semantic-link-labs 0.5.0__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of semantic-link-labs might be problematic. Click here for more details.

Files changed (54) hide show
  1. {semantic_link_labs-0.5.0.dist-info → semantic_link_labs-0.6.0.dist-info}/METADATA +2 -2
  2. semantic_link_labs-0.6.0.dist-info/RECORD +54 -0
  3. {semantic_link_labs-0.5.0.dist-info → semantic_link_labs-0.6.0.dist-info}/WHEEL +1 -1
  4. sempy_labs/__init__.py +19 -13
  5. sempy_labs/_ai.py +43 -24
  6. sempy_labs/_clear_cache.py +4 -5
  7. sempy_labs/_connections.py +77 -70
  8. sempy_labs/_dax.py +7 -9
  9. sempy_labs/_generate_semantic_model.py +55 -44
  10. sempy_labs/_helper_functions.py +13 -6
  11. sempy_labs/_icons.py +14 -0
  12. sempy_labs/_list_functions.py +491 -304
  13. sempy_labs/_model_auto_build.py +4 -3
  14. sempy_labs/_model_bpa.py +131 -1118
  15. sempy_labs/_model_bpa_rules.py +831 -0
  16. sempy_labs/_model_dependencies.py +14 -12
  17. sempy_labs/_one_lake_integration.py +11 -5
  18. sempy_labs/_query_scale_out.py +89 -81
  19. sempy_labs/_refresh_semantic_model.py +16 -10
  20. sempy_labs/_translations.py +213 -287
  21. sempy_labs/_vertipaq.py +53 -37
  22. sempy_labs/directlake/__init__.py +2 -0
  23. sempy_labs/directlake/_directlake_schema_compare.py +12 -5
  24. sempy_labs/directlake/_directlake_schema_sync.py +13 -19
  25. sempy_labs/directlake/_fallback.py +5 -3
  26. sempy_labs/directlake/_get_directlake_lakehouse.py +1 -1
  27. sempy_labs/directlake/_get_shared_expression.py +4 -2
  28. sempy_labs/directlake/_guardrails.py +3 -3
  29. sempy_labs/directlake/_list_directlake_model_calc_tables.py +17 -10
  30. sempy_labs/directlake/_show_unsupported_directlake_objects.py +3 -2
  31. sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +10 -5
  32. sempy_labs/directlake/_update_directlake_partition_entity.py +132 -9
  33. sempy_labs/directlake/_warm_cache.py +6 -3
  34. sempy_labs/lakehouse/_get_lakehouse_columns.py +1 -1
  35. sempy_labs/lakehouse/_get_lakehouse_tables.py +5 -3
  36. sempy_labs/lakehouse/_lakehouse.py +2 -1
  37. sempy_labs/lakehouse/_shortcuts.py +19 -12
  38. sempy_labs/migration/__init__.py +1 -1
  39. sempy_labs/migration/_create_pqt_file.py +21 -15
  40. sempy_labs/migration/_migrate_calctables_to_lakehouse.py +16 -13
  41. sempy_labs/migration/_migrate_calctables_to_semantic_model.py +17 -18
  42. sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +43 -40
  43. sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +14 -14
  44. sempy_labs/migration/_migration_validation.py +2 -2
  45. sempy_labs/migration/_refresh_calc_tables.py +8 -5
  46. sempy_labs/report/__init__.py +2 -2
  47. sempy_labs/report/_generate_report.py +10 -5
  48. sempy_labs/report/_report_functions.py +67 -29
  49. sempy_labs/report/_report_rebind.py +9 -8
  50. sempy_labs/tom/__init__.py +1 -4
  51. sempy_labs/tom/_model.py +555 -152
  52. semantic_link_labs-0.5.0.dist-info/RECORD +0 -53
  53. {semantic_link_labs-0.5.0.dist-info → semantic_link_labs-0.6.0.dist-info}/LICENSE +0 -0
  54. {semantic_link_labs-0.5.0.dist-info → semantic_link_labs-0.6.0.dist-info}/top_level.txt +0 -0
sempy_labs/_vertipaq.py CHANGED
@@ -1,8 +1,11 @@
1
- import sempy
2
1
  import sempy.fabric as fabric
3
2
  import pandas as pd
4
3
  from IPython.display import display, HTML
5
- import zipfile, os, shutil, datetime, warnings
4
+ import zipfile
5
+ import os
6
+ import shutil
7
+ import datetime
8
+ import warnings
6
9
  from pyspark.sql import SparkSession
7
10
  from sempy_labs._helper_functions import (
8
11
  format_dax_object_name,
@@ -12,10 +15,11 @@ from sempy_labs._helper_functions import (
12
15
  from sempy_labs._list_functions import list_relationships
13
16
  from sempy_labs.lakehouse._get_lakehouse_tables import get_lakehouse_tables
14
17
  from sempy_labs.lakehouse._lakehouse import lakehouse_attached
15
- from typing import List, Optional, Union
18
+ from typing import Optional
16
19
  from sempy._utils._log import log
17
20
  import sempy_labs._icons as icons
18
21
 
22
+
19
23
  @log
20
24
  def vertipaq_analyzer(
21
25
  dataset: str,
@@ -51,6 +55,8 @@ def vertipaq_analyzer(
51
55
 
52
56
  """
53
57
 
58
+ from sempy_labs.tom import connect_semantic_model
59
+
54
60
  pd.options.mode.copy_on_write = True
55
61
  warnings.filterwarnings(
56
62
  "ignore", message="createDataFrame attempted Arrow optimization*"
@@ -71,18 +77,21 @@ def vertipaq_analyzer(
71
77
  dfR["From Object"] = format_dax_object_name(dfR["From Table"], dfR["From Column"])
72
78
  dfR["To Object"] = format_dax_object_name(dfR["To Table"], dfR["To Column"])
73
79
  dfP = fabric.list_partitions(dataset=dataset, extended=True, workspace=workspace)
74
- dfD = fabric.list_datasets(
75
- workspace=workspace,
76
- additional_xmla_properties=["CompatibilityLevel", "Model.DefaultMode"],
77
- )
78
- dfD = dfD[dfD["Dataset Name"] == dataset]
79
- dfD["Compatibility Level"] = dfD["Compatibility Level"].astype(int)
80
- isDirectLake = any(r["Mode"] == "DirectLake" for i, r in dfP.iterrows())
80
+
81
+ with connect_semantic_model(
82
+ dataset=dataset, readonly=True, workspace=workspace
83
+ ) as tom:
84
+ compat_level = tom.model.Model.Database.CompatibilityLevel
85
+ is_direct_lake = tom.is_direct_lake()
86
+ def_mode = tom.model.DefaultMode
87
+ table_count = tom.model.Tables.Count
88
+ column_count = len(list(tom.all_columns()))
89
+
81
90
  dfR["Missing Rows"] = None
82
91
 
83
92
  # Direct Lake
84
93
  if read_stats_from_data:
85
- if isDirectLake:
94
+ if is_direct_lake:
86
95
  dfC = pd.merge(
87
96
  dfC,
88
97
  dfP[["Table Name", "Query", "Source Type"]],
@@ -100,7 +109,10 @@ def vertipaq_analyzer(
100
109
  dfI_filt = dfI[(dfI["Id"] == sqlEndpointId)]
101
110
 
102
111
  if len(dfI_filt) == 0:
103
- raise ValueError(f"{icons.red_dot} The lakehouse (SQL Endpoint) used by the '{dataset}' semantic model does not reside in the '{lakehouse_workspace}' workspace. Please update the lakehouse_workspace parameter.")
112
+ raise ValueError(
113
+ f"{icons.red_dot} The lakehouse (SQL Endpoint) used by the '{dataset}' semantic model does not reside in the '{lakehouse_workspace}' workspace."
114
+ "Please update the lakehouse_workspace parameter."
115
+ )
104
116
  else:
105
117
  lakehouseName = dfI_filt["Display Name"].iloc[0]
106
118
 
@@ -238,7 +250,7 @@ def vertipaq_analyzer(
238
250
 
239
251
  try:
240
252
  missingRows = result.iloc[0, 0]
241
- except:
253
+ except Exception:
242
254
  pass
243
255
 
244
256
  dfR.at[i, "Missing Rows"] = missingRows
@@ -308,7 +320,6 @@ def vertipaq_analyzer(
308
320
  )
309
321
  dfTable = pd.merge(dfTable, dfTP, on="Table Name", how="left")
310
322
  dfTable = pd.merge(dfTable, dfTC, on="Table Name", how="left")
311
- dfTable = dfTable.drop_duplicates() # Drop duplicates (temporary)
312
323
  dfTable = dfTable.sort_values(by="Total Size", ascending=False)
313
324
  dfTable.reset_index(drop=True, inplace=True)
314
325
  export_Table = dfTable.copy()
@@ -318,7 +329,7 @@ def vertipaq_analyzer(
318
329
  pctList = ["% DB"]
319
330
  dfTable[pctList] = dfTable[pctList].applymap("{:.2f}%".format)
320
331
 
321
- ## Relationships
332
+ # Relationships
322
333
  # dfR.drop(columns=['Max From Cardinality', 'Max To Cardinality'], inplace=True)
323
334
  dfR = pd.merge(
324
335
  dfR,
@@ -359,12 +370,17 @@ def vertipaq_analyzer(
359
370
  intList.remove("Missing Rows")
360
371
  dfR[intList] = dfR[intList].applymap("{:,}".format)
361
372
 
362
- ## Partitions
373
+ # Partitions
363
374
  dfP = dfP[
364
- ["Table Name", "Partition Name", "Mode", "Record Count", "Segment Count"]
365
- ].sort_values(
366
- by="Record Count", ascending=False
367
- ) # , 'Records per Segment'
375
+ [
376
+ "Table Name",
377
+ "Partition Name",
378
+ "Mode",
379
+ "Record Count",
380
+ "Segment Count",
381
+ # "Records per Segment",
382
+ ]
383
+ ].sort_values(by="Record Count", ascending=False)
368
384
  dfP["Records per Segment"] = round(
369
385
  dfP["Record Count"] / dfP["Segment Count"], 2
370
386
  ) # Remove after records per segment is fixed
@@ -373,7 +389,7 @@ def vertipaq_analyzer(
373
389
  intList = ["Record Count", "Segment Count", "Records per Segment"]
374
390
  dfP[intList] = dfP[intList].applymap("{:,}".format)
375
391
 
376
- ## Hierarchies
392
+ # Hierarchies
377
393
  dfH_filt = dfH[dfH["Level Ordinal"] == 0]
378
394
  dfH_filt = dfH_filt[["Table Name", "Hierarchy Name", "Used Size"]].sort_values(
379
395
  by="Used Size", ascending=False
@@ -383,7 +399,7 @@ def vertipaq_analyzer(
383
399
  intList = ["Used Size"]
384
400
  dfH_filt[intList] = dfH_filt[intList].applymap("{:,}".format)
385
401
 
386
- ## Model
402
+ # Model
387
403
  if total_size >= 1000000000:
388
404
  y = total_size / (1024**3) * 1000000000
389
405
  elif total_size >= 1000000:
@@ -392,19 +408,14 @@ def vertipaq_analyzer(
392
408
  y = total_size / (1024) * 1000
393
409
  y = round(y)
394
410
 
395
- tblCount = len(dfT)
396
- colCount = len(dfC_filt)
397
- compatLevel = dfD["Compatibility Level"].iloc[0]
398
- defMode = dfD["Model Default Mode"].iloc[0]
399
-
400
411
  dfModel = pd.DataFrame(
401
412
  {
402
413
  "Dataset Name": dataset,
403
414
  "Total Size": y,
404
- "Table Count": tblCount,
405
- "Column Count": colCount,
406
- "Compatibility Level": compatLevel,
407
- "Default Mode": defMode,
415
+ "Table Count": table_count,
416
+ "Column Count": column_count,
417
+ "Compatibility Level": compat_level,
418
+ "Default Mode": def_mode,
408
419
  },
409
420
  index=[0],
410
421
  )
@@ -429,11 +440,13 @@ def vertipaq_analyzer(
429
440
 
430
441
  visualize_vertipaq(dfs)
431
442
 
432
- ### Export vertipaq to delta tables in lakehouse
443
+ # Export vertipaq to delta tables in lakehouse
433
444
  if export in ["table", "zip"]:
434
445
  lakeAttach = lakehouse_attached()
435
446
  if lakeAttach is False:
436
- raise ValueError(f"{icons.red_dot} In order to save the Vertipaq Analyzer results, a lakehouse must be attached to the notebook. Please attach a lakehouse to this notebook.")
447
+ raise ValueError(
448
+ f"{icons.red_dot} In order to save the Vertipaq Analyzer results, a lakehouse must be attached to the notebook. Please attach a lakehouse to this notebook."
449
+ )
437
450
 
438
451
  if export == "table":
439
452
  spark = SparkSession.builder.getOrCreate()
@@ -465,7 +478,9 @@ def vertipaq_analyzer(
465
478
  "export_Model": ["Model", export_Model],
466
479
  }
467
480
 
468
- print(f"{icons.in_progress} Saving Vertipaq Analyzer to delta tables in the lakehouse...\n")
481
+ print(
482
+ f"{icons.in_progress} Saving Vertipaq Analyzer to delta tables in the lakehouse...\n"
483
+ )
469
484
  now = datetime.datetime.now()
470
485
  for key, (obj, df) in dfMap.items():
471
486
  df["Timestamp"] = now
@@ -487,7 +502,7 @@ def vertipaq_analyzer(
487
502
  f"{icons.bullet} Vertipaq Analyzer results for '{obj}' have been appended to the '{delta_table_name}' delta table."
488
503
  )
489
504
 
490
- ### Export vertipaq to zip file within the lakehouse
505
+ # Export vertipaq to zip file within the lakehouse
491
506
  if export == "zip":
492
507
  dataFrames = {
493
508
  "dfModel": dfModel,
@@ -525,7 +540,8 @@ def vertipaq_analyzer(
525
540
  if os.path.exists(filePath):
526
541
  os.remove(filePath)
527
542
  print(
528
- f"{icons.green_dot} The Vertipaq Analyzer info for the '{dataset}' semantic model in the '{workspace}' workspace has been saved to the 'Vertipaq Analyzer/{zipFileName}' in the default lakehouse attached to this notebook."
543
+ f"{icons.green_dot} The Vertipaq Analyzer info for the '{dataset}' semantic model in the '{workspace}' workspace has been saved "
544
+ f"to the 'Vertipaq Analyzer/{zipFileName}' in the default lakehouse attached to this notebook."
529
545
  )
530
546
 
531
547
 
@@ -832,7 +848,7 @@ def visualize_vertipaq(dataframes):
832
848
  (tooltipDF["ViewName"] == vw) & (tooltipDF["ColumnName"] == col)
833
849
  ]
834
850
  tt = tooltipDF_filt["Tooltip"].iloc[0]
835
- except:
851
+ except Exception:
836
852
  pass
837
853
  df_html = df_html.replace(f"<th>{col}</th>", f'<th title="{tt}">{col}</th>')
838
854
  content_html += (
@@ -21,6 +21,7 @@ from sempy_labs.directlake._update_directlake_model_lakehouse_connection import
21
21
  )
22
22
  from sempy_labs.directlake._update_directlake_partition_entity import (
23
23
  update_direct_lake_partition_entity,
24
+ add_table_to_direct_lake_semantic_model,
24
25
  )
25
26
  from sempy_labs.directlake._warm_cache import (
26
27
  warm_direct_lake_cache_isresident,
@@ -42,4 +43,5 @@ __all__ = [
42
43
  "update_direct_lake_partition_entity",
43
44
  "warm_direct_lake_cache_isresident",
44
45
  "warm_direct_lake_cache_perspective",
46
+ "add_table_to_direct_lake_semantic_model",
45
47
  ]
@@ -1,4 +1,3 @@
1
- import sempy
2
1
  import sempy.fabric as fabric
3
2
  import pandas as pd
4
3
  from sempy_labs._helper_functions import (
@@ -13,6 +12,7 @@ from typing import Optional
13
12
  import sempy_labs._icons as icons
14
13
  from sempy._utils._log import log
15
14
 
15
+
16
16
  @log
17
17
  def direct_lake_schema_compare(
18
18
  dataset: str,
@@ -55,10 +55,15 @@ def direct_lake_schema_compare(
55
55
  dfI_filt = dfI[(dfI["Id"] == sqlEndpointId)]
56
56
 
57
57
  if len(dfI_filt) == 0:
58
- raise ValueError(f"{icons.red_dot} The SQL Endpoint in the '{dataset}' semantic model in the '{workspace} workspace does not point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace as specified.")
58
+ raise ValueError(
59
+ f"{icons.red_dot} The SQL Endpoint in the '{dataset}' semantic model in the '{workspace} workspace does not point to the "
60
+ f"'{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace as specified."
61
+ )
59
62
 
60
63
  if not any(r["Mode"] == "DirectLake" for i, r in dfP.iterrows()):
61
- raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake mode.")
64
+ raise ValueError(
65
+ f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake mode."
66
+ )
62
67
 
63
68
  dfT = list_tables(dataset, workspace)
64
69
  dfC = fabric.list_columns(dataset=dataset, workspace=workspace)
@@ -92,7 +97,8 @@ def direct_lake_schema_compare(
92
97
  )
93
98
  else:
94
99
  print(
95
- f"{icons.yellow_dot} The following tables exist in the '{dataset}' semantic model within the '{workspace}' workspace but do not exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
100
+ f"{icons.yellow_dot} The following tables exist in the '{dataset}' semantic model within the '{workspace}' workspace"
101
+ f" but do not exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
96
102
  )
97
103
  display(missingtbls)
98
104
  if len(missingcols) == 0:
@@ -101,6 +107,7 @@ def direct_lake_schema_compare(
101
107
  )
102
108
  else:
103
109
  print(
104
- f"{icons.yellow_dot} The following columns exist in the '{dataset}' semantic model within the '{workspace}' workspace but do not exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
110
+ f"{icons.yellow_dot} The following columns exist in the '{dataset}' semantic model within the '{workspace}' workspace "
111
+ f"but do not exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
105
112
  )
106
113
  display(missingcols)
@@ -12,6 +12,7 @@ from typing import Optional
12
12
  from sempy._utils._log import log
13
13
  import sempy_labs._icons as icons
14
14
 
15
+
15
16
  @log
16
17
  def direct_lake_schema_sync(
17
18
  dataset: str,
@@ -61,7 +62,10 @@ def direct_lake_schema_sync(
61
62
  dfI_filt = dfI[(dfI["Id"] == sqlEndpointId)]
62
63
 
63
64
  if len(dfI_filt) == 0:
64
- raise ValueError(f"{icons.red_dot} The SQL Endpoint in the '{dataset}' semantic model in the '{workspace} workspace does not point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace as specified.")
65
+ raise ValueError(
66
+ f"{icons.red_dot} The SQL Endpoint in the '{dataset}' semantic model in the '{workspace} workspace does not point to the "
67
+ f"'{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace as specified."
68
+ )
65
69
 
66
70
  dfP = fabric.list_partitions(dataset=dataset, workspace=workspace)
67
71
  dfP_filt = dfP[dfP["Source Type"] == "Entity"]
@@ -77,21 +81,9 @@ def direct_lake_schema_sync(
77
81
  lc = get_lakehouse_columns(lakehouse, lakehouse_workspace)
78
82
  lc_filt = lc[lc["Table Name"].isin(dfP_filt["Query"].values)]
79
83
 
80
- mapping = {
81
- "string": "String",
82
- "bigint": "Int64",
83
- "int": "Int64",
84
- "smallint": "Int64",
85
- "boolean": "Boolean",
86
- "timestamp": "DateTime",
87
- "date": "DateTime",
88
- "decimal(38,18)": "Decimal",
89
- "double": "Double",
90
- }
91
-
92
84
  with connect_semantic_model(
93
- dataset=dataset, readonly=False, workspace=workspace
94
- ) as tom:
85
+ dataset=dataset, readonly=False, workspace=workspace
86
+ ) as tom:
95
87
 
96
88
  for i, r in lc_filt.iterrows():
97
89
  lakeTName = r["Table Name"]
@@ -106,18 +98,20 @@ def direct_lake_schema_sync(
106
98
  col = TOM.DataColumn()
107
99
  col.Name = lakeCName
108
100
  col.SourceColumn = lakeCName
109
- dt = mapping.get(dType)
101
+ dt = icons.data_type_mapping.get(dType)
110
102
  try:
111
103
  col.DataType = System.Enum.Parse(TOM.DataType, dt)
112
104
  except Exception as e:
113
- raise ValueError(f"{icons.red_dot} Failed to map '{dType}' data type to the semantic model data types.") from e
105
+ raise ValueError(
106
+ f"{icons.red_dot} Failed to map '{dType}' data type to the semantic model data types."
107
+ ) from e
114
108
 
115
109
  tom.model.Tables[tName].Columns.Add(col)
116
110
  print(
117
- f"{icons.green_dot} The '{lakeCName}' column has been added to the '{tName}' table as a '{dt}' data type within the '{dataset}' semantic model within the '{workspace}' workspace."
111
+ f"{icons.green_dot} The '{lakeCName}' column has been added to the '{tName}' table as a '{dt}' "
112
+ f"data type within the '{dataset}' semantic model within the '{workspace}' workspace."
118
113
  )
119
114
  else:
120
115
  print(
121
116
  f"{icons.yellow_dot} The {fullColName} column exists in the lakehouse but not in the '{tName}' table in the '{dataset}' semantic model within the '{workspace}' workspace."
122
117
  )
123
-
@@ -1,9 +1,9 @@
1
- import sempy
2
1
  import sempy.fabric as fabric
3
2
  import numpy as np
4
- from typing import List, Optional, Union
3
+ from typing import Optional
5
4
  import sempy_labs._icons as icons
6
5
 
6
+
7
7
  def check_fallback_reason(dataset: str, workspace: Optional[str] = None):
8
8
  """
9
9
  Shows the reason a table in a Direct Lake semantic model would fallback to DirectQuery.
@@ -29,7 +29,9 @@ def check_fallback_reason(dataset: str, workspace: Optional[str] = None):
29
29
  dfP_filt = dfP[dfP["Mode"] == "DirectLake"]
30
30
 
31
31
  if len(dfP_filt) == 0:
32
- raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models.")
32
+ raise ValueError(
33
+ f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models."
34
+ )
33
35
  else:
34
36
  df = fabric.evaluate_dax(
35
37
  dataset=dataset,
@@ -1,4 +1,3 @@
1
- import sempy
2
1
  import sempy.fabric as fabric
3
2
  from sempy_labs._helper_functions import (
4
3
  resolve_lakehouse_id,
@@ -9,6 +8,7 @@ from typing import Optional, Tuple
9
8
  from uuid import UUID
10
9
  import sempy_labs._icons as icons
11
10
 
11
+
12
12
  def get_direct_lake_lakehouse(
13
13
  dataset: str,
14
14
  workspace: Optional[str] = None,
@@ -1,10 +1,10 @@
1
- import sempy
2
1
  import sempy.fabric as fabric
3
2
  from sempy_labs._helper_functions import resolve_lakehouse_name
4
3
  from sempy_labs._list_functions import list_lakehouses
5
4
  from typing import Optional
6
5
  import sempy_labs._icons as icons
7
6
 
7
+
8
8
  def get_shared_expression(
9
9
  lakehouse: Optional[str] = None, workspace: Optional[str] = None
10
10
  ):
@@ -40,7 +40,9 @@ def get_shared_expression(
40
40
  provStatus = lakeDetail["SQL Endpoint Provisioning Status"].iloc[0]
41
41
 
42
42
  if provStatus == "InProgress":
43
- raise ValueError(f"{icons.red_dot} The SQL Endpoint for the '{lakehouse}' lakehouse within the '{workspace}' workspace has not yet been provisioned. Please wait until it has been provisioned.")
43
+ raise ValueError(
44
+ f"{icons.red_dot} The SQL Endpoint for the '{lakehouse}' lakehouse within the '{workspace}' workspace has not yet been provisioned. Please wait until it has been provisioned."
45
+ )
44
46
 
45
47
  sh = (
46
48
  'let\n\tdatabase = Sql.Database("'
@@ -1,12 +1,12 @@
1
- import sempy
2
1
  import sempy.fabric as fabric
3
2
  import pandas as pd
4
- from typing import List, Optional, Union
3
+ from typing import Optional
5
4
 
6
5
 
7
6
  def get_direct_lake_guardrails() -> pd.DataFrame:
8
7
  """
9
- Shows the guardrails for when Direct Lake semantic models will fallback to Direct Query based on Microsoft's `online documentation <https://learn.microsoft.com/power-bi/enterprise/directlake-overview>`_.
8
+ Shows the guardrails for when Direct Lake semantic models will fallback to Direct Query
9
+ based on Microsoft's `online documentation <https://learn.microsoft.com/power-bi/enterprise/directlake-overview>`_.
10
10
 
11
11
  Parameters
12
12
  ----------
@@ -1,14 +1,16 @@
1
- import sempy
2
1
  import sempy.fabric as fabric
3
2
  import pandas as pd
4
- from sempy_labs._list_functions import list_tables, list_annotations
3
+ from sempy_labs._list_functions import list_tables
5
4
  from sempy_labs.tom import connect_semantic_model
6
5
  from typing import Optional
7
6
  from sempy._utils._log import log
8
7
  import sempy_labs._icons as icons
9
8
 
9
+
10
10
  @log
11
- def list_direct_lake_model_calc_tables(dataset: str, workspace: Optional[str] = None) -> pd.DataFrame:
11
+ def list_direct_lake_model_calc_tables(
12
+ dataset: str, workspace: Optional[str] = None
13
+ ) -> pd.DataFrame:
12
14
  """
13
15
  Shows the calculated tables and their respective DAX expression for a Direct Lake model (which has been migrated from import/DirectQuery).
14
16
 
@@ -32,18 +34,21 @@ def list_direct_lake_model_calc_tables(dataset: str, workspace: Optional[str] =
32
34
  df = pd.DataFrame(columns=["Table Name", "Source Expression"])
33
35
 
34
36
  with connect_semantic_model(
35
- dataset=dataset, readonly=True, workspace=workspace
36
- ) as tom:
37
-
37
+ dataset=dataset, readonly=True, workspace=workspace
38
+ ) as tom:
39
+
38
40
  is_direct_lake = tom.is_direct_lake()
39
41
 
40
42
  if not is_direct_lake:
41
- raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake mode.")
43
+ raise ValueError(
44
+ f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake mode."
45
+ )
42
46
  else:
43
- dfA = list_annotations(dataset, workspace)
47
+ dfA = fabric.list_annotations(dataset=dataset, workspace=workspace)
44
48
  dfT = list_tables(dataset, workspace)
45
49
  dfA_filt = dfA[
46
- (dfA["Object Type"] == "Model") & (dfA["Annotation Name"].isin(dfT["Name"]))
50
+ (dfA["Object Type"] == "Model")
51
+ & (dfA["Annotation Name"].isin(dfT["Name"]))
47
52
  ]
48
53
 
49
54
  for i, r in dfA_filt.iterrows():
@@ -51,6 +56,8 @@ def list_direct_lake_model_calc_tables(dataset: str, workspace: Optional[str] =
51
56
  se = r["Annotation Value"]
52
57
 
53
58
  new_data = {"Table Name": tName, "Source Expression": se}
54
- df = pd.concat([df, pd.DataFrame(new_data, index=[0])], ignore_index=True)
59
+ df = pd.concat(
60
+ [df, pd.DataFrame(new_data, index=[0])], ignore_index=True
61
+ )
55
62
 
56
63
  return df
@@ -1,4 +1,3 @@
1
- import sempy
2
1
  import sempy.fabric as fabric
3
2
  import pandas as pd
4
3
  from sempy_labs._list_functions import list_tables
@@ -6,12 +5,14 @@ from sempy_labs._helper_functions import format_dax_object_name
6
5
  from typing import Optional, Tuple
7
6
  from sempy._utils._log import log
8
7
 
8
+
9
9
  @log
10
10
  def show_unsupported_direct_lake_objects(
11
11
  dataset: str, workspace: Optional[str] = None
12
12
  ) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
13
13
  """
14
- Returns a list of a semantic model's objects which are not supported by Direct Lake based on `official documentation <https://learn.microsoft.com/power-bi/enterprise/directlake-overview#known-issues-and-limitations>`_.
14
+ Returns a list of a semantic model's objects which are not supported by Direct Lake based on
15
+ `official documentation <https://learn.microsoft.com/power-bi/enterprise/directlake-overview#known-issues-and-limitations>`_.
15
16
 
16
17
  Parameters
17
18
  ----------
@@ -1,9 +1,7 @@
1
- import sempy
2
1
  import sempy.fabric as fabric
3
2
  from sempy_labs.directlake._get_shared_expression import get_shared_expression
4
3
  from sempy_labs._helper_functions import (
5
4
  resolve_lakehouse_name,
6
- resolve_workspace_name_and_id,
7
5
  )
8
6
  from sempy_labs.tom import connect_semantic_model
9
7
  from typing import Optional
@@ -54,13 +52,18 @@ def update_direct_lake_model_lakehouse_connection(
54
52
  dfI_filt = dfI[(dfI["Display Name"] == lakehouse)]
55
53
 
56
54
  if len(dfI_filt) == 0:
57
- raise ValueError(f"{icons.red_dot} The '{lakehouse}' lakehouse does not exist within the '{lakehouse_workspace}' workspace. Therefore it cannot be used to support the '{dataset}' semantic model within the '{workspace}' workspace.")
55
+ raise ValueError(
56
+ f"{icons.red_dot} The '{lakehouse}' lakehouse does not exist within the '{lakehouse_workspace}' workspace. "
57
+ f"Therefore it cannot be used to support the '{dataset}' semantic model within the '{workspace}' workspace."
58
+ )
58
59
 
59
60
  dfP = fabric.list_partitions(dataset=dataset, workspace=workspace)
60
61
  dfP_filt = dfP[dfP["Mode"] == "DirectLake"]
61
62
 
62
63
  if len(dfP_filt) == 0:
63
- raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models.")
64
+ raise ValueError(
65
+ f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models."
66
+ )
64
67
  else:
65
68
  with connect_semantic_model(
66
69
  dataset=dataset, readonly=False, workspace=workspace
@@ -73,4 +76,6 @@ def update_direct_lake_model_lakehouse_connection(
73
76
  f"{icons.green_dot} The expression in the '{dataset}' semantic model has been updated to point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace."
74
77
  )
75
78
  except Exception as e:
76
- raise ValueError(f"{icons.red_dot} The expression in the '{dataset}' semantic model was not updated.") from e
79
+ raise ValueError(
80
+ f"{icons.red_dot} The expression in the '{dataset}' semantic model was not updated."
81
+ ) from e