semantic-link-labs 0.8.9__py3-none-any.whl → 0.8.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of semantic-link-labs might be problematic. Click here for more details.
- {semantic_link_labs-0.8.9.dist-info → semantic_link_labs-0.8.11.dist-info}/METADATA +5 -2
- {semantic_link_labs-0.8.9.dist-info → semantic_link_labs-0.8.11.dist-info}/RECORD +76 -75
- sempy_labs/__init__.py +14 -2
- sempy_labs/_authentication.py +31 -2
- sempy_labs/_clear_cache.py +39 -37
- sempy_labs/_connections.py +13 -13
- sempy_labs/_data_pipelines.py +20 -20
- sempy_labs/_dataflows.py +27 -28
- sempy_labs/_dax.py +41 -47
- sempy_labs/_environments.py +26 -23
- sempy_labs/_eventhouses.py +16 -15
- sempy_labs/_eventstreams.py +16 -15
- sempy_labs/_external_data_shares.py +18 -20
- sempy_labs/_gateways.py +57 -11
- sempy_labs/_generate_semantic_model.py +100 -71
- sempy_labs/_git.py +134 -67
- sempy_labs/_helper_functions.py +199 -145
- sempy_labs/_job_scheduler.py +92 -0
- sempy_labs/_kql_databases.py +16 -15
- sempy_labs/_kql_querysets.py +16 -15
- sempy_labs/_list_functions.py +281 -120
- sempy_labs/_managed_private_endpoints.py +19 -17
- sempy_labs/_mirrored_databases.py +51 -48
- sempy_labs/_mirrored_warehouses.py +5 -4
- sempy_labs/_ml_experiments.py +16 -15
- sempy_labs/_ml_models.py +15 -14
- sempy_labs/_model_bpa.py +27 -25
- sempy_labs/_model_bpa_bulk.py +3 -3
- sempy_labs/_model_dependencies.py +60 -28
- sempy_labs/_notebooks.py +73 -39
- sempy_labs/_one_lake_integration.py +23 -26
- sempy_labs/_query_scale_out.py +67 -64
- sempy_labs/_refresh_semantic_model.py +47 -42
- sempy_labs/_spark.py +33 -32
- sempy_labs/_sql.py +12 -9
- sempy_labs/_translations.py +10 -7
- sempy_labs/_vertipaq.py +34 -31
- sempy_labs/_warehouses.py +22 -21
- sempy_labs/_workspace_identity.py +11 -10
- sempy_labs/_workspaces.py +40 -33
- sempy_labs/admin/__init__.py +4 -0
- sempy_labs/admin/_basic_functions.py +44 -12
- sempy_labs/admin/_external_data_share.py +3 -3
- sempy_labs/admin/_items.py +4 -4
- sempy_labs/admin/_scanner.py +7 -5
- sempy_labs/directlake/_directlake_schema_compare.py +18 -14
- sempy_labs/directlake/_directlake_schema_sync.py +18 -12
- sempy_labs/directlake/_dl_helper.py +36 -32
- sempy_labs/directlake/_generate_shared_expression.py +10 -9
- sempy_labs/directlake/_get_directlake_lakehouse.py +16 -13
- sempy_labs/directlake/_get_shared_expression.py +4 -3
- sempy_labs/directlake/_guardrails.py +12 -6
- sempy_labs/directlake/_list_directlake_model_calc_tables.py +15 -9
- sempy_labs/directlake/_show_unsupported_directlake_objects.py +16 -10
- sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +35 -31
- sempy_labs/directlake/_update_directlake_partition_entity.py +34 -31
- sempy_labs/directlake/_warm_cache.py +87 -65
- sempy_labs/lakehouse/_get_lakehouse_columns.py +10 -8
- sempy_labs/lakehouse/_get_lakehouse_tables.py +10 -9
- sempy_labs/lakehouse/_lakehouse.py +17 -13
- sempy_labs/lakehouse/_shortcuts.py +42 -23
- sempy_labs/migration/_create_pqt_file.py +16 -11
- sempy_labs/migration/_refresh_calc_tables.py +16 -10
- sempy_labs/report/_download_report.py +9 -8
- sempy_labs/report/_generate_report.py +40 -44
- sempy_labs/report/_paginated.py +9 -9
- sempy_labs/report/_report_bpa.py +13 -9
- sempy_labs/report/_report_functions.py +80 -91
- sempy_labs/report/_report_helper.py +8 -4
- sempy_labs/report/_report_list_functions.py +24 -13
- sempy_labs/report/_report_rebind.py +17 -16
- sempy_labs/report/_reportwrapper.py +41 -33
- sempy_labs/tom/_model.py +117 -38
- {semantic_link_labs-0.8.9.dist-info → semantic_link_labs-0.8.11.dist-info}/LICENSE +0 -0
- {semantic_link_labs-0.8.9.dist-info → semantic_link_labs-0.8.11.dist-info}/WHEEL +0 -0
- {semantic_link_labs-0.8.9.dist-info → semantic_link_labs-0.8.11.dist-info}/top_level.txt +0 -0
|
@@ -3,46 +3,49 @@ from sempy_labs._helper_functions import (
|
|
|
3
3
|
resolve_lakehouse_id,
|
|
4
4
|
resolve_lakehouse_name,
|
|
5
5
|
get_direct_lake_sql_endpoint,
|
|
6
|
+
resolve_workspace_name_and_id,
|
|
7
|
+
resolve_dataset_name_and_id,
|
|
6
8
|
)
|
|
7
9
|
from typing import Optional, Tuple
|
|
8
10
|
from uuid import UUID
|
|
9
11
|
|
|
10
12
|
|
|
11
13
|
def get_direct_lake_lakehouse(
|
|
12
|
-
dataset: str,
|
|
13
|
-
workspace: Optional[str] = None,
|
|
14
|
+
dataset: str | UUID,
|
|
15
|
+
workspace: Optional[str | UUID] = None,
|
|
14
16
|
lakehouse: Optional[str] = None,
|
|
15
|
-
lakehouse_workspace: Optional[str] = None,
|
|
17
|
+
lakehouse_workspace: Optional[str | UUID] = None,
|
|
16
18
|
) -> Tuple[str, UUID]:
|
|
17
19
|
"""
|
|
18
20
|
Identifies the lakehouse used by a Direct Lake semantic model.
|
|
19
21
|
|
|
20
22
|
Parameters
|
|
21
23
|
----------
|
|
22
|
-
dataset : str
|
|
23
|
-
Name of the semantic model.
|
|
24
|
-
workspace : str, default=None
|
|
25
|
-
The Fabric workspace name.
|
|
24
|
+
dataset : str | uuid.UUID
|
|
25
|
+
Name or ID of the semantic model.
|
|
26
|
+
workspace : str | uuid.UUID, default=None
|
|
27
|
+
The Fabric workspace name or ID.
|
|
26
28
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
27
29
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
28
30
|
lakehouse : str, default=None
|
|
29
31
|
The Fabric lakehouse used by the Direct Lake semantic model.
|
|
30
32
|
Defaults to None which resolves to the lakehouse attached to the notebook.
|
|
31
|
-
lakehouse_workspace : str, default=None
|
|
32
|
-
The Fabric workspace used by the lakehouse.
|
|
33
|
+
lakehouse_workspace : str | uuid.UUID, default=None
|
|
34
|
+
The Fabric workspace name or ID used by the lakehouse.
|
|
33
35
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
34
36
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
35
37
|
|
|
36
38
|
Returns
|
|
37
39
|
-------
|
|
38
|
-
str, uuid.UUID
|
|
40
|
+
Tuple[str, uuid.UUID]
|
|
39
41
|
The lakehouse name and lakehouse ID.
|
|
40
42
|
"""
|
|
41
43
|
|
|
42
|
-
|
|
44
|
+
(workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
45
|
+
(dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
|
|
43
46
|
|
|
44
47
|
if lakehouse_workspace is None:
|
|
45
|
-
lakehouse_workspace =
|
|
48
|
+
lakehouse_workspace = workspace_name
|
|
46
49
|
|
|
47
50
|
if lakehouse is None:
|
|
48
51
|
lakehouse_id = fabric.get_lakehouse_id()
|
|
@@ -56,7 +59,7 @@ def get_direct_lake_lakehouse(
|
|
|
56
59
|
# f"{icons.red_dot} The '{dataset}' semantic model within the '{workspace}' workspace is not in Direct Lake mode."
|
|
57
60
|
# )
|
|
58
61
|
|
|
59
|
-
sqlEndpointId = get_direct_lake_sql_endpoint(
|
|
62
|
+
sqlEndpointId = get_direct_lake_sql_endpoint(dataset_id, workspace_id)
|
|
60
63
|
|
|
61
64
|
dfI = fabric.list_items(workspace=lakehouse_workspace, type="SQLEndpoint")
|
|
62
65
|
dfI_filt = dfI[dfI["Id"] == sqlEndpointId]
|
|
@@ -1,8 +1,9 @@
|
|
|
1
1
|
from typing import Optional
|
|
2
|
+
from uuid import UUID
|
|
2
3
|
|
|
3
4
|
|
|
4
5
|
def get_shared_expression(
|
|
5
|
-
lakehouse: Optional[str] = None, workspace: Optional[str] = None
|
|
6
|
+
lakehouse: Optional[str] = None, workspace: Optional[str | UUID] = None
|
|
6
7
|
) -> str:
|
|
7
8
|
"""
|
|
8
9
|
Dynamically generates the M expression used by a Direct Lake model for a given lakehouse.
|
|
@@ -12,8 +13,8 @@ def get_shared_expression(
|
|
|
12
13
|
lakehouse : str, default=None
|
|
13
14
|
The Fabric lakehouse used by the Direct Lake semantic model.
|
|
14
15
|
Defaults to None which resolves to the lakehouse attached to the notebook.
|
|
15
|
-
workspace : str, default=None
|
|
16
|
-
The Fabric workspace used by the lakehouse.
|
|
16
|
+
workspace : str | uuid.UUID, default=None
|
|
17
|
+
The Fabric workspace name or ID used by the lakehouse.
|
|
17
18
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
18
19
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
19
20
|
|
|
@@ -2,6 +2,10 @@ import sempy.fabric as fabric
|
|
|
2
2
|
import pandas as pd
|
|
3
3
|
from typing import Optional
|
|
4
4
|
import sempy_labs._icons as icons
|
|
5
|
+
from uuid import UUID
|
|
6
|
+
from sempy_labs._helper_functions import (
|
|
7
|
+
resolve_workspace_name_and_id,
|
|
8
|
+
)
|
|
5
9
|
|
|
6
10
|
|
|
7
11
|
def get_direct_lake_guardrails() -> pd.DataFrame:
|
|
@@ -28,14 +32,14 @@ def get_direct_lake_guardrails() -> pd.DataFrame:
|
|
|
28
32
|
return df
|
|
29
33
|
|
|
30
34
|
|
|
31
|
-
def get_sku_size(workspace: Optional[str] = None) -> str:
|
|
35
|
+
def get_sku_size(workspace: Optional[str | UUID] = None) -> str:
|
|
32
36
|
"""
|
|
33
37
|
Shows the SKU size for a workspace.
|
|
34
38
|
|
|
35
39
|
Parameters
|
|
36
40
|
----------
|
|
37
|
-
workspace : str, default=None
|
|
38
|
-
The Fabric workspace name.
|
|
41
|
+
workspace : str | uuid.UUID, default=None
|
|
42
|
+
The Fabric workspace name or ID.
|
|
39
43
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
40
44
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
41
45
|
|
|
@@ -45,12 +49,14 @@ def get_sku_size(workspace: Optional[str] = None) -> str:
|
|
|
45
49
|
The SKU size for a workspace.
|
|
46
50
|
"""
|
|
47
51
|
|
|
48
|
-
|
|
52
|
+
(workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
49
53
|
|
|
50
|
-
dfW = fabric.list_workspaces(filter=f"
|
|
54
|
+
dfW = fabric.list_workspaces(filter=f"id eq '{workspace_id}'")
|
|
51
55
|
|
|
52
56
|
if len(dfW) == 0:
|
|
53
|
-
raise ValueError(
|
|
57
|
+
raise ValueError(
|
|
58
|
+
f"{icons.red_dot} The '{workspace_name}' is not a valid workspace."
|
|
59
|
+
)
|
|
54
60
|
|
|
55
61
|
capacity_id = dfW["Capacity Id"].iloc[0]
|
|
56
62
|
dfC = fabric.list_capacities()
|
|
@@ -5,21 +5,26 @@ from sempy_labs.tom import connect_semantic_model
|
|
|
5
5
|
from typing import Optional
|
|
6
6
|
from sempy._utils._log import log
|
|
7
7
|
import sempy_labs._icons as icons
|
|
8
|
+
from uuid import UUID
|
|
9
|
+
from sempy_labs._helper_functions import (
|
|
10
|
+
resolve_dataset_name_and_id,
|
|
11
|
+
resolve_workspace_name_and_id,
|
|
12
|
+
)
|
|
8
13
|
|
|
9
14
|
|
|
10
15
|
@log
|
|
11
16
|
def list_direct_lake_model_calc_tables(
|
|
12
|
-
dataset: str, workspace: Optional[str] = None
|
|
17
|
+
dataset: str | UUID, workspace: Optional[str | UUID] = None
|
|
13
18
|
) -> pd.DataFrame:
|
|
14
19
|
"""
|
|
15
20
|
Shows the calculated tables and their respective DAX expression for a Direct Lake model (which has been migrated from import/DirectQuery).
|
|
16
21
|
|
|
17
22
|
Parameters
|
|
18
23
|
----------
|
|
19
|
-
dataset : str
|
|
20
|
-
Name of the semantic model.
|
|
21
|
-
workspace : str, default=None
|
|
22
|
-
The Fabric workspace name.
|
|
24
|
+
dataset : str | uuid.UUID
|
|
25
|
+
Name or ID of the semantic model.
|
|
26
|
+
workspace : str | uuid.UUID, default=None
|
|
27
|
+
The Fabric workspace name or ID.
|
|
23
28
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
24
29
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
25
30
|
|
|
@@ -29,12 +34,13 @@ def list_direct_lake_model_calc_tables(
|
|
|
29
34
|
A pandas dataframe showing the calculated tables which were migrated to Direct Lake and whose DAX expressions are stored as model annotations.
|
|
30
35
|
"""
|
|
31
36
|
|
|
32
|
-
|
|
37
|
+
(workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
38
|
+
(dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
|
|
33
39
|
|
|
34
40
|
df = pd.DataFrame(columns=["Table Name", "Source Expression"])
|
|
35
41
|
|
|
36
42
|
with connect_semantic_model(
|
|
37
|
-
dataset=
|
|
43
|
+
dataset=dataset_id, readonly=True, workspace=workspace_id
|
|
38
44
|
) as tom:
|
|
39
45
|
|
|
40
46
|
is_direct_lake = tom.is_direct_lake()
|
|
@@ -44,8 +50,8 @@ def list_direct_lake_model_calc_tables(
|
|
|
44
50
|
f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake mode."
|
|
45
51
|
)
|
|
46
52
|
else:
|
|
47
|
-
dfA = fabric.list_annotations(dataset=
|
|
48
|
-
dfT = list_tables(
|
|
53
|
+
dfA = fabric.list_annotations(dataset=dataset_id, workspace=workspace_id)
|
|
54
|
+
dfT = list_tables(dataset_id, workspace_id)
|
|
49
55
|
dfA_filt = dfA[
|
|
50
56
|
(dfA["Object Type"] == "Model")
|
|
51
57
|
& (dfA["Annotation Name"].isin(dfT["Name"]))
|
|
@@ -1,13 +1,18 @@
|
|
|
1
1
|
import sempy.fabric as fabric
|
|
2
2
|
import pandas as pd
|
|
3
|
-
from sempy_labs._helper_functions import
|
|
3
|
+
from sempy_labs._helper_functions import (
|
|
4
|
+
format_dax_object_name,
|
|
5
|
+
resolve_dataset_name_and_id,
|
|
6
|
+
resolve_workspace_name_and_id,
|
|
7
|
+
)
|
|
4
8
|
from typing import Optional, Tuple
|
|
5
9
|
from sempy._utils._log import log
|
|
10
|
+
from uuid import UUID
|
|
6
11
|
|
|
7
12
|
|
|
8
13
|
@log
|
|
9
14
|
def show_unsupported_direct_lake_objects(
|
|
10
|
-
dataset: str, workspace: Optional[str] = None
|
|
15
|
+
dataset: str | UUID, workspace: Optional[str | UUID] = None
|
|
11
16
|
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
|
12
17
|
"""
|
|
13
18
|
Returns a list of a semantic model's objects which are not supported by Direct Lake based on
|
|
@@ -15,10 +20,10 @@ def show_unsupported_direct_lake_objects(
|
|
|
15
20
|
|
|
16
21
|
Parameters
|
|
17
22
|
----------
|
|
18
|
-
dataset : str
|
|
19
|
-
Name of the semantic model.
|
|
20
|
-
workspace : str, default=None
|
|
21
|
-
The Fabric workspace name.
|
|
23
|
+
dataset : str | uuid.UUID
|
|
24
|
+
Name or ID of the semantic model.
|
|
25
|
+
workspace : str | uuid.UUID, default=None
|
|
26
|
+
The Fabric workspace name or ID.
|
|
22
27
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
23
28
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
24
29
|
|
|
@@ -30,11 +35,12 @@ def show_unsupported_direct_lake_objects(
|
|
|
30
35
|
|
|
31
36
|
pd.options.mode.chained_assignment = None
|
|
32
37
|
|
|
33
|
-
|
|
38
|
+
(workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
39
|
+
(dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
|
|
34
40
|
|
|
35
|
-
dfT = fabric.list_tables(dataset=
|
|
36
|
-
dfC = fabric.list_columns(dataset=
|
|
37
|
-
dfR = fabric.list_relationships(dataset=
|
|
41
|
+
dfT = fabric.list_tables(dataset=dataset_id, workspace=workspace_id)
|
|
42
|
+
dfC = fabric.list_columns(dataset=dataset_id, workspace=workspace_id)
|
|
43
|
+
dfR = fabric.list_relationships(dataset=dataset_id, workspace=workspace_id)
|
|
38
44
|
|
|
39
45
|
# Calc tables
|
|
40
46
|
dfT_filt = dfT[dfT["Type"] == "Calculated Table"]
|
|
@@ -2,42 +2,46 @@ import sempy.fabric as fabric
|
|
|
2
2
|
from sempy_labs.directlake._generate_shared_expression import generate_shared_expression
|
|
3
3
|
from sempy_labs._helper_functions import (
|
|
4
4
|
resolve_lakehouse_name,
|
|
5
|
+
resolve_dataset_name_and_id,
|
|
6
|
+
resolve_workspace_name_and_id,
|
|
5
7
|
)
|
|
6
8
|
from sempy_labs.tom import connect_semantic_model
|
|
7
9
|
from typing import Optional
|
|
8
10
|
import sempy_labs._icons as icons
|
|
11
|
+
from uuid import UUID
|
|
9
12
|
|
|
10
13
|
|
|
11
14
|
def update_direct_lake_model_lakehouse_connection(
|
|
12
|
-
dataset: str,
|
|
13
|
-
workspace: Optional[str] = None,
|
|
15
|
+
dataset: str | UUID,
|
|
16
|
+
workspace: Optional[str | UUID] = None,
|
|
14
17
|
lakehouse: Optional[str] = None,
|
|
15
|
-
lakehouse_workspace: Optional[str] = None,
|
|
18
|
+
lakehouse_workspace: Optional[str | UUID] = None,
|
|
16
19
|
):
|
|
17
20
|
"""
|
|
18
21
|
Remaps a Direct Lake semantic model's SQL Endpoint connection to a new lakehouse.
|
|
19
22
|
|
|
20
23
|
Parameters
|
|
21
24
|
----------
|
|
22
|
-
dataset : str
|
|
23
|
-
Name of the semantic model.
|
|
24
|
-
workspace : str, default=None
|
|
25
|
-
The Fabric workspace name in which the semantic model exists.
|
|
25
|
+
dataset : str | UUID
|
|
26
|
+
Name or ID of the semantic model.
|
|
27
|
+
workspace : str | UUID, default=None
|
|
28
|
+
The Fabric workspace name or ID in which the semantic model exists.
|
|
26
29
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
27
30
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
28
31
|
lakehouse : str, default=None
|
|
29
32
|
The Fabric lakehouse used by the Direct Lake semantic model.
|
|
30
33
|
Defaults to None which resolves to the lakehouse attached to the notebook.
|
|
31
|
-
lakehouse_workspace : str, default=None
|
|
32
|
-
The Fabric workspace used by the lakehouse.
|
|
34
|
+
lakehouse_workspace : str | UUID, default=None
|
|
35
|
+
The Fabric workspace name or ID used by the lakehouse.
|
|
33
36
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
34
37
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
35
38
|
"""
|
|
36
39
|
|
|
37
|
-
|
|
40
|
+
(workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
41
|
+
(dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
|
|
38
42
|
|
|
39
43
|
if lakehouse_workspace is None:
|
|
40
|
-
lakehouse_workspace =
|
|
44
|
+
lakehouse_workspace = workspace_name
|
|
41
45
|
|
|
42
46
|
if lakehouse is None:
|
|
43
47
|
lakehouse_id = fabric.get_lakehouse_id()
|
|
@@ -50,7 +54,7 @@ def update_direct_lake_model_lakehouse_connection(
|
|
|
50
54
|
if len(dfI_filt) == 0:
|
|
51
55
|
raise ValueError(
|
|
52
56
|
f"{icons.red_dot} The '{lakehouse}' lakehouse does not exist within the '{lakehouse_workspace}' workspace. "
|
|
53
|
-
f"Therefore it cannot be used to support the '{
|
|
57
|
+
f"Therefore it cannot be used to support the '{dataset_name}' semantic model within the '{workspace_name}' workspace."
|
|
54
58
|
)
|
|
55
59
|
|
|
56
60
|
icons.sll_tags.append("UpdateDLConnection")
|
|
@@ -60,37 +64,37 @@ def update_direct_lake_model_lakehouse_connection(
|
|
|
60
64
|
)
|
|
61
65
|
|
|
62
66
|
with connect_semantic_model(
|
|
63
|
-
dataset=
|
|
67
|
+
dataset=dataset_id, readonly=False, workspace=workspace_id
|
|
64
68
|
) as tom:
|
|
65
69
|
|
|
66
70
|
if not tom.is_direct_lake():
|
|
67
71
|
raise ValueError(
|
|
68
|
-
f"{icons.red_dot} The '{
|
|
72
|
+
f"{icons.red_dot} The '{dataset_name}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models."
|
|
69
73
|
)
|
|
70
74
|
|
|
71
75
|
tom.model.Expressions["DatabaseQuery"].Expression = shEx
|
|
72
76
|
|
|
73
77
|
print(
|
|
74
|
-
f"{icons.green_dot} The expression in the '{
|
|
78
|
+
f"{icons.green_dot} The expression in the '{dataset_name}' semantic model has been updated to point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace."
|
|
75
79
|
)
|
|
76
80
|
|
|
77
81
|
|
|
78
82
|
def update_direct_lake_model_connection(
|
|
79
|
-
dataset: str,
|
|
80
|
-
workspace: Optional[str] = None,
|
|
83
|
+
dataset: str | UUID,
|
|
84
|
+
workspace: Optional[str | UUID] = None,
|
|
81
85
|
source: Optional[str] = None,
|
|
82
|
-
source_type:
|
|
83
|
-
source_workspace: Optional[str] = None,
|
|
86
|
+
source_type: str = "Lakehouse",
|
|
87
|
+
source_workspace: Optional[str | UUID] = None,
|
|
84
88
|
):
|
|
85
89
|
"""
|
|
86
90
|
Remaps a Direct Lake semantic model's SQL Endpoint connection to a new lakehouse/warehouse.
|
|
87
91
|
|
|
88
92
|
Parameters
|
|
89
93
|
----------
|
|
90
|
-
dataset : str
|
|
91
|
-
Name of the semantic model.
|
|
92
|
-
workspace : str, default=None
|
|
93
|
-
The Fabric workspace name in which the semantic model exists.
|
|
94
|
+
dataset : str | UUID
|
|
95
|
+
Name or ID of the semantic model.
|
|
96
|
+
workspace : str | UUID, default=None
|
|
97
|
+
The Fabric workspace name or ID in which the semantic model exists.
|
|
94
98
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
95
99
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
96
100
|
source : str, default=None
|
|
@@ -98,14 +102,14 @@ def update_direct_lake_model_connection(
|
|
|
98
102
|
Defaults to None which resolves to the lakehouse attached to the notebook.
|
|
99
103
|
source_type : str, default="Lakehouse"
|
|
100
104
|
The type of source for the Direct Lake semantic model. Valid options: "Lakehouse", "Warehouse".
|
|
101
|
-
source_workspace : str, default=None
|
|
102
|
-
The Fabric workspace used by the lakehouse/warehouse.
|
|
105
|
+
source_workspace : str | UUID, default=None
|
|
106
|
+
The Fabric workspace name or ID used by the lakehouse/warehouse.
|
|
103
107
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
104
108
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
105
109
|
"""
|
|
106
110
|
|
|
107
|
-
|
|
108
|
-
|
|
111
|
+
(workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
112
|
+
(dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
|
|
109
113
|
|
|
110
114
|
source_type = source_type.capitalize()
|
|
111
115
|
|
|
@@ -115,7 +119,7 @@ def update_direct_lake_model_connection(
|
|
|
115
119
|
)
|
|
116
120
|
|
|
117
121
|
if source_workspace is None:
|
|
118
|
-
source_workspace =
|
|
122
|
+
source_workspace = workspace_name
|
|
119
123
|
|
|
120
124
|
if source is None:
|
|
121
125
|
source_id = fabric.get_lakehouse_id()
|
|
@@ -135,16 +139,16 @@ def update_direct_lake_model_connection(
|
|
|
135
139
|
)
|
|
136
140
|
|
|
137
141
|
with connect_semantic_model(
|
|
138
|
-
dataset=
|
|
142
|
+
dataset=dataset_id, readonly=False, workspace=workspace_id
|
|
139
143
|
) as tom:
|
|
140
144
|
|
|
141
145
|
if not tom.is_direct_lake():
|
|
142
146
|
raise ValueError(
|
|
143
|
-
f"{icons.red_dot} The '{
|
|
147
|
+
f"{icons.red_dot} The '{dataset_name}' semantic model within the '{workspace_name}' workspace is not in Direct Lake. This function is only applicable to Direct Lake semantic models."
|
|
144
148
|
)
|
|
145
149
|
|
|
146
150
|
tom.model.Expressions["DatabaseQuery"].Expression = shEx
|
|
147
151
|
|
|
148
152
|
print(
|
|
149
|
-
f"{icons.green_dot} The expression in the '{
|
|
153
|
+
f"{icons.green_dot} The expression in the '{dataset_name}' semantic model within the '{workspace_name}' workspace has been updated to point to the '{source}' {source_type.lower()} in the '{source_workspace}' workspace."
|
|
150
154
|
)
|
|
@@ -3,36 +3,41 @@ import sempy.fabric as fabric
|
|
|
3
3
|
from sempy_labs.tom import connect_semantic_model
|
|
4
4
|
from sempy_labs._refresh_semantic_model import refresh_semantic_model
|
|
5
5
|
from sempy_labs.directlake._dl_helper import get_direct_lake_source
|
|
6
|
-
from sempy_labs._helper_functions import
|
|
6
|
+
from sempy_labs._helper_functions import (
|
|
7
|
+
_convert_data_type,
|
|
8
|
+
resolve_dataset_name_and_id,
|
|
9
|
+
resolve_workspace_name_and_id,
|
|
10
|
+
)
|
|
7
11
|
from typing import List, Optional, Union
|
|
8
12
|
import sempy_labs._icons as icons
|
|
13
|
+
from uuid import UUID
|
|
9
14
|
|
|
10
15
|
|
|
11
16
|
def update_direct_lake_partition_entity(
|
|
12
|
-
dataset: str,
|
|
17
|
+
dataset: str | UUID,
|
|
13
18
|
table_name: Union[str, List[str]],
|
|
14
19
|
entity_name: Union[str, List[str]],
|
|
15
|
-
workspace: Optional[str] = None,
|
|
20
|
+
workspace: Optional[str | UUID] = None,
|
|
16
21
|
):
|
|
17
22
|
"""
|
|
18
23
|
Remaps a table (or tables) in a Direct Lake semantic model to a table in a lakehouse.
|
|
19
24
|
|
|
20
25
|
Parameters
|
|
21
26
|
----------
|
|
22
|
-
dataset : str
|
|
23
|
-
Name of the semantic model.
|
|
27
|
+
dataset : str | uuid.UUID
|
|
28
|
+
Name or ID of the semantic model.
|
|
24
29
|
table_name : str, List[str]
|
|
25
30
|
Name of the table(s) in the semantic model.
|
|
26
31
|
entity_name : str, List[str]
|
|
27
32
|
Name of the lakehouse table to be mapped to the semantic model table.
|
|
28
|
-
workspace : str, default=None
|
|
29
|
-
The Fabric workspace name in which the semantic model exists.
|
|
33
|
+
workspace : str | uuid.UUID, default=None
|
|
34
|
+
The Fabric workspace name or ID in which the semantic model exists.
|
|
30
35
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
31
36
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
32
37
|
"""
|
|
33
38
|
|
|
34
|
-
|
|
35
|
-
|
|
39
|
+
(workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
40
|
+
(dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
|
|
36
41
|
|
|
37
42
|
# Support both str & list types
|
|
38
43
|
if isinstance(table_name, str):
|
|
@@ -48,12 +53,12 @@ def update_direct_lake_partition_entity(
|
|
|
48
53
|
icons.sll_tags.append("UpdateDLPartition")
|
|
49
54
|
|
|
50
55
|
with connect_semantic_model(
|
|
51
|
-
dataset=
|
|
56
|
+
dataset=dataset_id, readonly=False, workspace=workspace_id
|
|
52
57
|
) as tom:
|
|
53
58
|
|
|
54
59
|
if not tom.is_direct_lake():
|
|
55
60
|
raise ValueError(
|
|
56
|
-
f"{icons.red_dot} The '{
|
|
61
|
+
f"{icons.red_dot} The '{dataset_name}' semantic model within the '{workspace_name}' workspace is not in Direct Lake mode."
|
|
57
62
|
)
|
|
58
63
|
|
|
59
64
|
for tName in table_name:
|
|
@@ -68,42 +73,39 @@ def update_direct_lake_partition_entity(
|
|
|
68
73
|
|
|
69
74
|
if part_name is None:
|
|
70
75
|
raise ValueError(
|
|
71
|
-
f"{icons.red_dot} The '{tName}' table in the '{
|
|
76
|
+
f"{icons.red_dot} The '{tName}' table in the '{dataset_name}' semantic model has not been updated."
|
|
72
77
|
)
|
|
73
78
|
|
|
74
79
|
tom.model.Tables[tName].Partitions[part_name].Source.EntityName = eName
|
|
75
80
|
print(
|
|
76
|
-
f"{icons.green_dot} The '{tName}' table in the '{
|
|
81
|
+
f"{icons.green_dot} The '{tName}' table in the '{dataset_name}' semantic model within the '{workspace_name}' workspace has been updated to point to the '{eName}' table."
|
|
77
82
|
)
|
|
78
83
|
|
|
79
84
|
|
|
80
85
|
def add_table_to_direct_lake_semantic_model(
|
|
81
|
-
dataset: str,
|
|
86
|
+
dataset: str | UUID,
|
|
82
87
|
table_name: str,
|
|
83
88
|
lakehouse_table_name: str,
|
|
84
89
|
refresh: bool = True,
|
|
85
|
-
workspace: Optional[str] = None,
|
|
90
|
+
workspace: Optional[str | UUID] = None,
|
|
86
91
|
):
|
|
87
92
|
"""
|
|
88
93
|
Adds a table and all of its columns to a Direct Lake semantic model, based on a Fabric lakehouse table.
|
|
89
94
|
|
|
90
95
|
Parameters
|
|
91
96
|
----------
|
|
92
|
-
dataset : str
|
|
93
|
-
Name of the semantic model.
|
|
97
|
+
dataset : str | uuid.UUID
|
|
98
|
+
Name or ID of the semantic model.
|
|
94
99
|
table_name : str, List[str]
|
|
95
100
|
Name of the table in the semantic model.
|
|
96
101
|
lakehouse_table_name : str
|
|
97
102
|
The name of the Fabric lakehouse table.
|
|
98
103
|
refresh : bool, default=True
|
|
99
104
|
Refreshes the table after it is added to the semantic model.
|
|
100
|
-
workspace : str, default=None
|
|
101
|
-
The name of the Fabric workspace in which the semantic model resides.
|
|
105
|
+
workspace : str | uuid.UUID, default=None
|
|
106
|
+
The name or ID of the Fabric workspace in which the semantic model resides.
|
|
102
107
|
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
103
108
|
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
104
|
-
|
|
105
|
-
Returns
|
|
106
|
-
-------
|
|
107
109
|
"""
|
|
108
110
|
|
|
109
111
|
sempy.fabric._client._utils._init_analysis_services()
|
|
@@ -111,10 +113,11 @@ def add_table_to_direct_lake_semantic_model(
|
|
|
111
113
|
from sempy_labs.lakehouse._get_lakehouse_columns import get_lakehouse_columns
|
|
112
114
|
from sempy_labs.lakehouse._get_lakehouse_tables import get_lakehouse_tables
|
|
113
115
|
|
|
114
|
-
|
|
116
|
+
(workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
|
|
117
|
+
(dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
|
|
115
118
|
|
|
116
119
|
artifact_type, lakehouse_name, lakehouse_id, lakehouse_workspace_id = (
|
|
117
|
-
get_direct_lake_source(dataset=
|
|
120
|
+
get_direct_lake_source(dataset=dataset_id, workspace=workspace_id)
|
|
118
121
|
)
|
|
119
122
|
|
|
120
123
|
if artifact_type == "Warehouse":
|
|
@@ -125,7 +128,7 @@ def add_table_to_direct_lake_semantic_model(
|
|
|
125
128
|
lakehouse_workspace = fabric.resolve_workspace_name(lakehouse_workspace_id)
|
|
126
129
|
|
|
127
130
|
with connect_semantic_model(
|
|
128
|
-
dataset=
|
|
131
|
+
dataset=dataset_id, readonly=False, workspace=workspace_id
|
|
129
132
|
) as tom:
|
|
130
133
|
|
|
131
134
|
table_count = tom.model.Tables.Count
|
|
@@ -148,12 +151,12 @@ def add_table_to_direct_lake_semantic_model(
|
|
|
148
151
|
== TOM.PartitionSourceType.Entity
|
|
149
152
|
)
|
|
150
153
|
raise ValueError(
|
|
151
|
-
f"The '{lakehouse_table_name}' table already exists in the '{
|
|
154
|
+
f"The '{lakehouse_table_name}' table already exists in the '{dataset_name}' semantic model within the '{workspace_name}' workspace as the '{t_name}' table."
|
|
152
155
|
)
|
|
153
156
|
|
|
154
157
|
if any(t.Name == table_name for t in tom.model.Tables):
|
|
155
158
|
raise ValueError(
|
|
156
|
-
f"The '{table_name}' table already exists in the '{
|
|
159
|
+
f"The '{table_name}' table already exists in the '{dataset_name}' semantic model within the '{workspace_name}' workspace."
|
|
157
160
|
)
|
|
158
161
|
|
|
159
162
|
dfL = get_lakehouse_tables(
|
|
@@ -173,13 +176,13 @@ def add_table_to_direct_lake_semantic_model(
|
|
|
173
176
|
|
|
174
177
|
tom.add_table(name=table_name)
|
|
175
178
|
print(
|
|
176
|
-
f"{icons.green_dot} The '{table_name}' table has been added to the '{
|
|
179
|
+
f"{icons.green_dot} The '{table_name}' table has been added to the '{dataset_name}' semantic model within the '{workspace_name}' workspace."
|
|
177
180
|
)
|
|
178
181
|
tom.add_entity_partition(
|
|
179
182
|
table_name=table_name, entity_name=lakehouse_table_name
|
|
180
183
|
)
|
|
181
184
|
print(
|
|
182
|
-
f"{icons.green_dot} The '{lakehouse_table_name}' partition has been added to the '{table_name}' table in the '{
|
|
185
|
+
f"{icons.green_dot} The '{lakehouse_table_name}' partition has been added to the '{table_name}' table in the '{dataset_name}' semantic model within the '{workspace_name}' workspace."
|
|
183
186
|
)
|
|
184
187
|
|
|
185
188
|
for i, r in dfLC_filt.iterrows():
|
|
@@ -193,10 +196,10 @@ def add_table_to_direct_lake_semantic_model(
|
|
|
193
196
|
data_type=dt,
|
|
194
197
|
)
|
|
195
198
|
print(
|
|
196
|
-
f"{icons.green_dot} The '{lakeCName}' column has been added to the '{table_name}' table as a '{dt}' data type in the '{
|
|
199
|
+
f"{icons.green_dot} The '{lakeCName}' column has been added to the '{table_name}' table as a '{dt}' data type in the '{dataset_name}' semantic model within the '{workspace_name}' workspace."
|
|
197
200
|
)
|
|
198
201
|
|
|
199
202
|
if refresh:
|
|
200
203
|
refresh_semantic_model(
|
|
201
|
-
dataset=
|
|
204
|
+
dataset=dataset_id, tables=table_name, workspace=workspace_id
|
|
202
205
|
)
|