGtNUFI,3007
115
+ sempy_labs/admin/_tags.py,sha256=92CoaRwpiVtpbkT9jC6eNAp5vdxzR4YAKo2VfmDPn7k,3752
112
116
  sempy_labs/admin/_tenant.py,sha256=D8x45G4U8aiDlYcYTWUIg--Rrl1T0HwRf0qtk-jUBbo,19347
113
117
  sempy_labs/admin/_users.py,sha256=eEOkgvny3FwMuUrSIBQ0n3JwrzWV_6_nwGc8_c-eXSM,4571
114
118
  sempy_labs/admin/_workspaces.py,sha256=XiiO3vyuJxKkVf9ZrW7261wHSBrnd8r7rbia8HGDFkI,4911
@@ -116,24 +120,27 @@ sempy_labs/directlake/__init__.py,sha256=etaj-3wqe5t93mu74tGYjEOQ6gtHWUogidOygiV
116
120
  sempy_labs/directlake/_directlake_schema_compare.py,sha256=tVc6hIgDxxA7a8V51e5tlzlp3bzVVTqQ_OKsTNxiWG4,5074
117
121
  sempy_labs/directlake/_directlake_schema_sync.py,sha256=ipONLkBaXm4WgcMMChAyD4rVushdqdjAQdexT-fJxcY,6573
118
122
  sempy_labs/directlake/_dl_helper.py,sha256=HHFy6tW-tSVZ4YHxSHvt6pXrloh0O6Lx7yNmZE7IAI4,10348
119
- sempy_labs/directlake/_generate_shared_expression.py,sha256=gAVBK0l_CRxJCZzMJgxOxEHhXx1w0ERL2K3REnEseGw,3391
123
+ sempy_labs/directlake/_generate_shared_expression.py,sha256=fAaFlR5-prqOH3vJ_ktLyEYfKR_uBMvAxOaR-BRCm-w,3561
120
124
  sempy_labs/directlake/_get_directlake_lakehouse.py,sha256=e0WFQm4-daJR4K1aHuVaubu7T26yTeBgfNEMOXk-EzM,2392
121
125
  sempy_labs/directlake/_get_shared_expression.py,sha256=qc85kXggkx_7Sz_rAAli_yPnLzrGZpgD8IfVbTfZhQM,1133
122
126
  sempy_labs/directlake/_guardrails.py,sha256=wNVXpeiZckgLTly4cS5DU5DoV9x1S4DMxN5S08qAavE,2749
123
127
  sempy_labs/directlake/_list_directlake_model_calc_tables.py,sha256=EYT4ELmOZ3Uklzy6uMQMidc4WtBXm21NQqZu1Q5HTsg,2509
124
128
  sempy_labs/directlake/_show_unsupported_directlake_objects.py,sha256=nmrZrtDez7U8Ji76i9fxnnTx1zxMu2LCOZTMz4sFUEc,3504
125
- sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py,sha256=oKD4rKwD_s6Q3jKPw7H05isZWT8hs9WdtFyy23MDozc,7080
129
+ sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py,sha256=W3LDXDD2pLH5B43NI9ixSIW2MJIORAWu5ANHQRFKMBY,9215
126
130
  sempy_labs/directlake/_update_directlake_partition_entity.py,sha256=8YxrReJObtc7_Huq0qQrLKTVMhPO84guv8bQKtp__4c,9032
127
131
  sempy_labs/directlake/_warm_cache.py,sha256=xc7gG_OJY1rJYg79ztgcLATpnXHNqFaw-6CU1HgdlXk,9258
132
+ sempy_labs/dotnet_lib/dotnet.runtime.config.json,sha256=syhDFQv6cEmZnE1WtFjNe3NwhsIsnd-CFULv-vEWOFI,167
128
133
  sempy_labs/graph/__init__.py,sha256=AZ_IpOL06VvXrYmgbcrvQlxCxdDksvwXKf7JAGohCNI,620
129
134
  sempy_labs/graph/_groups.py,sha256=j3YDeV6MzhRjGJRoD60SAaGyU8yb23x8QhXBzU2RWlE,12590
130
135
  sempy_labs/graph/_teams.py,sha256=SRFaFuxtB7ylC5WeXIdrW0aLCxc_JTJHeEmxOPG99r8,3089
131
136
  sempy_labs/graph/_users.py,sha256=dFOZ-jel6Aj4Um66f1jzQrgV0fOoI0cQnZfmR4OJSXo,5947
132
- sempy_labs/lakehouse/__init__.py,sha256=5dRO6WfcHANed720iGhrgW4QajzV1emT47bPpCSKJNg,956
133
- sempy_labs/lakehouse/_blobs.py,sha256=GgS2Zx6_0xzwUzuSBUll2bkNRFE-ThbK8jdYh-lJ2LY,8095
137
+ sempy_labs/lakehouse/__init__.py,sha256=xuYQAxBEEahNA_twvYxeP6cUd8dCreNb0eKyuKZbtPU,1327
138
+ sempy_labs/lakehouse/_blobs.py,sha256=N8s3hYa9dAOLpH9iTavR_FPKrb3j_RqXHJnC6UVeeW0,9745
134
139
  sempy_labs/lakehouse/_get_lakehouse_columns.py,sha256=dF5rLkdD3PB8EiXQewRdnr7MzbDGkZWHrFfI01_a7K4,3710
135
- sempy_labs/lakehouse/_get_lakehouse_tables.py,sha256=YZkb8AsQmOK801andbCivhTH5DVFXwzTRJp-q4o9QJI,9803
136
- sempy_labs/lakehouse/_lakehouse.py,sha256=Fq_RuY7kn8BZLFiYpnVNTYmbLMMt0mCw83P1YxXyfmg,8861
140
+ sempy_labs/lakehouse/_get_lakehouse_tables.py,sha256=AMQXk40YMN4daS0zILgZm-sc2llnvCaL7kS1v8dfYMA,9369
141
+ sempy_labs/lakehouse/_helper.py,sha256=W9adTkZw9_f9voB3bA2JWkI4LqAcnvpY929vMQJw1xE,7401
142
+ sempy_labs/lakehouse/_lakehouse.py,sha256=JQBQl_E9svzu_ozjYh1eSV2gY1NhHfomW0MiD3JzXPc,8860
143
+ sempy_labs/lakehouse/_livy_sessions.py,sha256=REfBpuDdH7O1CQ3JpMMZpX7-wnnVXmZEqAXsZw1MTjk,5778
137
144
  sempy_labs/lakehouse/_shortcuts.py,sha256=24sPtX98ho84fNV_JCAHZrSkvk0Ui7p-0b-jTdGOGM8,16580
138
145
  sempy_labs/migration/__init__.py,sha256=142n01VAqlcx4E0mGGRtUfVOEwAXVdiHI_XprmUm7As,1175
139
146
  sempy_labs/migration/_create_pqt_file.py,sha256=eRK0Jz9ZeV_7jV3kNRze0bTAIqxsAZXLKMGE_loKOaY,9677
@@ -146,9 +153,9 @@ sempy_labs/migration/_migration_validation.py,sha256=AHURrWofb-U-L2Bdu36mcisVXOu
146
153
  sempy_labs/migration/_refresh_calc_tables.py,sha256=qUBPZ5HAHyE5ev6STKDcmtEpRuLDX5RzYTKre4ZElj4,5443
147
154
  sempy_labs/report/_BPAReportTemplate.json,sha256=9Uh-7E6d2ooxQ7j5JRayv_ayEULc7Gzg42kZGKdOqH8,63920
148
155
  sempy_labs/report/__init__.py,sha256=bPZ_MMqKGokskjJwM3T89LxIVNa2AXJg8Lr-mvJhP0E,1392
149
- sempy_labs/report/_download_report.py,sha256=hCQ2_fSXSCqSUeaNM2Tf9T3MpRofREnDwp_zrfp7iTA,2703
156
+ sempy_labs/report/_download_report.py,sha256=01hI26UV_jb5RLPheXRQsIDNNf4i72xICm14slKqEFA,2704
150
157
  sempy_labs/report/_export_report.py,sha256=XCMsZzTBMgvQOe3Ltdod7my7_izpmP-3AVH6W5CExPE,10976
151
- sempy_labs/report/_generate_report.py,sha256=ncFo8brgwPkSNF3urROMkIElqO6pcSy9tM6ymHE_UeQ,13868
158
+ sempy_labs/report/_generate_report.py,sha256=S830woeisjKCYNyacfvSx0fVHzLC7-aw2oPIU2sYiP8,13910
152
159
  sempy_labs/report/_paginated.py,sha256=rsElE0IQ9qxRDuEp6qNF1EcD5XEgfTc7WsWEQsalsuI,2156
153
160
  sempy_labs/report/_report_bpa.py,sha256=ClETB8Q41sY1scCuknhpvalvuBaQ9ZwA4QX7F3sPcjc,13596
154
161
  sempy_labs/report/_report_bpa_rules.py,sha256=tPVGA0hmE6QMLlWtig7Va7Ksr2yXWl_Lndq--tWWd6w,4959
@@ -156,11 +163,9 @@ sempy_labs/report/_report_functions.py,sha256=pSrsUfMJqmsn9CYb5AM0iYdPR-EmuUSprV
156
163
  sempy_labs/report/_report_helper.py,sha256=m23osIZMjvHhKbfhmTHyqHibXoWA9eP84TPanbH8kuE,10863
157
164
  sempy_labs/report/_report_list_functions.py,sha256=K9tMDQKhIZhelHvfMMW0lsxbVHekJ-5dAQveoD7PUDA,3980
158
165
  sempy_labs/report/_report_rebind.py,sha256=svyxUSdqgXJW1UDNcb-urJxU9erO3JM72uzmuJUWIT0,5090
159
- sempy_labs/report/_reportwrapper.py,sha256=u3MrszXTCQ8JtzdukXcnakdRW225jMXR2QvHgn1Wl_0,83226
166
+ sempy_labs/report/_reportwrapper.py,sha256=itzDImW0XUJuQBL1gQpXjIRBk0Knic0VCf7MHw8Kt68,83421
160
167
  sempy_labs/report/_save_report.py,sha256=FAzScMQIXl89TgVSRvaJofzKT0TfZh_hhPNNvDiktaI,6033
161
- sempy_labs/report/_bpareporttemplate/.platform,sha256=kWRa6B_KwSYLsvVFDx372mQriQO8v7dJ_YzQV_cfD-Q,303
162
168
  sempy_labs/report/_bpareporttemplate/definition.pbir,sha256=bttyHZYKqjA8OBb_cezGlX4H82cDvGZVCl1QB3fij4E,343
163
- sempy_labs/report/_bpareporttemplate/.pbi/localSettings.json,sha256=kzjBlNdjbsSBBSHBwbQc298AJCr9Vp6Ex0D5PemUuT0,1578
164
169
  sempy_labs/report/_bpareporttemplate/StaticResources/SharedResources/BaseThemes/CY24SU06.json,sha256=4N6sT5nLlYBobGmZ1Xb68uOMVVCBEyheR535js_et28,13467
165
170
  sempy_labs/report/_bpareporttemplate/definition/report.json,sha256=-8BK5blTE-nc0Y4-M0pTHD8Znt3pHZ-u2veRppxPDBQ,3975
166
171
  sempy_labs/report/_bpareporttemplate/definition/version.json,sha256=yL3ZZqhfHqq0MS0glrbXtQgkPk17xaTSWvPPyxBWpOc,152
@@ -188,8 +193,8 @@ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visua
188
193
  sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/page.json,sha256=wBVuNc8S2NaUA0FC708w6stmR2djNZp8nAsHMqesgsc,293
189
194
  sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/visuals/ce8532a7e25020271077/visual.json,sha256=mlY6t9OlSe-Y6_QmXJpS1vggU6Y3FjISUKECL8FVSg8,931
190
195
  sempy_labs/tom/__init__.py,sha256=Qbs8leW0fjzvWwOjyWK3Hjeehu7IvpB1beASGsi28bk,121
191
- sempy_labs/tom/_model.py,sha256=sqs8u69RZyQnGzt-ZBJGE6PF-JwhFCm5YosaKeR-hbo,194594
192
- semantic_link_labs-0.9.10.dist-info/METADATA,sha256=CDC3S525ttk6M0qTW9m5mzYSlHXAIVxpZKPO1WAE3vs,26488
193
- semantic_link_labs-0.9.10.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
194
- semantic_link_labs-0.9.10.dist-info/top_level.txt,sha256=kiQX1y42Dbein1l3Q8jMUYyRulDjdlc2tMepvtrvixQ,11
195
- semantic_link_labs-0.9.10.dist-info/RECORD,,
196
+ sempy_labs/tom/_model.py,sha256=64IJf2Pdag5ECWxJcf4Cg2paoMD0Pr6BHvdjgvW6pwo,197537
197
+ semantic_link_labs-0.9.11.dist-info/METADATA,sha256=93cuq3I17_DH0fWpnYNqB8YF8rckYYICQdRBtzN_SZs,26736
198
+ semantic_link_labs-0.9.11.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
199
+ semantic_link_labs-0.9.11.dist-info/top_level.txt,sha256=kiQX1y42Dbein1l3Q8jMUYyRulDjdlc2tMepvtrvixQ,11
200
+ semantic_link_labs-0.9.11.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (79.0.1)
2
+ Generator: setuptools (80.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
sempy_labs/__init__.py CHANGED
@@ -1,7 +1,14 @@
1
+ from sempy_labs._variable_libraries import (
2
+ list_variable_libraries,
3
+ delete_variable_library,
4
+ )
1
5
  from sempy_labs._kusto import (
2
6
  query_kusto,
3
7
  query_workspace_monitoring,
4
8
  )
9
+ from sempy_labs._vpax import (
10
+ create_vpax,
11
+ )
5
12
  from sempy_labs._delta_analyzer_history import (
6
13
  delta_analyzer_history,
7
14
  )
@@ -13,11 +20,16 @@ from sempy_labs._mounted_data_factories import (
13
20
  get_mounted_data_factory_definition,
14
21
  delete_mounted_data_factory,
15
22
  )
16
-
23
+ from sempy_labs._tags import (
24
+ list_tags,
25
+ apply_tags,
26
+ unapply_tags,
27
+ )
17
28
  from sempy_labs._semantic_models import (
18
29
  get_semantic_model_refresh_schedule,
19
30
  enable_semantic_model_scheduled_refresh,
20
31
  delete_semantic_model,
32
+ update_semantic_model_refresh_schedule,
21
33
  )
22
34
  from sempy_labs._graphQL import (
23
35
  list_graphql_apis,
@@ -124,6 +136,7 @@ from sempy_labs._environments import (
124
136
  create_environment,
125
137
  delete_environment,
126
138
  publish_environment,
139
+ list_environments,
127
140
  )
128
141
  from sempy_labs._clear_cache import (
129
142
  clear_cache,
@@ -564,4 +577,12 @@ __all__ = [
564
577
  "delta_analyzer_history",
565
578
  "query_kusto",
566
579
  "query_workspace_monitoring",
580
+ "list_environments",
581
+ "list_tags",
582
+ "list_variable_libraries",
583
+ "delete_variable_library",
584
+ "create_vpax",
585
+ "update_semantic_model_refresh_schedule",
586
+ "apply_tags",
587
+ "unapply_tags",
567
588
  ]
@@ -4,7 +4,6 @@ from datetime import datetime
4
4
  import os
5
5
  from uuid import UUID
6
6
  from typing import Dict, Optional
7
- import pyarrow.dataset as ds
8
7
  import pyarrow.parquet as pq
9
8
  from sempy_labs._helper_functions import (
10
9
  create_abfss_path,
@@ -23,7 +22,12 @@ from sempy_labs._helper_functions import (
23
22
  )
24
23
  from sempy._utils._log import log
25
24
  from sempy_labs.lakehouse._get_lakehouse_tables import get_lakehouse_tables
26
- from sempy_labs.lakehouse._lakehouse import lakehouse_attached
25
+ from sempy_labs.lakehouse._lakehouse import (
26
+ lakehouse_attached,
27
+ )
28
+ from sempy_labs.lakehouse._helper import (
29
+ is_v_ordered,
30
+ )
27
31
  import sempy_labs._icons as icons
28
32
  from tqdm.auto import tqdm
29
33
 
@@ -113,10 +117,6 @@ def delta_analyzer(
113
117
  lakehouse_id, workspace_id, table_name, schema=schema
114
118
  )
115
119
  local_path = _mount(lakehouse=lakehouse, workspace=workspace)
116
- if schema is not None:
117
- table_path = f"{local_path}/Tables/{schema}/{table_name}"
118
- else:
119
- table_path = f"{local_path}/Tables/{table_name}"
120
120
 
121
121
  parquet_file_df_columns = {
122
122
  # "Dataset": "string",
@@ -163,8 +163,9 @@ def delta_analyzer(
163
163
  max_rows_per_row_group = 0
164
164
  min_rows_per_row_group = float("inf")
165
165
 
166
- schema = ds.dataset(table_path).schema.metadata
167
- is_vorder = any(b"vorder" in key for key in schema.keys())
166
+ is_vorder = is_v_ordered(
167
+ table_name=table_name, lakehouse=lakehouse, workspace=workspace, schema=schema
168
+ )
168
169
 
169
170
  # Get the common details of the Delta table
170
171
  delta_table = _get_delta_table(delta_table_path)
@@ -3,6 +3,7 @@ import sempy_labs._icons as icons
3
3
  from typing import Optional
4
4
  from sempy_labs._helper_functions import (
5
5
  resolve_workspace_name_and_id,
6
+ resolve_workspace_id,
6
7
  _base_api,
7
8
  _create_dataframe,
8
9
  resolve_item_id,
@@ -67,10 +68,16 @@ def list_environments(workspace: Optional[str | UUID] = None) -> pd.DataFrame:
67
68
  "Environment Name": "string",
68
69
  "Environment Id": "string",
69
70
  "Description": "string",
71
+ "Publish State": "string",
72
+ "Publish Target Version": "string",
73
+ "Publish Start Time": "string",
74
+ "Publish End Time": "string",
75
+ "Spark Libraries State": "string",
76
+ "Spark Settings State": "string",
70
77
  }
71
78
  df = _create_dataframe(columns=columns)
72
79
 
73
- (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
80
+ workspace_id = resolve_workspace_id(workspace)
74
81
 
75
82
  responses = _base_api(
76
83
  request=f"/v1/workspaces/{workspace_id}/environments",
@@ -80,10 +87,21 @@ def list_environments(workspace: Optional[str | UUID] = None) -> pd.DataFrame:
80
87
 
81
88
  for r in responses:
82
89
  for v in r.get("value", []):
90
+ pub = v.get("properties", {}).get("publishDetails", {})
83
91
  new_data = {
84
92
  "Environment Name": v.get("displayName"),
85
93
  "Environment Id": v.get("id"),
86
94
  "Description": v.get("description"),
95
+ "Publish State": pub.get("state"),
96
+ "Publish Target Version": pub.get("targetVersion"),
97
+ "Publish Start Time": pub.get("startTime"),
98
+ "Publish End Time": pub.get("endTime"),
99
+ "Spark Libraries State": pub.get("componentPublishInfo", {})
100
+ .get("sparkLibraries", {})
101
+ .get("state"),
102
+ "Spark Settings State": pub.get("componentPublishInfo", {})
103
+ .get("sparkSettings", {})
104
+ .get("state"),
87
105
  }
88
106
  df = pd.concat([df, pd.DataFrame(new_data, index=[0])], ignore_index=True)
89
107
 
@@ -493,7 +493,7 @@ def get_semantic_model_size(
493
493
  Returns
494
494
  -------
495
495
  int
496
- The size of the semantic model in
496
+ The size of the semantic model in bytes
497
497
  """
498
498
 
499
499
  dict = fabric.evaluate_dax(