semantic-link-labs 0.8.10__py3-none-any.whl → 0.8.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of semantic-link-labs might be problematic. Click here for more details.

Files changed (73) hide show
  1. {semantic_link_labs-0.8.10.dist-info → semantic_link_labs-0.8.11.dist-info}/METADATA +3 -2
  2. {semantic_link_labs-0.8.10.dist-info → semantic_link_labs-0.8.11.dist-info}/RECORD +73 -72
  3. sempy_labs/__init__.py +6 -2
  4. sempy_labs/_clear_cache.py +39 -37
  5. sempy_labs/_connections.py +13 -13
  6. sempy_labs/_data_pipelines.py +20 -20
  7. sempy_labs/_dataflows.py +27 -28
  8. sempy_labs/_dax.py +41 -47
  9. sempy_labs/_environments.py +26 -23
  10. sempy_labs/_eventhouses.py +16 -15
  11. sempy_labs/_eventstreams.py +16 -15
  12. sempy_labs/_external_data_shares.py +18 -20
  13. sempy_labs/_gateways.py +14 -14
  14. sempy_labs/_generate_semantic_model.py +99 -62
  15. sempy_labs/_git.py +105 -43
  16. sempy_labs/_helper_functions.py +148 -131
  17. sempy_labs/_job_scheduler.py +92 -0
  18. sempy_labs/_kql_databases.py +16 -15
  19. sempy_labs/_kql_querysets.py +16 -15
  20. sempy_labs/_list_functions.py +114 -99
  21. sempy_labs/_managed_private_endpoints.py +19 -17
  22. sempy_labs/_mirrored_databases.py +51 -48
  23. sempy_labs/_mirrored_warehouses.py +5 -4
  24. sempy_labs/_ml_experiments.py +16 -15
  25. sempy_labs/_ml_models.py +15 -14
  26. sempy_labs/_model_bpa.py +3 -3
  27. sempy_labs/_model_dependencies.py +55 -29
  28. sempy_labs/_notebooks.py +27 -25
  29. sempy_labs/_one_lake_integration.py +23 -26
  30. sempy_labs/_query_scale_out.py +67 -64
  31. sempy_labs/_refresh_semantic_model.py +25 -26
  32. sempy_labs/_spark.py +33 -32
  33. sempy_labs/_sql.py +12 -9
  34. sempy_labs/_translations.py +10 -7
  35. sempy_labs/_vertipaq.py +34 -31
  36. sempy_labs/_warehouses.py +22 -21
  37. sempy_labs/_workspace_identity.py +11 -10
  38. sempy_labs/_workspaces.py +40 -33
  39. sempy_labs/admin/_basic_functions.py +10 -12
  40. sempy_labs/admin/_external_data_share.py +3 -3
  41. sempy_labs/admin/_items.py +4 -4
  42. sempy_labs/admin/_scanner.py +3 -1
  43. sempy_labs/directlake/_directlake_schema_compare.py +18 -14
  44. sempy_labs/directlake/_directlake_schema_sync.py +18 -12
  45. sempy_labs/directlake/_dl_helper.py +25 -26
  46. sempy_labs/directlake/_generate_shared_expression.py +10 -9
  47. sempy_labs/directlake/_get_directlake_lakehouse.py +16 -13
  48. sempy_labs/directlake/_get_shared_expression.py +4 -3
  49. sempy_labs/directlake/_guardrails.py +12 -6
  50. sempy_labs/directlake/_list_directlake_model_calc_tables.py +15 -9
  51. sempy_labs/directlake/_show_unsupported_directlake_objects.py +16 -10
  52. sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +35 -31
  53. sempy_labs/directlake/_update_directlake_partition_entity.py +34 -31
  54. sempy_labs/directlake/_warm_cache.py +87 -65
  55. sempy_labs/lakehouse/_get_lakehouse_columns.py +10 -8
  56. sempy_labs/lakehouse/_get_lakehouse_tables.py +10 -9
  57. sempy_labs/lakehouse/_lakehouse.py +17 -13
  58. sempy_labs/lakehouse/_shortcuts.py +42 -23
  59. sempy_labs/migration/_create_pqt_file.py +16 -11
  60. sempy_labs/migration/_refresh_calc_tables.py +16 -10
  61. sempy_labs/report/_download_report.py +9 -8
  62. sempy_labs/report/_generate_report.py +40 -44
  63. sempy_labs/report/_paginated.py +9 -9
  64. sempy_labs/report/_report_bpa.py +13 -9
  65. sempy_labs/report/_report_functions.py +80 -91
  66. sempy_labs/report/_report_helper.py +8 -4
  67. sempy_labs/report/_report_list_functions.py +24 -13
  68. sempy_labs/report/_report_rebind.py +17 -16
  69. sempy_labs/report/_reportwrapper.py +41 -33
  70. sempy_labs/tom/_model.py +43 -6
  71. {semantic_link_labs-0.8.10.dist-info → semantic_link_labs-0.8.11.dist-info}/LICENSE +0 -0
  72. {semantic_link_labs-0.8.10.dist-info → semantic_link_labs-0.8.11.dist-info}/WHEEL +0 -0
  73. {semantic_link_labs-0.8.10.dist-info → semantic_link_labs-0.8.11.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: semantic-link-labs
3
- Version: 0.8.10
3
+ Version: 0.8.11
4
4
  Summary: Semantic Link Labs for Microsoft Fabric
5
5
  Author: Microsoft Corporation
6
6
  License: MIT License
@@ -27,7 +27,7 @@ Requires-Dist: pytest>=8.2.1; extra == "test"
27
27
  # Semantic Link Labs
28
28
 
29
29
  [![PyPI version](https://badge.fury.io/py/semantic-link-labs.svg)](https://badge.fury.io/py/semantic-link-labs)
30
- [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.10&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
30
+ [![Read The Docs](https://readthedocs.org/projects/semantic-link-labs/badge/?version=0.8.11&style=flat)](https://readthedocs.org/projects/semantic-link-labs/)
31
31
  [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
32
32
  [![Downloads](https://static.pepy.tech/badge/semantic-link-labs)](https://pepy.tech/project/semantic-link-labs)
33
33
 
@@ -142,6 +142,7 @@ An even better way to ensure the semantic-link-labs library is available in your
142
142
  2. Select your newly created environment within the 'Environment' drop down in the navigation bar at the top of the notebook
143
143
 
144
144
  ## Version History
145
+ * [0.8.11](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.11) (December 19, 2024)
145
146
  * [0.8.10](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.10) (December 16, 2024)
146
147
  * [0.8.9](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.9) (December 4, 2024)
147
148
  * [0.8.8](https://github.com/microsoft/semantic-link-labs/releases/tag/0.8.8) (November 28, 2024)
@@ -1,49 +1,50 @@
1
- sempy_labs/__init__.py,sha256=WyNDrg52pNpAj0s3H7o1vWNYnIpXZrXrKJVYVeC47GQ,13090
1
+ sempy_labs/__init__.py,sha256=tFS1eXuaSVb2pFpDI3tod4ei4OJsitxbZupbyME0Zxw,13271
2
2
  sempy_labs/_ai.py,sha256=CzsNw6Wpd2B5Rd0RcY250-_p0L-0gFoMNLEc_KmrobU,16177
3
3
  sempy_labs/_authentication.py,sha256=a4sPN8IAf7w-Jftm3PvtF62HqWLkCD69tXgze_G59Zg,4642
4
4
  sempy_labs/_capacities.py,sha256=HWX1ivlWpyS7Ea_ny-39kUAQYFGMzo42kWMGdJMINos,25466
5
5
  sempy_labs/_capacity_migration.py,sha256=PCIodWXas9v7q93hqD2m8EanJHPJzke52jbCWOfnLZk,27764
6
- sempy_labs/_clear_cache.py,sha256=ttHsXXR6SRRw4eC0cS8I5h38UbWU9YJii1y-uR9R3KM,12493
7
- sempy_labs/_connections.py,sha256=-Z3rfLGlUKx5iIGmvwWOICIVZ478ydwvCjxusoJb1RI,17647
8
- sempy_labs/_data_pipelines.py,sha256=WdZjTELNuN_7suWj6NrZUxGnMTzAgIxFw8V6YMb8ags,5644
9
- sempy_labs/_dataflows.py,sha256=D-OuuoUhSrGEhW1mAMBeHULfhULXmmTqIoOdV-se3vs,8250
10
- sempy_labs/_dax.py,sha256=5lY0p9bS0O2OWViaqTw_9K0WfZsyBW3gK4rIv1bqjjE,9411
6
+ sempy_labs/_clear_cache.py,sha256=gaHbumh26I0RDKwjWhmlKVN7uR3oRNiFNzD4PNXjqG0,12896
7
+ sempy_labs/_connections.py,sha256=l6iDJgB-ZGR7jhNHGlhM1__xRVciLNAyILWLo8IX5bs,17693
8
+ sempy_labs/_data_pipelines.py,sha256=1elajdbtNySi-XSqeshG6q9dVUsjNvb6lvVQqelpzoI,5754
9
+ sempy_labs/_dataflows.py,sha256=hchdtA4pIC4R7q0QOKkE5Lmef_HBfRftoRorvp8-rt4,8311
10
+ sempy_labs/_dax.py,sha256=64yaKbSUpoDnub7uKXsuznJ6u_0peN_RfAZJYEB6uPY,9302
11
11
  sempy_labs/_deployment_pipelines.py,sha256=WBBQM85-3-MkXb5OmRPF6U83xLyhKSlYUyhRlkvcl4k,6027
12
12
  sempy_labs/_documentation.py,sha256=yVA8VPEzx_fmljtcvSxtB7-BeupYsfdMXXjp6Fpnyo8,5007
13
- sempy_labs/_environments.py,sha256=avpLSfZyyQFdEDIIxWv2THLjPZwbs9XGXT7ob9l_-ao,5326
14
- sempy_labs/_eventhouses.py,sha256=vgIFQkXcBPC4SnlrBzT7SRmembExxkm6n0gdKnc7Hlk,4036
15
- sempy_labs/_eventstreams.py,sha256=Rht0eWoZbYF6XKtE3AOUvGgA21smxC9gdN599z-jY3s,4061
16
- sempy_labs/_external_data_shares.py,sha256=lUsKy1mexNSmhyFwxSeE2jZKNdDAWDP6iC6UPTXCvyU,6799
17
- sempy_labs/_gateways.py,sha256=j7REuoG9vGvPcJdII-gOJagprPJctsx3bi-ekUe5q6w,16228
18
- sempy_labs/_generate_semantic_model.py,sha256=YsPULWDkh2VE-jU3F3jIn0AmZPl3dq03sG-QfuHG2GI,16757
19
- sempy_labs/_git.py,sha256=gvFR6kCZbegoO_j_hubt-fxuaxRl1KsVldtQNJfnA9U,13870
20
- sempy_labs/_helper_functions.py,sha256=FtkzTlIJudgGRxrZzjfyon5ehuD8w8KR6sBV74R0XtY,39124
13
+ sempy_labs/_environments.py,sha256=m0bZNUWERS0zMwVbGaHhJBbugpmql89V_QuFx4n20BI,5574
14
+ sempy_labs/_eventhouses.py,sha256=cmGrvH2j7SnpOIiYiILBRpgUVeFq18vBhSOzLiMAMV4,4161
15
+ sempy_labs/_eventstreams.py,sha256=MNjeHQCfKQ99vxr9J42qDR85Kmg4D5x3on3irRxwViQ,4186
16
+ sempy_labs/_external_data_shares.py,sha256=lKuAoW2M3SkWo4Tp0isd3W_Ich473605odAJcrtBm-c,6793
17
+ sempy_labs/_gateways.py,sha256=CulZHryKIsjExrj1YcS1iH0PmNUbB5iXTVmOb_xF0yA,16298
18
+ sempy_labs/_generate_semantic_model.py,sha256=RUpdXgqE2kQGnAoTtipML03cIS7JIw3ijE46t-heMCI,18322
19
+ sempy_labs/_git.py,sha256=ZHIo5qnR9QbV1DVKayBSb0i9iBxthkEtfm4YMKbUwNo,15926
20
+ sempy_labs/_helper_functions.py,sha256=HVoWFypkpSZMBkwGmk0yvueHJfP7WoEIh7HzsKEw28Q,40518
21
21
  sempy_labs/_icons.py,sha256=ez2dx_LCti71S_-eB6WYQ-kOMyiBL8ZJN12-ev5dcmA,3579
22
- sempy_labs/_kql_databases.py,sha256=oNX9oKnXu5SLkzl4kTMQguh4In-i-0Forcoy1phOe1s,4621
23
- sempy_labs/_kql_querysets.py,sha256=A-79LiLBKxlADPTuSK9ipy_LjXKcsJZwQHknUXFpVl0,4157
24
- sempy_labs/_list_functions.py,sha256=_5mxBwfTh-BUFWK2lXNPXSpZO0OtP7FlcWaSxwD-Mgs,60939
25
- sempy_labs/_managed_private_endpoints.py,sha256=bCuC9V4yMFBw1BNlsoxARdIEMPAySW-ljHrhvuziQfw,6179
26
- sempy_labs/_mirrored_databases.py,sha256=5_5phu50KIvhHNQJ-RQAxd92W4D7GUVMyjAnOb7ZY3Q,14360
27
- sempy_labs/_mirrored_warehouses.py,sha256=t2fBH5L0UzNahDB4lATDLvmCqYTU-V93_ZVLb5ZISSg,1764
28
- sempy_labs/_ml_experiments.py,sha256=UVh3cwNvpY-otCBIaKW-sgtzyjwAuu8qJDLhZGBHToE,4196
29
- sempy_labs/_ml_models.py,sha256=phYLySjN7MO2YYfq7ZQKMS6w18G6L1-7DdNWB4fcLjQ,4044
22
+ sempy_labs/_job_scheduler.py,sha256=a3URwhhLZMNz0oz3B2Vwkk_B3s6fN5dgkPxuh38XM20,2913
23
+ sempy_labs/_kql_databases.py,sha256=z4UmjkLPOoIspystiCqA-4inpK5jv6IGYf-DsEcihhg,4746
24
+ sempy_labs/_kql_querysets.py,sha256=csnvTKB3jtcf_tv6D6okY0k445DVNcSmN253y6dRZww,4282
25
+ sempy_labs/_list_functions.py,sha256=bgDWfyc7lgG7QrQdFwtScv6pGUw28yIxl5ZqfFmRhns,62369
26
+ sempy_labs/_managed_private_endpoints.py,sha256=Cbql3ppCfLiCPqAvaApXL2wmjDyyljdZwibMFNsYYCk,6299
27
+ sempy_labs/_mirrored_databases.py,sha256=vbgbezabeO1QvN20IEmLCgag_aPAHsozDJIpkRNAgRU,14704
28
+ sempy_labs/_mirrored_warehouses.py,sha256=Q4fyl3Ov753nS68uG99EHSc9MwgAwwI4DEuQmx5XNaM,1816
29
+ sempy_labs/_ml_experiments.py,sha256=_Lj_aJJbhWAWg98Q1NY77wmelq-h5jLkTSnfv-Xnhds,4321
30
+ sempy_labs/_ml_models.py,sha256=74ncPj0PcTSrCkMmx3aKFYtel9B-Bb6OdV0TbiVJrjc,4166
30
31
  sempy_labs/_model_auto_build.py,sha256=PTQo3dufzLSFcQ5shFkmBWAVSdP7cTJgpUclrcXyNbg,5105
31
- sempy_labs/_model_bpa.py,sha256=nhHAoq9RtOe0lAKRIg9Hr9TBMKxxbGOSCCCs1I8oy1s,21778
32
+ sempy_labs/_model_bpa.py,sha256=xx0scJho_-_O0wpGMKevj2tuTEqsQye5kwgOll10n5I,21801
32
33
  sempy_labs/_model_bpa_bulk.py,sha256=jU-kaeUeE1Slz5HEh3lSbnILzj2tfzMwvaOqOQG16Wg,16027
33
34
  sempy_labs/_model_bpa_rules.py,sha256=96_GkXQGhON-_uyUATgUibk4W9y7e9wl1QciUr96gIQ,45544
34
- sempy_labs/_model_dependencies.py,sha256=PL_-ozj3d2L03xR1S-4b-rGhghKbed3QY47x6i5BnfI,12070
35
- sempy_labs/_notebooks.py,sha256=DTz0byyNMP-JIEn4h85SJ8zMXNrkoChoeV-QE_TvPhE,8280
36
- sempy_labs/_one_lake_integration.py,sha256=eIuLxlw8eXfUH2avKhsyLmXZbTllSwGsz2j_HMAikpQ,6234
37
- sempy_labs/_query_scale_out.py,sha256=xoHnuDUgPYsg-NlUplB9ieb0bClcBQeG4veJNo_4TNw,15708
38
- sempy_labs/_refresh_semantic_model.py,sha256=LSfwuViimX6TFq1KlQCMHue7ylzBwaBSrcPzJuvVz2M,17465
39
- sempy_labs/_spark.py,sha256=RIJt9b_l5Sp5XrebhvRD0DEBKDTQdA8Rh7fByV27ngQ,20109
40
- sempy_labs/_sql.py,sha256=KttKi95iGxTT8UA1QOpT9ygAdwCfHHlcQSQ5d9gml0E,5358
41
- sempy_labs/_translations.py,sha256=CVRd_yJ1pjUzxY_6H8tSCLh67bHhxRyS7DICY20Lqlc,16112
42
- sempy_labs/_vertipaq.py,sha256=sS9wFPxZfr_5dsOIXd-oeQIeCyXkVeCHbp30Kd7raUU,37662
43
- sempy_labs/_warehouses.py,sha256=KI7Ww5Slw4jfhby4ensGVlDHLWq6u2SvdMCa2R9i778,7205
35
+ sempy_labs/_model_dependencies.py,sha256=rMh5FWrVNNs5uHC1AWIH1MwhZ3lvpb08ECwNQ7-7zvs,13111
36
+ sempy_labs/_notebooks.py,sha256=XlHgiNcY02bO8mOLraBSGBY8e-MUp8gCxTdWOmBFgdY,8452
37
+ sempy_labs/_one_lake_integration.py,sha256=fnmM6MeiME5ks1Jd7r3tWYKSafU37Um90K6iDx5S5zg,6223
38
+ sempy_labs/_query_scale_out.py,sha256=VuNGGGuzD6KiVvU4QbvZsyQufxgD2tbwkNvd_avSfRw,16385
39
+ sempy_labs/_refresh_semantic_model.py,sha256=G6j1Pj9HBTRbJQ2UX_fxYzoBrzgUmlxy_7_eEijqLtc,17547
40
+ sempy_labs/_spark.py,sha256=txetwju75jz1mkQNY-QUscp0at7StDYHLpjvJ0-v7xQ,20340
41
+ sempy_labs/_sql.py,sha256=RAhO1-wbKAwjcYyfGbLh8osIUWecT8w_OiBQm9Nju4c,5366
42
+ sempy_labs/_translations.py,sha256=CxpfnyCmn6hAiImxTOvz6x1HG4ppZORHCemJogKPV-M,16193
43
+ sempy_labs/_vertipaq.py,sha256=TTMe0l2HYjVn03xhDsJrgzpVu_lPZKSrG1XecDxWJjw,37930
44
+ sempy_labs/_warehouses.py,sha256=lsKWbJfWVQKwrhe0S0dIZ9cTYFwAIdQytzBCRAiX5W8,7380
44
45
  sempy_labs/_workloads.py,sha256=x3dS2mOkrS9rA-p70z8849DZlMIvMbzTjMzO_YmnHRg,4449
45
- sempy_labs/_workspace_identity.py,sha256=d5cdiiqjyUVoSoDiqU8mzWYOvbt2oJrt7sm-ZGEEkDk,2261
46
- sempy_labs/_workspaces.py,sha256=Ya_F-2b9LU08xN9bKKRS5LeGs_Ie2o4h26Xgy57IExk,11234
46
+ sempy_labs/_workspace_identity.py,sha256=Av_9hHBHzgOZE3mYiE9v6015tnAJfzfRyqm2_zUOt5c,2357
47
+ sempy_labs/_workspaces.py,sha256=iDVbGsHksDDli_6_v1wcL3a0xLIyXY8Bd1FDHpcRlOE,11510
47
48
  sempy_labs/_bpa_translation/_model/_translations_am-ET.po,sha256=zQVjJ-t0vtgIYan-HaXtUVJLB_PJvB53Nf5BNoOReU4,39199
48
49
  sempy_labs/_bpa_translation/_model/_translations_ar-AE.po,sha256=QP1PjDLFccLDs9zq456crdAST57wrcWVk5rRiqqoCws,36959
49
50
  sempy_labs/_bpa_translation/_model/_translations_bg-BG.po,sha256=sqezjpS3wfk09WD7x27bHoCBtgmqeHtyHNKTwG7-bkI,44132
@@ -83,50 +84,50 @@ sempy_labs/_bpa_translation/_model/_translations_uk-UA.po,sha256=3NsFN8hoor_5L67
83
84
  sempy_labs/_bpa_translation/_model/_translations_zh-CN.po,sha256=ipMbnet7ZI5mZoC8KonYKVwGmFLHFB_9KIDOoBgSNfo,26815
84
85
  sempy_labs/_bpa_translation/_model/_translations_zu-ZA.po,sha256=5v6tVKGruqneAeMoa6F3tyg_JBL8qOpqOJofWpq2W3U,31518
85
86
  sempy_labs/admin/__init__.py,sha256=YYOwKRfRr6alAez4BImlPcX9bQExATrb856BRq7a3O8,1945
86
- sempy_labs/admin/_basic_functions.py,sha256=5EEHWDhIFEt94-9yKNecIAMN-KzdBg1uqfdZNoXmnwA,37068
87
+ sempy_labs/admin/_basic_functions.py,sha256=y0YnjGhQDmOfQTToSGTLTk48KFalylzPt8hsKeuFGrM,36969
87
88
  sempy_labs/admin/_domains.py,sha256=5mv2SzIZCibvHwd4tgm-Lelj0zi66A2KKzQjDQgT9ms,12385
88
- sempy_labs/admin/_external_data_share.py,sha256=ITsPDgRDfgvZn1cjzpUWyR6lpnoOP0-gJVxjRA3Mp8w,3489
89
+ sempy_labs/admin/_external_data_share.py,sha256=NNdkBbs0OhSmZHNCN0QehWEdbx-amkxxLXAPBBKh11I,3512
89
90
  sempy_labs/admin/_git.py,sha256=OY2F5ICKBXrB1HhlYDWdXQPnhTwSrMfWzEa2xcutClc,2181
90
- sempy_labs/admin/_items.py,sha256=LqjBYWL3NZCX8f0H-zzjOzy9zlBC7XR4LiknJv_JLT0,8428
91
- sempy_labs/admin/_scanner.py,sha256=OkP2Nc_s-DkYEmfLqiMIf8i3EhVyHfvnT1bPSSnVVss,4476
91
+ sempy_labs/admin/_items.py,sha256=txVetZOlGLFVxfnkVi-b2Aw_oTA3ut0NHHOQ3E-nQJY,8464
92
+ sempy_labs/admin/_scanner.py,sha256=kun5Mib2Q6OolnaQ9lc0FuWzdxr3xm6KPWN9F3FKspM,4525
92
93
  sempy_labs/directlake/__init__.py,sha256=etaj-3wqe5t93mu74tGYjEOQ6gtHWUogidOygiVvlq8,2131
93
- sempy_labs/directlake/_directlake_schema_compare.py,sha256=ocHFU6E6HSKgcNLywGM0dx0ie9AXYwk-E7o7EYcqiN4,4422
94
- sempy_labs/directlake/_directlake_schema_sync.py,sha256=fhh6Xjd42HjI5x_Ejwq1N4qqnXQsKpXmyPcYl7cNG6A,4151
95
- sempy_labs/directlake/_dl_helper.py,sha256=tG3b0-BJbk-Kwk2B0fyPwoaMgTXS920L61Qz55COex8,9647
96
- sempy_labs/directlake/_generate_shared_expression.py,sha256=EauK1M4fabCZjsHYAWxEYaVJKqxJ99nZQaN2pKdd1lg,3077
97
- sempy_labs/directlake/_get_directlake_lakehouse.py,sha256=sovI4ds2SEgkp4Fi465jtJ4seRvQxdYgcixRDvsUwNM,2321
98
- sempy_labs/directlake/_get_shared_expression.py,sha256=rJ2twFSAMpjdjXl4zkqei_qxzxmGn5DxiDW2KxLcUog,1081
99
- sempy_labs/directlake/_guardrails.py,sha256=elPIrqBy7gX7ZhVC7dBqhuFohET9QX9cCX1Harwrw3A,2525
100
- sempy_labs/directlake/_list_directlake_model_calc_tables.py,sha256=_rpnbgsFAz2W16PpgIOB0Rj_Fs1ZKrDbz3DUaaR_bfU,2143
101
- sempy_labs/directlake/_show_unsupported_directlake_objects.py,sha256=xm6bih0mbYfWP6ca8BKMZobfS4hhcHNFIhR5I6sNpgw,3181
102
- sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py,sha256=CyluSlo4VVnjl5bEzSLkkhvwDs3YnzSil2lphtlS_KE,5826
103
- sempy_labs/directlake/_update_directlake_partition_entity.py,sha256=Z67WolTLIrflLFBvRuhmE_MxYGhSBQCFvjqojz6yavw,7614
104
- sempy_labs/directlake/_warm_cache.py,sha256=b7XvH74nQrEoraOflrXs4-fVuiLtRrmsQI35TBnYEqs,8307
94
+ sempy_labs/directlake/_directlake_schema_compare.py,sha256=zpt2voLmMUj8JhGi61tGFNetIfKn3ljqc7daLY7AAEw,4756
95
+ sempy_labs/directlake/_directlake_schema_sync.py,sha256=vzf8AkerBb_OKEVXHlZ3Ey4UO5YehKGTsw_-ewZmoQA,4437
96
+ sempy_labs/directlake/_dl_helper.py,sha256=SJ-tUUpaLIr2Q8_m5y0p5IobYq3B-NPHl2G5_a8oIfI,9853
97
+ sempy_labs/directlake/_generate_shared_expression.py,sha256=93ufAnD-qM0beRQp7lSzsuOAvhnMXqkoJoZei2RNVYg,3141
98
+ sempy_labs/directlake/_get_directlake_lakehouse.py,sha256=CxyGq6xvGihYDG-I3djCD4HGDePh6yh-PF32_2jHYj4,2592
99
+ sempy_labs/directlake/_get_shared_expression.py,sha256=qc85kXggkx_7Sz_rAAli_yPnLzrGZpgD8IfVbTfZhQM,1133
100
+ sempy_labs/directlake/_guardrails.py,sha256=YO8OycXDxmWrtH8nTz5a4AddfnpskM83rTPEPBVpqbM,2701
101
+ sempy_labs/directlake/_list_directlake_model_calc_tables.py,sha256=QA35_8YWK4b8-wEvHiRnCm9me_XD2noLqxAtE2pCgnY,2451
102
+ sempy_labs/directlake/_show_unsupported_directlake_objects.py,sha256=xu2PUaXtZAbgYksc0YSlIZvL9rh-oI6rLhHnHwoNjYI,3453
103
+ sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py,sha256=DC8Ig8oJtPY5qdWytIy03iiqYiQxLoRmQ5hsu6I69Sw,6348
104
+ sempy_labs/directlake/_update_directlake_partition_entity.py,sha256=aZV5Sg_VGth9HNbo2ZAjec44sZJiUjW4YVTMaURjx7I,8102
105
+ sempy_labs/directlake/_warm_cache.py,sha256=mFwyhtsCPJd3nDKcwMkyFtXbDhE77WCPBZkYppIRVq4,9207
105
106
  sempy_labs/lakehouse/__init__.py,sha256=6LVQltQ3cjyiuxvjXTuNdJ163zSqi4h_tEZY4zsxuSw,647
106
- sempy_labs/lakehouse/_get_lakehouse_columns.py,sha256=Bb_iCTlNwl0wdN4dW_E7tVnfbHhHwQT_l0SUqvcbYpo,2582
107
- sempy_labs/lakehouse/_get_lakehouse_tables.py,sha256=zizPKtwDojIN6wbPhrQOUL6-_-kq8zqfbsT8BmS94i8,9010
108
- sempy_labs/lakehouse/_lakehouse.py,sha256=_yn0ySUrJQD9nySa3gFpEGr6AvF-vOKIMNJruotfxHQ,5224
109
- sempy_labs/lakehouse/_shortcuts.py,sha256=tHkeLcSOiDv36XFysyiQBSKsq9-ohb20vXziU-lf0G4,7337
107
+ sempy_labs/lakehouse/_get_lakehouse_columns.py,sha256=ptat3OXf19j4ITcynqUZQIgqfbvPubVTNU9zdfOW3lo,2704
108
+ sempy_labs/lakehouse/_get_lakehouse_tables.py,sha256=scO4oyXmeQTwF-m4etZ0W9BEInVpHhsPyZvtXjiU8cA,9084
109
+ sempy_labs/lakehouse/_lakehouse.py,sha256=4G7r2kyIcj_rhnPKzFqTFic4m0jeaPCBNLDzzp6TNtg,5404
110
+ sempy_labs/lakehouse/_shortcuts.py,sha256=YqII1rBOLebNPz8OroaTAgZFb96T61Lxqfzz4gct_Fo,8103
110
111
  sempy_labs/migration/__init__.py,sha256=w4vvGk6wTWXVfofJDmio2yIFvSSJsxOpjv6mvNGmrOI,1043
111
- sempy_labs/migration/_create_pqt_file.py,sha256=oJJrHfwkq32p_UKBFi0LccjaVI5j4CbRvtYhnDC0b6c,9391
112
+ sempy_labs/migration/_create_pqt_file.py,sha256=eRK0Jz9ZeV_7jV3kNRze0bTAIqxsAZXLKMGE_loKOaY,9677
112
113
  sempy_labs/migration/_migrate_calctables_to_lakehouse.py,sha256=5fSZHylS8yLmk7maYDsvKbOqB9unxT4sQZq5HxBZwQY,17969
113
114
  sempy_labs/migration/_migrate_calctables_to_semantic_model.py,sha256=yNSx126ru7-mUXI3iISwmw8a5jRCwcWw4l5eMXldrcU,6253
114
115
  sempy_labs/migration/_migrate_model_objects_to_semantic_model.py,sha256=8IN45AKxic3_4yrC-N5rqWMzO6bCLF9qoyWxbxrvBHc,22900
115
116
  sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py,sha256=EiWWaIkNqBGlRKG64lo7gKO31XBuwym_IVvG405PzvM,7118
116
117
  sempy_labs/migration/_migration_validation.py,sha256=pl5Yv4BwRHZfAL0p2soj_Gk8FL3UcwiqKbX23pJe1oQ,2788
117
- sempy_labs/migration/_refresh_calc_tables.py,sha256=gUFssZ5vyN4OmViLYkBNkLmYscvQTk8RBZ-i_lrCJYU,5239
118
+ sempy_labs/migration/_refresh_calc_tables.py,sha256=lKkwVBN7eyDoMJd0cv4jkLyO6iGjsuh96RPv6_Iiwrc,5537
118
119
  sempy_labs/report/_BPAReportTemplate.json,sha256=9Uh-7E6d2ooxQ7j5JRayv_ayEULc7Gzg42kZGKdOqH8,63920
119
120
  sempy_labs/report/__init__.py,sha256=esE_i1lL2AdcwWs7cE8AKSXZy_7w_4jJJtFULFkDPcU,1244
120
- sempy_labs/report/_download_report.py,sha256=C3jsUJ59L5iv8H9NJWVlIuMUrr66VCnVG4xJJ-hACXs,2772
121
- sempy_labs/report/_generate_report.py,sha256=0Tp8ILRjmKj_EvQZkeyr9Wu81X8CgkAMOgLN3WdhAxQ,12773
122
- sempy_labs/report/_paginated.py,sha256=-u0vV6byPOBWUOmeBtjPCTmarymucoRv_DvXA54FIHY,2281
123
- sempy_labs/report/_report_bpa.py,sha256=b1rnp-kCjdWAs1YMJDO_wo665v9BYT38PBDjEQcFmlQ,13697
121
+ sempy_labs/report/_download_report.py,sha256=BtgcHiz1jYeC1fr908oPot9_K00Ej_OadCYfd2BKL6E,2848
122
+ sempy_labs/report/_generate_report.py,sha256=iZFYA3AQSWsW6zLrjiSP_DK7HkLp1ehujwl1g-3J8oY,12885
123
+ sempy_labs/report/_paginated.py,sha256=khQHoanEsxoVL3g08WrOPcsI3ggo9TAlb5cNXgOs7dg,2278
124
+ sempy_labs/report/_report_bpa.py,sha256=LhXHFonZc6JF6ao7UBPzcm5pte1nMGBmgKaDD2MrA7c,13849
124
125
  sempy_labs/report/_report_bpa_rules.py,sha256=tPVGA0hmE6QMLlWtig7Va7Ksr2yXWl_Lndq--tWWd6w,4959
125
- sempy_labs/report/_report_functions.py,sha256=nKqsVsjGrv8TUXsBXpb5ejEopAaFELc7YzhGerJUTBI,30099
126
- sempy_labs/report/_report_helper.py,sha256=pKIsca-XWaioQd97FgbEfsGPWy4X_NxSyYm22W3C23E,10461
127
- sempy_labs/report/_report_list_functions.py,sha256=Y0fkoo1gGoVDnihveKruNXFgPJNSiEQ5Fus8bw0nqcU,3381
128
- sempy_labs/report/_report_rebind.py,sha256=GbOfEb9qz4SdXVGopiWSkGMDKnneJxd7wx4_OWKZ1Js,5188
129
- sempy_labs/report/_reportwrapper.py,sha256=ZFcWuZMo9SOzvZ8aPG-DvlZq_MkXRALUJusVIHn7dxE,83049
126
+ sempy_labs/report/_report_functions.py,sha256=49TrYBIeWqth__q9GodacXIRdn90HBZfzBUv5nI01Gw,30007
127
+ sempy_labs/report/_report_helper.py,sha256=NcdWgFuh1GjDwVPzy6QWwg3ecaJKoWzZdhbxT6hbbdA,10599
128
+ sempy_labs/report/_report_list_functions.py,sha256=JDKb0RVN5hdytjf65PtQ1HJANMIj1FhvPCk3rmGxze4,3929
129
+ sempy_labs/report/_report_rebind.py,sha256=Q3J7I5EWmFWQ39s5W4x1kiobWjugxQsCpzj8RnaRAeM,5168
130
+ sempy_labs/report/_reportwrapper.py,sha256=hhCFw7ErQxR4rBk3m4mXt1pW5l87c9ia0I9y4CMrCHI,83328
130
131
  sempy_labs/report/_bpareporttemplate/.platform,sha256=kWRa6B_KwSYLsvVFDx372mQriQO8v7dJ_YzQV_cfD-Q,303
131
132
  sempy_labs/report/_bpareporttemplate/definition.pbir,sha256=bttyHZYKqjA8OBb_cezGlX4H82cDvGZVCl1QB3fij4E,343
132
133
  sempy_labs/report/_bpareporttemplate/.pbi/localSettings.json,sha256=kzjBlNdjbsSBBSHBwbQc298AJCr9Vp6Ex0D5PemUuT0,1578
@@ -157,9 +158,9 @@ sempy_labs/report/_bpareporttemplate/definition/pages/c597da16dc7e63222a82/visua
157
158
  sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/page.json,sha256=wBVuNc8S2NaUA0FC708w6stmR2djNZp8nAsHMqesgsc,293
158
159
  sempy_labs/report/_bpareporttemplate/definition/pages/d37dce724a0ccc30044b/visuals/ce8532a7e25020271077/visual.json,sha256=mlY6t9OlSe-Y6_QmXJpS1vggU6Y3FjISUKECL8FVSg8,931
159
160
  sempy_labs/tom/__init__.py,sha256=Qbs8leW0fjzvWwOjyWK3Hjeehu7IvpB1beASGsi28bk,121
160
- sempy_labs/tom/_model.py,sha256=rBMI9BTSuTEH1MnJsUIVtsc45x7EOQ2fAxcYkwYgfZw,173575
161
- semantic_link_labs-0.8.10.dist-info/LICENSE,sha256=ws_MuBL-SCEBqPBFl9_FqZkaaydIJmxHrJG2parhU4M,1141
162
- semantic_link_labs-0.8.10.dist-info/METADATA,sha256=eITmLRcqLr0Yuitj1Q1LXmWYDH5AA-fbpwWUDGWQuO4,21196
163
- semantic_link_labs-0.8.10.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
164
- semantic_link_labs-0.8.10.dist-info/top_level.txt,sha256=kiQX1y42Dbein1l3Q8jMUYyRulDjdlc2tMepvtrvixQ,11
165
- semantic_link_labs-0.8.10.dist-info/RECORD,,
161
+ sempy_labs/tom/_model.py,sha256=wYMJ6YgO6aX2lSIBXMktMkxY9JZFVwJGLRaDEBwQjfs,174828
162
+ semantic_link_labs-0.8.11.dist-info/LICENSE,sha256=ws_MuBL-SCEBqPBFl9_FqZkaaydIJmxHrJG2parhU4M,1141
163
+ semantic_link_labs-0.8.11.dist-info/METADATA,sha256=6rBFyBH6tpO4t6MulX1XfoMvRC-3jJ-Ms-JSfFtjoUw,21296
164
+ semantic_link_labs-0.8.11.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
165
+ semantic_link_labs-0.8.11.dist-info/top_level.txt,sha256=kiQX1y42Dbein1l3Q8jMUYyRulDjdlc2tMepvtrvixQ,11
166
+ semantic_link_labs-0.8.11.dist-info/RECORD,,
sempy_labs/__init__.py CHANGED
@@ -1,3 +1,4 @@
1
+ from sempy_labs._job_scheduler import list_item_job_instances
1
2
  from sempy_labs._gateways import (
2
3
  list_gateway_members,
3
4
  list_gateway_role_assigments,
@@ -160,7 +161,8 @@ from sempy_labs._git import (
160
161
  commit_to_git,
161
162
  initialize_git_connection,
162
163
  update_from_git,
163
- connect_workspace_to_git,
164
+ connect_workspace_to_azure_dev_ops,
165
+ connect_workspace_to_github,
164
166
  disconnect_workspace_from_git,
165
167
  )
166
168
  from sempy_labs._dataflows import (
@@ -368,7 +370,8 @@ __all__ = [
368
370
  "commit_to_git",
369
371
  "initialize_git_connection",
370
372
  "update_from_git",
371
- "connect_workspace_to_git",
373
+ "connect_workspace_to_azure_dev_ops",
374
+ "connect_workspace_to_github",
372
375
  "disconnect_workspace_from_git",
373
376
  "create_environment",
374
377
  "delete_environment",
@@ -466,4 +469,5 @@ __all__ = [
466
469
  "list_server_properties",
467
470
  "bind_semantic_model_to_gateway",
468
471
  "list_semantic_model_errors",
472
+ "list_item_job_instances",
469
473
  ]
@@ -1,39 +1,41 @@
1
1
  import sempy.fabric as fabric
2
2
  from sempy_labs._helper_functions import (
3
- resolve_dataset_id,
4
3
  is_default_semantic_model,
5
4
  _get_adls_client,
5
+ resolve_workspace_name_and_id,
6
+ resolve_dataset_name_and_id,
6
7
  )
7
8
  from typing import Optional
8
9
  import sempy_labs._icons as icons
9
10
  from sempy._utils._log import log
10
11
  import pandas as pd
11
12
  from sempy.fabric.exceptions import FabricHTTPException
13
+ from uuid import UUID
12
14
 
13
15
 
14
- def clear_cache(dataset: str, workspace: Optional[str] = None):
16
+ def clear_cache(dataset: str | UUID, workspace: Optional[str | UUID] = None):
15
17
  """
16
18
  Clears the cache of a semantic model.
17
19
  See `here <https://learn.microsoft.com/analysis-services/instances/clear-the-analysis-services-caches?view=asallproducts-allversions>`_ for documentation.
18
20
 
19
21
  Parameters
20
22
  ----------
21
- dataset : str
22
- Name of the semantic model.
23
- workspace : str, default=None
24
- The Fabric workspace name.
23
+ dataset : str | uuid.UUID
24
+ Name or ID of the semantic model.
25
+ workspace : str | uuid.UUID, default=None
26
+ The Fabric workspace name or ID.
25
27
  Defaults to None which resolves to the workspace of the attached lakehouse
26
28
  or if no lakehouse attached, resolves to the workspace of the notebook.
27
29
  """
28
30
 
29
- workspace = fabric.resolve_workspace_name(workspace)
31
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
30
32
  if is_default_semantic_model(dataset=dataset, workspace=workspace):
31
33
  raise ValueError(
32
34
  f"{icons.red_dot} Cannot run XMLA operations against a default semantic model. Please choose a different semantic model. "
33
35
  "See here for more information: https://learn.microsoft.com/fabric/data-warehouse/semantic-models"
34
36
  )
35
37
 
36
- dataset_id = resolve_dataset_id(dataset=dataset, workspace=workspace)
38
+ (dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
37
39
 
38
40
  xmla = f"""
39
41
  <ClearCache xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
@@ -42,27 +44,27 @@ def clear_cache(dataset: str, workspace: Optional[str] = None):
42
44
  </Object>
43
45
  </ClearCache>
44
46
  """
45
- fabric.execute_xmla(dataset=dataset, xmla_command=xmla, workspace=workspace)
47
+ fabric.execute_xmla(dataset=dataset_id, xmla_command=xmla, workspace=workspace_id)
46
48
  print(
47
- f"{icons.green_dot} Cache cleared for the '{dataset}' semantic model within the '{workspace}' workspace."
49
+ f"{icons.green_dot} Cache cleared for the '{dataset_name}' semantic model within the '{workspace_name}' workspace."
48
50
  )
49
51
 
50
52
 
51
53
  @log
52
54
  def backup_semantic_model(
53
- dataset: str,
55
+ dataset: str | UUID,
54
56
  file_path: str,
55
57
  allow_overwrite: bool = True,
56
58
  apply_compression: bool = True,
57
- workspace: Optional[str] = None,
59
+ workspace: Optional[str | UUID] = None,
58
60
  ):
59
61
  """
60
62
  `Backs up <https://learn.microsoft.com/azure/analysis-services/analysis-services-backup>`_ a semantic model to the ADLS Gen2 storage account connected to the workspace.
61
63
 
62
64
  Parameters
63
65
  ----------
64
- dataset : str
65
- Name of the semantic model.
66
+ dataset : str | uuid.UUID
67
+ Name or ID of the semantic model.
66
68
  file_path : str
67
69
  The ADLS Gen2 storage account location in which to backup the semantic model. Always saves within the 'power-bi-backup/<workspace name>' folder.
68
70
  Must end in '.abf'.
@@ -72,8 +74,8 @@ def backup_semantic_model(
72
74
  If True, overwrites backup files of the same name. If False, the file you are saving cannot have the same name as a file that already exists in the same location.
73
75
  apply_compression : bool, default=True
74
76
  If True, compresses the backup file. Compressed backup files save disk space, but require slightly higher CPU utilization.
75
- workspace : str, default=None
76
- The Fabric workspace name.
77
+ workspace : str | uuid.UUID, default=None
78
+ The Fabric workspace name or ID.
77
79
  Defaults to None which resolves to the workspace of the attached lakehouse
78
80
  or if no lakehouse attached, resolves to the workspace of the notebook.
79
81
  """
@@ -83,31 +85,32 @@ def backup_semantic_model(
83
85
  f"{icons.red_dot} The backup file for restoring must be in the .abf format."
84
86
  )
85
87
 
86
- workspace = fabric.resolve_workspace_name(workspace)
88
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
89
+ (dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
87
90
 
88
91
  tmsl = {
89
92
  "backup": {
90
- "database": dataset,
93
+ "database": dataset_name,
91
94
  "file": file_path,
92
95
  "allowOverwrite": allow_overwrite,
93
96
  "applyCompression": apply_compression,
94
97
  }
95
98
  }
96
99
 
97
- fabric.execute_tmsl(script=tmsl, workspace=workspace)
100
+ fabric.execute_tmsl(script=tmsl, workspace=workspace_id)
98
101
  print(
99
- f"{icons.green_dot} The '{dataset}' semantic model within the '{workspace}' workspace has been backed up to the '{file_path}' location."
102
+ f"{icons.green_dot} The '{dataset_name}' semantic model within the '{workspace_name}' workspace has been backed up to the '{file_path}' location."
100
103
  )
101
104
 
102
105
 
103
106
  @log
104
107
  def restore_semantic_model(
105
- dataset: str,
108
+ dataset: str | UUID,
106
109
  file_path: str,
107
110
  allow_overwrite: bool = True,
108
111
  ignore_incompatibilities: bool = True,
109
112
  force_restore: bool = False,
110
- workspace: Optional[str] = None,
113
+ workspace: Optional[str | UUID] = None,
111
114
  ):
112
115
  """
113
116
  `Restores <https://learn.microsoft.com/power-bi/enterprise/service-premium-backup-restore-dataset>`_ a semantic model based on a backup (.abf) file
@@ -115,8 +118,8 @@ def restore_semantic_model(
115
118
 
116
119
  Parameters
117
120
  ----------
118
- dataset : str
119
- Name of the semantic model.
121
+ dataset : str | uuid.UUID
122
+ Name or ID of the semantic model.
120
123
  file_path : str
121
124
  The location in which to backup the semantic model. Must end in '.abf'.
122
125
  Example 1: file_path = 'MyModel.abf'
@@ -127,23 +130,23 @@ def restore_semantic_model(
127
130
  If True, ignores incompatibilities between Azure Analysis Services and Power BI Premium.
128
131
  force_restore: bool, default=False
129
132
  If True, restores the semantic model with the existing semantic model unloaded and offline.
130
- workspace : str, default=None
131
- The Fabric workspace name.
133
+ workspace : str | uuid.UUID, default=None
134
+ The Fabric workspace name or ID.
132
135
  Defaults to None which resolves to the workspace of the attached lakehouse
133
136
  or if no lakehouse attached, resolves to the workspace of the notebook.
134
137
  """
135
- # https://learn.microsoft.com/en-us/power-bi/enterprise/service-premium-backup-restore-dataset
136
138
 
137
139
  if not file_path.endswith(".abf"):
138
140
  raise ValueError(
139
141
  f"{icons.red_dot} The backup file for restoring must be in the .abf format."
140
142
  )
141
143
 
142
- workspace = fabric.resolve_workspace_name(workspace)
144
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
145
+ (dataset_name, dataset_id) = resolve_dataset_name_and_id(dataset, workspace_id)
143
146
 
144
147
  tmsl = {
145
148
  "restore": {
146
- "database": dataset,
149
+ "database": dataset_name,
147
150
  "file": file_path,
148
151
  "allowOverwrite": allow_overwrite,
149
152
  "security": "copyAll",
@@ -154,10 +157,10 @@ def restore_semantic_model(
154
157
  if force_restore:
155
158
  tmsl["restore"]["forceRestore"] = force_restore
156
159
 
157
- fabric.execute_tmsl(script=tmsl, workspace=workspace)
160
+ fabric.execute_tmsl(script=tmsl, workspace=workspace_id)
158
161
 
159
162
  print(
160
- f"{icons.green_dot} The '{dataset}' semantic model has been restored to the '{workspace}' workspace based on teh '{file_path}' backup file."
163
+ f"{icons.green_dot} The '{dataset_name}' semantic model has been restored to the '{workspace_name}' workspace based on the '{file_path}' backup file."
161
164
  )
162
165
 
163
166
 
@@ -243,15 +246,15 @@ def copy_semantic_model_backup_file(
243
246
 
244
247
 
245
248
  @log
246
- def list_backups(workspace: Optional[str] = None) -> pd.DataFrame:
249
+ def list_backups(workspace: Optional[str | UUID] = None) -> pd.DataFrame:
247
250
  """
248
251
  Shows a list of backup files contained within a workspace's ADLS Gen2 storage account.
249
252
  Requirement: An ADLS Gen2 storage account must be `connected to the workspace <https://learn.microsoft.com/power-bi/transform-model/dataflows/dataflows-azure-data-lake-storage-integration#connect-to-an-azure-data-lake-gen-2-at-a-workspace-level>`_.
250
253
 
251
254
  Parameters
252
255
  ----------
253
- workspace : str, default=None
254
- The Fabric workspace name.
256
+ workspace : str | uuid.UUID, default=None
257
+ The Fabric workspace name or ID.
255
258
  Defaults to None which resolves to the workspace of the attached lakehouse
256
259
  or if no lakehouse attached, resolves to the workspace of the notebook.
257
260
 
@@ -262,8 +265,7 @@ def list_backups(workspace: Optional[str] = None) -> pd.DataFrame:
262
265
  """
263
266
 
264
267
  client = fabric.PowerBIRestClient()
265
- workspace = fabric.resolve_workspace_name(workspace)
266
- workspace_id = fabric.resolve_workspace_id(workspace)
268
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
267
269
  response = client.get(
268
270
  f"/v1.0/myorg/resources?resourceType=StorageAccount&folderObjectId={workspace_id}"
269
271
  )
@@ -274,7 +276,7 @@ def list_backups(workspace: Optional[str] = None) -> pd.DataFrame:
274
276
  v = response.json().get("value", [])
275
277
  if not v:
276
278
  raise ValueError(
277
- f"{icons.red_dot} A storage account is not associated with the '{workspace}' workspace."
279
+ f"{icons.red_dot} A storage account is not associated with the '{workspace_name}' workspace."
278
280
  )
279
281
  storage_account = v[0]["resourceName"]
280
282
 
@@ -5,6 +5,7 @@ from typing import Optional
5
5
  from sempy_labs._helper_functions import (
6
6
  pagination,
7
7
  _is_valid_uuid,
8
+ resolve_workspace_name_and_id,
8
9
  )
9
10
  from uuid import UUID
10
11
  import sempy_labs._icons as icons
@@ -19,7 +20,7 @@ def delete_connection(connection: str | UUID):
19
20
 
20
21
  Parameters
21
22
  ----------
22
- connection : str | UUID
23
+ connection : str | uuid.UUID
23
24
  The connection name or ID.
24
25
  """
25
26
 
@@ -42,9 +43,9 @@ def delete_connection_role_assignment(connection: str | UUID, role_assignment_id
42
43
 
43
44
  Parameters
44
45
  ----------
45
- connection : str | UUID
46
+ connection : str | uuid.UUID
46
47
  The connection name or ID.
47
- role_assignment_id : UUID
48
+ role_assignment_id : uuid.UUID
48
49
  The role assignment ID.
49
50
  """
50
51
 
@@ -87,7 +88,7 @@ def list_connection_role_assignments(connection: str | UUID) -> pd.DataFrame:
87
88
 
88
89
  Parameters
89
90
  ----------
90
- connection : str | UUID
91
+ connection : str | uuid.UUID
91
92
  The connection name or ID.
92
93
 
93
94
  Returns
@@ -205,7 +206,7 @@ def list_connections() -> pd.DataFrame:
205
206
 
206
207
 
207
208
  def list_item_connections(
208
- item_name: str, item_type: str, workspace: Optional[str] = None
209
+ item_name: str, item_type: str, workspace: Optional[str | UUID] = None
209
210
  ) -> pd.DataFrame:
210
211
  """
211
212
  Shows the list of connections that the specified item is connected to.
@@ -218,8 +219,8 @@ def list_item_connections(
218
219
  The item name.
219
220
  item_type : str
220
221
  The `item type <https://learn.microsoft.com/rest/api/fabric/core/items/update-item?tabs=HTTP#itemtype>`_.
221
- workspace : str, default=None
222
- The Fabric workspace name.
222
+ workspace : str | uuid.UUID, default=None
223
+ The Fabric workspace name or ID.
223
224
  Defaults to None which resolves to the workspace of the attached lakehouse
224
225
  or if no lakehouse attached, resolves to the workspace of the notebook.
225
226
 
@@ -229,11 +230,10 @@ def list_item_connections(
229
230
  A pandas dataframe showing the list of connections that the specified item is connected to.
230
231
  """
231
232
 
232
- workspace = fabric.resolve_workspace_name(workspace)
233
- workspace_id = fabric.resolve_workspace_id(workspace)
233
+ (workspace_name, workspace_id) = resolve_workspace_name_and_id(workspace)
234
234
  item_type = item_type[0].upper() + item_type[1:]
235
235
  item_id = fabric.resolve_item_id(
236
- item_name=item_name, type=item_type, workspace=workspace
236
+ item_name=item_name, type=item_type, workspace=workspace_id
237
237
  )
238
238
 
239
239
  client = fabric.FabricRestClient()
@@ -416,7 +416,7 @@ def create_on_prem_connection(
416
416
  ----------
417
417
  name : str
418
418
  The name of the connection.
419
- gateway : str | UUID
419
+ gateway : str | uuid.UUID
420
420
  The name or Id of the gateway.
421
421
  server_name : str
422
422
  The name of the server.
@@ -485,7 +485,7 @@ def create_vnet_connection(
485
485
  user_name: str,
486
486
  password: str,
487
487
  privacy_level: str,
488
- connection_encryption: Optional[str] = "NotEncrypted",
488
+ connection_encryption: str = "NotEncrypted",
489
489
  skip_test_connection: bool = False,
490
490
  ):
491
491
  """
@@ -497,7 +497,7 @@ def create_vnet_connection(
497
497
  ----------
498
498
  name : str
499
499
  The name of the connection.
500
- gateway : str | UUID
500
+ gateway : str | uuid.UUID
501
501
  The name or Id of the gateway.
502
502
  server_name : str
503
503
  The name of the server.