semantic-link-labs 0.4.1__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of semantic-link-labs might be problematic. Click here for more details.

Files changed (53) hide show
  1. {semantic_link_labs-0.4.1.dist-info → semantic_link_labs-0.5.0.dist-info}/METADATA +1 -1
  2. semantic_link_labs-0.5.0.dist-info/RECORD +53 -0
  3. {semantic_link_labs-0.4.1.dist-info → semantic_link_labs-0.5.0.dist-info}/WHEEL +1 -1
  4. sempy_labs/__init__.py +51 -27
  5. sempy_labs/_ai.py +32 -51
  6. sempy_labs/_clear_cache.py +2 -3
  7. sempy_labs/_connections.py +39 -38
  8. sempy_labs/_dax.py +5 -9
  9. sempy_labs/_generate_semantic_model.py +15 -21
  10. sempy_labs/_helper_functions.py +20 -25
  11. sempy_labs/_icons.py +6 -0
  12. sempy_labs/_list_functions.py +1172 -392
  13. sempy_labs/_model_auto_build.py +3 -5
  14. sempy_labs/_model_bpa.py +20 -24
  15. sempy_labs/_model_dependencies.py +7 -14
  16. sempy_labs/_one_lake_integration.py +14 -24
  17. sempy_labs/_query_scale_out.py +13 -31
  18. sempy_labs/_refresh_semantic_model.py +8 -18
  19. sempy_labs/_translations.py +5 -5
  20. sempy_labs/_vertipaq.py +11 -18
  21. sempy_labs/directlake/_directlake_schema_compare.py +11 -15
  22. sempy_labs/directlake/_directlake_schema_sync.py +35 -40
  23. sempy_labs/directlake/_fallback.py +3 -7
  24. sempy_labs/directlake/_get_directlake_lakehouse.py +3 -4
  25. sempy_labs/directlake/_get_shared_expression.py +5 -11
  26. sempy_labs/directlake/_guardrails.py +5 -7
  27. sempy_labs/directlake/_list_directlake_model_calc_tables.py +28 -26
  28. sempy_labs/directlake/_show_unsupported_directlake_objects.py +3 -4
  29. sempy_labs/directlake/_update_directlake_model_lakehouse_connection.py +11 -16
  30. sempy_labs/directlake/_update_directlake_partition_entity.py +25 -15
  31. sempy_labs/directlake/_warm_cache.py +10 -15
  32. sempy_labs/lakehouse/__init__.py +0 -2
  33. sempy_labs/lakehouse/_get_lakehouse_columns.py +4 -3
  34. sempy_labs/lakehouse/_get_lakehouse_tables.py +12 -11
  35. sempy_labs/lakehouse/_lakehouse.py +6 -7
  36. sempy_labs/lakehouse/_shortcuts.py +10 -111
  37. sempy_labs/migration/__init__.py +4 -2
  38. sempy_labs/migration/_create_pqt_file.py +5 -14
  39. sempy_labs/migration/_migrate_calctables_to_lakehouse.py +7 -7
  40. sempy_labs/migration/_migrate_calctables_to_semantic_model.py +4 -4
  41. sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +3 -8
  42. sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +6 -6
  43. sempy_labs/migration/_migration_validation.py +5 -164
  44. sempy_labs/migration/_refresh_calc_tables.py +5 -5
  45. sempy_labs/report/__init__.py +2 -2
  46. sempy_labs/report/_generate_report.py +14 -19
  47. sempy_labs/report/_report_functions.py +41 -83
  48. sempy_labs/report/_report_rebind.py +43 -44
  49. sempy_labs/tom/__init__.py +6 -0
  50. sempy_labs/{_tom.py → tom/_model.py} +274 -337
  51. semantic_link_labs-0.4.1.dist-info/RECORD +0 -52
  52. {semantic_link_labs-0.4.1.dist-info → semantic_link_labs-0.5.0.dist-info}/LICENSE +0 -0
  53. {semantic_link_labs-0.4.1.dist-info → semantic_link_labs-0.5.0.dist-info}/top_level.txt +0 -0
@@ -10,8 +10,10 @@ from IPython.display import display
10
10
  from sempy_labs.lakehouse._get_lakehouse_columns import get_lakehouse_columns
11
11
  from sempy_labs._list_functions import list_tables
12
12
  from typing import Optional
13
+ import sempy_labs._icons as icons
14
+ from sempy._utils._log import log
13
15
 
14
-
16
+ @log
15
17
  def direct_lake_schema_compare(
16
18
  dataset: str,
17
19
  workspace: Optional[str] = None,
@@ -38,14 +40,12 @@ def direct_lake_schema_compare(
38
40
  or if no lakehouse attached, resolves to the workspace of the notebook.
39
41
  """
40
42
 
41
- if workspace == None:
42
- workspace_id = fabric.get_workspace_id()
43
- workspace = fabric.resolve_workspace_name(workspace_id)
43
+ workspace = fabric.resolve_workspace_name(workspace)
44
44
 
45
45
  if lakehouse_workspace is None:
46
46
  lakehouse_workspace = workspace
47
47
 
48
- if lakehouse == None:
48
+ if lakehouse is None:
49
49
  lakehouse_id = fabric.get_lakehouse_id()
50
50
  lakehouse = resolve_lakehouse_name(lakehouse_id, lakehouse_workspace)
51
51
 
@@ -55,14 +55,10 @@ def direct_lake_schema_compare(
55
55
  dfI_filt = dfI[(dfI["Id"] == sqlEndpointId)]
56
56
 
57
57
  if len(dfI_filt) == 0:
58
- print(
59
- f"The SQL Endpoint in the '{dataset}' semantic model in the '{workspace} workspace does not point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace as specified."
60
- )
61
- return
58
+ raise ValueError(f"{icons.red_dot} The SQL Endpoint in the '{dataset}' semantic model in the '{workspace} workspace does not point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace as specified.")
62
59
 
63
60
  if not any(r["Mode"] == "DirectLake" for i, r in dfP.iterrows()):
64
- print(f"The '{dataset}' semantic model is not in Direct Lake mode.")
65
- return
61
+ raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake mode.")
66
62
 
67
63
  dfT = list_tables(dataset, workspace)
68
64
  dfC = fabric.list_columns(dataset=dataset, workspace=workspace)
@@ -92,19 +88,19 @@ def direct_lake_schema_compare(
92
88
 
93
89
  if len(missingtbls) == 0:
94
90
  print(
95
- f"All tables exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
91
+ f"{icons.green_dot} All tables exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
96
92
  )
97
93
  else:
98
94
  print(
99
- f"The following tables exist in the '{dataset}' semantic model within the '{workspace}' workspace but do not exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
95
+ f"{icons.yellow_dot} The following tables exist in the '{dataset}' semantic model within the '{workspace}' workspace but do not exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
100
96
  )
101
97
  display(missingtbls)
102
98
  if len(missingcols) == 0:
103
99
  print(
104
- f"All columns exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
100
+ f"{icons.green_dot} All columns exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
105
101
  )
106
102
  else:
107
103
  print(
108
- f"The following columns exist in the '{dataset}' semantic model within the '{workspace}' workspace but do not exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
104
+ f"{icons.yellow_dot} The following columns exist in the '{dataset}' semantic model within the '{workspace}' workspace but do not exist in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
109
105
  )
110
106
  display(missingcols)
@@ -2,6 +2,7 @@ import sempy
2
2
  import sempy.fabric as fabric
3
3
  import pandas as pd
4
4
  from sempy_labs.lakehouse._get_lakehouse_columns import get_lakehouse_columns
5
+ from sempy_labs.tom import connect_semantic_model
5
6
  from sempy_labs._helper_functions import (
6
7
  format_dax_object_name,
7
8
  resolve_lakehouse_name,
@@ -9,7 +10,7 @@ from sempy_labs._helper_functions import (
9
10
  )
10
11
  from typing import Optional
11
12
  from sempy._utils._log import log
12
-
13
+ import sempy_labs._icons as icons
13
14
 
14
15
  @log
15
16
  def direct_lake_schema_sync(
@@ -45,14 +46,12 @@ def direct_lake_schema_sync(
45
46
  import Microsoft.AnalysisServices.Tabular as TOM
46
47
  import System
47
48
 
48
- if workspace == None:
49
- workspace_id = fabric.get_workspace_id()
50
- workspace = fabric.resolve_workspace_name(workspace_id)
49
+ workspace = fabric.resolve_workspace_name(workspace)
51
50
 
52
51
  if lakehouse_workspace is None:
53
52
  lakehouse_workspace = workspace
54
53
 
55
- if lakehouse == None:
54
+ if lakehouse is None:
56
55
  lakehouse_id = fabric.get_lakehouse_id()
57
56
  lakehouse = resolve_lakehouse_name(lakehouse_id, lakehouse_workspace)
58
57
 
@@ -62,10 +61,7 @@ def direct_lake_schema_sync(
62
61
  dfI_filt = dfI[(dfI["Id"] == sqlEndpointId)]
63
62
 
64
63
  if len(dfI_filt) == 0:
65
- print(
66
- f"The SQL Endpoint in the '{dataset}' semantic model in the '{workspace} workspace does not point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace as specified."
67
- )
68
- return
64
+ raise ValueError(f"{icons.red_dot} The SQL Endpoint in the '{dataset}' semantic model in the '{workspace} workspace does not point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace as specified.")
69
65
 
70
66
  dfP = fabric.list_partitions(dataset=dataset, workspace=workspace)
71
67
  dfP_filt = dfP[dfP["Source Type"] == "Entity"]
@@ -93,36 +89,35 @@ def direct_lake_schema_sync(
93
89
  "double": "Double",
94
90
  }
95
91
 
96
- tom_server = fabric.create_tom_server(readonly=False, workspace=workspace)
97
- m = tom_server.Databases.GetByName(dataset).Model
98
- for i, r in lc_filt.iterrows():
99
- lakeTName = r["Table Name"]
100
- lakeCName = r["Column Name"]
101
- fullColName = r["Full Column Name"]
102
- dType = r["Data Type"]
103
-
104
- if fullColName not in dfC_filt["Column Object"].values:
105
- dfL = dfP_filt[dfP_filt["Query"] == lakeTName]
106
- tName = dfL["Table Name"].iloc[0]
107
- if add_to_model:
108
- col = TOM.DataColumn()
109
- col.Name = lakeCName
110
- col.SourceColumn = lakeCName
111
- dt = mapping.get(dType)
112
- try:
113
- col.DataType = System.Enum.Parse(TOM.DataType, dt)
114
- except:
92
+ with connect_semantic_model(
93
+ dataset=dataset, readonly=False, workspace=workspace
94
+ ) as tom:
95
+
96
+ for i, r in lc_filt.iterrows():
97
+ lakeTName = r["Table Name"]
98
+ lakeCName = r["Column Name"]
99
+ fullColName = r["Full Column Name"]
100
+ dType = r["Data Type"]
101
+
102
+ if fullColName not in dfC_filt["Column Object"].values:
103
+ dfL = dfP_filt[dfP_filt["Query"] == lakeTName]
104
+ tName = dfL["Table Name"].iloc[0]
105
+ if add_to_model:
106
+ col = TOM.DataColumn()
107
+ col.Name = lakeCName
108
+ col.SourceColumn = lakeCName
109
+ dt = mapping.get(dType)
110
+ try:
111
+ col.DataType = System.Enum.Parse(TOM.DataType, dt)
112
+ except Exception as e:
113
+ raise ValueError(f"{icons.red_dot} Failed to map '{dType}' data type to the semantic model data types.") from e
114
+
115
+ tom.model.Tables[tName].Columns.Add(col)
116
+ print(
117
+ f"{icons.green_dot} The '{lakeCName}' column has been added to the '{tName}' table as a '{dt}' data type within the '{dataset}' semantic model within the '{workspace}' workspace."
118
+ )
119
+ else:
115
120
  print(
116
- f"ERROR: '{dType}' data type is not mapped properly to the semantic model data types."
121
+ f"{icons.yellow_dot} The {fullColName} column exists in the lakehouse but not in the '{tName}' table in the '{dataset}' semantic model within the '{workspace}' workspace."
117
122
  )
118
- return
119
-
120
- m.Tables[tName].Columns.Add(col)
121
- print(
122
- f"The '{lakeCName}' column has been added to the '{tName}' table as a '{dt}' data type within the '{dataset}' semantic model within the '{workspace}' workspace."
123
- )
124
- else:
125
- print(
126
- f"The {fullColName} column exists in the lakehouse but not in the '{tName}' table in the '{dataset}' semantic model within the '{workspace}' workspace."
127
- )
128
- m.SaveChanges()
123
+
@@ -2,7 +2,7 @@ import sempy
2
2
  import sempy.fabric as fabric
3
3
  import numpy as np
4
4
  from typing import List, Optional, Union
5
-
5
+ import sempy_labs._icons as icons
6
6
 
7
7
  def check_fallback_reason(dataset: str, workspace: Optional[str] = None):
8
8
  """
@@ -23,17 +23,13 @@ def check_fallback_reason(dataset: str, workspace: Optional[str] = None):
23
23
  The tables in the semantic model and their fallback reason.
24
24
  """
25
25
 
26
- if workspace == None:
27
- workspace_id = fabric.get_workspace_id()
28
- workspace = fabric.resolve_workspace_name(workspace_id)
26
+ workspace = fabric.resolve_workspace_name(workspace)
29
27
 
30
28
  dfP = fabric.list_partitions(dataset=dataset, workspace=workspace)
31
29
  dfP_filt = dfP[dfP["Mode"] == "DirectLake"]
32
30
 
33
31
  if len(dfP_filt) == 0:
34
- print(
35
- f"The '{dataset}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models."
36
- )
32
+ raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models.")
37
33
  else:
38
34
  df = fabric.evaluate_dax(
39
35
  dataset=dataset,
@@ -7,8 +7,7 @@ from sempy_labs._helper_functions import (
7
7
  )
8
8
  from typing import Optional, Tuple
9
9
  from uuid import UUID
10
- from sempy_labs._helper_functions import resolve_workspace_name_and_id
11
-
10
+ import sempy_labs._icons as icons
12
11
 
13
12
  def get_direct_lake_lakehouse(
14
13
  dataset: str,
@@ -46,7 +45,7 @@ def get_direct_lake_lakehouse(
46
45
  if lakehouse_workspace is None:
47
46
  lakehouse_workspace = workspace
48
47
 
49
- if lakehouse == None:
48
+ if lakehouse is None:
50
49
  lakehouse_id = fabric.get_lakehouse_id()
51
50
  lakehouse = resolve_lakehouse_name(lakehouse_id, lakehouse_workspace)
52
51
 
@@ -55,7 +54,7 @@ def get_direct_lake_lakehouse(
55
54
 
56
55
  if len(dfP_filt) == 0:
57
56
  raise ValueError(
58
- f"ERROR: The '{dataset}' semantic model within the '{workspace}' workspace is not in Direct Lake mode."
57
+ f"{icons.red_dot} The '{dataset}' semantic model within the '{workspace}' workspace is not in Direct Lake mode."
59
58
  )
60
59
 
61
60
  sqlEndpointId = get_direct_lake_sql_endpoint(dataset, workspace)
@@ -1,12 +1,9 @@
1
1
  import sempy
2
2
  import sempy.fabric as fabric
3
- from sempy_labs._helper_functions import (
4
- resolve_lakehouse_name,
5
- resolve_workspace_name_and_id,
6
- )
3
+ from sempy_labs._helper_functions import resolve_lakehouse_name
7
4
  from sempy_labs._list_functions import list_lakehouses
8
5
  from typing import Optional
9
-
6
+ import sempy_labs._icons as icons
10
7
 
11
8
  def get_shared_expression(
12
9
  lakehouse: Optional[str] = None, workspace: Optional[str] = None
@@ -30,8 +27,8 @@ def get_shared_expression(
30
27
  Shows the expression which can be used to connect a Direct Lake semantic model to its SQL Endpoint.
31
28
  """
32
29
 
33
- (workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
34
- if lakehouse == None:
30
+ workspace = fabric.resolve_workspace_name(workspace)
31
+ if lakehouse is None:
35
32
  lakehouse_id = fabric.get_lakehouse_id()
36
33
  lakehouse = resolve_lakehouse_name(lakehouse_id)
37
34
 
@@ -43,10 +40,7 @@ def get_shared_expression(
43
40
  provStatus = lakeDetail["SQL Endpoint Provisioning Status"].iloc[0]
44
41
 
45
42
  if provStatus == "InProgress":
46
- print(
47
- f"The SQL Endpoint for the '{lakehouse}' lakehouse within the '{workspace}' workspace has not yet been provisioned. Please wait until it has been provisioned."
48
- )
49
- return
43
+ raise ValueError(f"{icons.red_dot} The SQL Endpoint for the '{lakehouse}' lakehouse within the '{workspace}' workspace has not yet been provisioned. Please wait until it has been provisioned.")
50
44
 
51
45
  sh = (
52
46
  'let\n\tdatabase = Sql.Database("'
@@ -4,9 +4,9 @@ import pandas as pd
4
4
  from typing import List, Optional, Union
5
5
 
6
6
 
7
- def get_direct_lake_guardrails():
7
+ def get_direct_lake_guardrails() -> pd.DataFrame:
8
8
  """
9
- Shows the guardrails for when Direct Lake semantic models will fallback to Direct Query based on Microsoft's online documentation.
9
+ Shows the guardrails for when Direct Lake semantic models will fallback to Direct Query based on Microsoft's `online documentation <https://learn.microsoft.com/power-bi/enterprise/directlake-overview>`_.
10
10
 
11
11
  Parameters
12
12
  ----------
@@ -44,9 +44,7 @@ def get_sku_size(workspace: Optional[str] = None):
44
44
  The SKU size for a workspace.
45
45
  """
46
46
 
47
- if workspace == None:
48
- workspace_id = fabric.get_workspace_id()
49
- workspace = fabric.resolve_workspace_name(workspace_id)
47
+ workspace = fabric.resolve_workspace_name(workspace)
50
48
 
51
49
  dfC = fabric.list_capacities()
52
50
  dfW = fabric.list_workspaces().sort_values(by="Name", ascending=True)
@@ -62,10 +60,10 @@ def get_sku_size(workspace: Optional[str] = None):
62
60
  return sku_value
63
61
 
64
62
 
65
- def get_directlake_guardrails_for_sku(sku_size: str):
63
+ def get_directlake_guardrails_for_sku(sku_size: str) -> pd.DataFrame:
66
64
  """
67
65
  Shows the guardrails for Direct Lake based on the SKU used by your workspace's capacity.
68
- *Use the result of the 'get_sku_size' function as an input for this function's skuSize parameter.*
66
+ * Use the result of the 'get_sku_size' function as an input for this function's sku_size parameter.*
69
67
 
70
68
  Parameters
71
69
  ----------
@@ -2,14 +2,15 @@ import sempy
2
2
  import sempy.fabric as fabric
3
3
  import pandas as pd
4
4
  from sempy_labs._list_functions import list_tables, list_annotations
5
+ from sempy_labs.tom import connect_semantic_model
5
6
  from typing import Optional
6
7
  from sempy._utils._log import log
7
-
8
+ import sempy_labs._icons as icons
8
9
 
9
10
  @log
10
- def list_direct_lake_model_calc_tables(dataset: str, workspace: Optional[str] = None):
11
+ def list_direct_lake_model_calc_tables(dataset: str, workspace: Optional[str] = None) -> pd.DataFrame:
11
12
  """
12
- Shows the calculated tables and their respective DAX expression for a Direct Lake model (which has been migrated from import/DirectQuery.
13
+ Shows the calculated tables and their respective DAX expression for a Direct Lake model (which has been migrated from import/DirectQuery).
13
14
 
14
15
  Parameters
15
16
  ----------
@@ -26,29 +27,30 @@ def list_direct_lake_model_calc_tables(dataset: str, workspace: Optional[str] =
26
27
  A pandas dataframe showing the calculated tables which were migrated to Direct Lake and whose DAX expressions are stored as model annotations.
27
28
  """
28
29
 
29
- if workspace == None:
30
- workspace_id = fabric.get_workspace_id()
31
- workspace = fabric.resolve_workspace_name(workspace_id)
30
+ workspace = fabric.resolve_workspace_name(workspace)
32
31
 
33
32
  df = pd.DataFrame(columns=["Table Name", "Source Expression"])
34
33
 
35
- dfP = fabric.list_partitions(dataset=dataset, workspace=workspace)
36
- dfP_filt = dfP[dfP["Mode"] == "DirectLake"]
37
-
38
- if len(dfP_filt) == 0:
39
- print(f"The '{dataset}' semantic model is not in Direct Lake mode.")
40
- else:
41
- dfA = list_annotations(dataset, workspace)
42
- dfT = list_tables(dataset, workspace)
43
- dfA_filt = dfA[
44
- (dfA["Object Type"] == "Model") & (dfA["Annotation Name"].isin(dfT["Name"]))
45
- ]
46
-
47
- for i, r in dfA_filt.iterrows():
48
- tName = r["Annotation Name"]
49
- se = r["Annotation Value"]
50
-
51
- new_data = {"Table Name": tName, "Source Expression": se}
52
- df = pd.concat([df, pd.DataFrame(new_data, index=[0])], ignore_index=True)
53
-
54
- return df
34
+ with connect_semantic_model(
35
+ dataset=dataset, readonly=True, workspace=workspace
36
+ ) as tom:
37
+
38
+ is_direct_lake = tom.is_direct_lake()
39
+
40
+ if not is_direct_lake:
41
+ raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake mode.")
42
+ else:
43
+ dfA = list_annotations(dataset, workspace)
44
+ dfT = list_tables(dataset, workspace)
45
+ dfA_filt = dfA[
46
+ (dfA["Object Type"] == "Model") & (dfA["Annotation Name"].isin(dfT["Name"]))
47
+ ]
48
+
49
+ for i, r in dfA_filt.iterrows():
50
+ tName = r["Annotation Name"]
51
+ se = r["Annotation Value"]
52
+
53
+ new_data = {"Table Name": tName, "Source Expression": se}
54
+ df = pd.concat([df, pd.DataFrame(new_data, index=[0])], ignore_index=True)
55
+
56
+ return df
@@ -4,8 +4,9 @@ import pandas as pd
4
4
  from sempy_labs._list_functions import list_tables
5
5
  from sempy_labs._helper_functions import format_dax_object_name
6
6
  from typing import Optional, Tuple
7
+ from sempy._utils._log import log
7
8
 
8
-
9
+ @log
9
10
  def show_unsupported_direct_lake_objects(
10
11
  dataset: str, workspace: Optional[str] = None
11
12
  ) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
@@ -29,9 +30,7 @@ def show_unsupported_direct_lake_objects(
29
30
 
30
31
  pd.options.mode.chained_assignment = None
31
32
 
32
- if workspace == None:
33
- workspace_id = fabric.get_workspace_id()
34
- workspace = fabric.resolve_workspace_name(workspace_id)
33
+ workspace = fabric.resolve_workspace_name(workspace)
35
34
 
36
35
  dfT = list_tables(dataset, workspace)
37
36
  dfC = fabric.list_columns(dataset=dataset, workspace=workspace)
@@ -5,8 +5,9 @@ from sempy_labs._helper_functions import (
5
5
  resolve_lakehouse_name,
6
6
  resolve_workspace_name_and_id,
7
7
  )
8
- from sempy_labs._tom import connect_semantic_model
9
- from typing import List, Optional, Union
8
+ from sempy_labs.tom import connect_semantic_model
9
+ from typing import Optional
10
+ import sempy_labs._icons as icons
10
11
 
11
12
 
12
13
  def update_direct_lake_model_lakehouse_connection(
@@ -39,12 +40,12 @@ def update_direct_lake_model_lakehouse_connection(
39
40
 
40
41
  """
41
42
 
42
- (workspace, workspace_id) = resolve_workspace_name_and_id(workspace)
43
+ workspace = fabric.resolve_workspace_name(workspace)
43
44
 
44
- if lakehouse_workspace == None:
45
+ if lakehouse_workspace is None:
45
46
  lakehouse_workspace = workspace
46
47
 
47
- if lakehouse == None:
48
+ if lakehouse is None:
48
49
  lakehouse_id = fabric.get_lakehouse_id()
49
50
  lakehouse = resolve_lakehouse_name(lakehouse_id, lakehouse_workspace)
50
51
 
@@ -53,17 +54,13 @@ def update_direct_lake_model_lakehouse_connection(
53
54
  dfI_filt = dfI[(dfI["Display Name"] == lakehouse)]
54
55
 
55
56
  if len(dfI_filt) == 0:
56
- print(
57
- f"The '{lakehouse}' lakehouse does not exist within the '{lakehouse_workspace}' workspace. Therefore it cannot be used to support the '{dataset}' semantic model within the '{workspace}' workspace."
58
- )
57
+ raise ValueError(f"{icons.red_dot} The '{lakehouse}' lakehouse does not exist within the '{lakehouse_workspace}' workspace. Therefore it cannot be used to support the '{dataset}' semantic model within the '{workspace}' workspace.")
59
58
 
60
59
  dfP = fabric.list_partitions(dataset=dataset, workspace=workspace)
61
60
  dfP_filt = dfP[dfP["Mode"] == "DirectLake"]
62
61
 
63
62
  if len(dfP_filt) == 0:
64
- print(
65
- f"The '{dataset}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models."
66
- )
63
+ raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model is not in Direct Lake. This function is only applicable to Direct Lake semantic models.")
67
64
  else:
68
65
  with connect_semantic_model(
69
66
  dataset=dataset, readonly=False, workspace=workspace
@@ -73,9 +70,7 @@ def update_direct_lake_model_lakehouse_connection(
73
70
  try:
74
71
  tom.model.Expressions["DatabaseQuery"].Expression = shEx
75
72
  print(
76
- f"The expression in the '{dataset}' semantic model has been updated to point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace."
77
- )
78
- except:
79
- print(
80
- f"ERROR: The expression in the '{dataset}' semantic model was not updated."
73
+ f"{icons.green_dot} The expression in the '{dataset}' semantic model has been updated to point to the '{lakehouse}' lakehouse in the '{lakehouse_workspace}' workspace."
81
74
  )
75
+ except Exception as e:
76
+ raise ValueError(f"{icons.red_dot} The expression in the '{dataset}' semantic model was not updated.") from e
@@ -1,13 +1,17 @@
1
+ import sempy
1
2
  import sempy.fabric as fabric
2
- from sempy_labs._tom import connect_semantic_model
3
+ from sempy_labs.tom import connect_semantic_model
4
+ from sempy_labs._helper_functions import resolve_lakehouse_name
3
5
  from typing import List, Optional, Union
4
-
6
+ import sempy_labs._icons as icons
5
7
 
6
8
  def update_direct_lake_partition_entity(
7
9
  dataset: str,
8
10
  table_name: Union[str, List[str]],
9
11
  entity_name: Union[str, List[str]],
10
12
  workspace: Optional[str] = None,
13
+ lakehouse: Optional[str] = None,
14
+ lakehouse_workspace: Optional[str] = None
11
15
  ):
12
16
  """
13
17
  Remaps a table (or tables) in a Direct Lake semantic model to a table in a lakehouse.
@@ -24,10 +28,24 @@ def update_direct_lake_partition_entity(
24
28
  The Fabric workspace name in which the semantic model exists.
25
29
  Defaults to None which resolves to the workspace of the attached lakehouse
26
30
  or if no lakehouse attached, resolves to the workspace of the notebook.
31
+ lakehouse : str, default=None
32
+ The Fabric lakehouse used by the Direct Lake semantic model.
33
+ Defaults to None which resolves to the lakehouse attached to the notebook.
34
+ lakehouse_workspace : str, default=None
35
+ The Fabric workspace used by the lakehouse.
36
+ Defaults to None which resolves to the workspace of the attached lakehouse
37
+ or if no lakehouse attached, resolves to the workspace of the notebook.
27
38
  """
28
39
 
29
40
  workspace = fabric.resolve_workspace_name(workspace)
30
41
 
42
+ if lakehouse_workspace is None:
43
+ lakehouse_workspace = workspace
44
+
45
+ if lakehouse is None:
46
+ lakehouse_id = fabric.get_lakehouse_id()
47
+ lakehouse = resolve_lakehouse_name(lakehouse_id, lakehouse_workspace)
48
+
31
49
  # Support both str & list types
32
50
  if isinstance(table_name, str):
33
51
  table_name = [table_name]
@@ -35,20 +53,14 @@ def update_direct_lake_partition_entity(
35
53
  entity_name = [entity_name]
36
54
 
37
55
  if len(table_name) != len(entity_name):
38
- print(
39
- f"ERROR: The 'table_name' and 'entity_name' arrays must be of equal length."
40
- )
41
- return
56
+ raise ValueError(f"{icons.red_dot} The 'table_name' and 'entity_name' arrays must be of equal length.")
42
57
 
43
58
  with connect_semantic_model(
44
59
  dataset=dataset, readonly=False, workspace=workspace
45
60
  ) as tom:
46
61
 
47
62
  if not tom.is_direct_lake():
48
- print(
49
- f"The '{dataset}' semantic model within the '{workspace}' workspace is not in Direct Lake mode."
50
- )
51
- return
63
+ raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model within the '{workspace}' workspace is not in Direct Lake mode.")
52
64
 
53
65
  for tName in table_name:
54
66
  i = table_name.index(tName)
@@ -56,9 +68,7 @@ def update_direct_lake_partition_entity(
56
68
  try:
57
69
  tom.model.Tables[tName].Partitions[0].EntityName = eName
58
70
  print(
59
- f"The '{tName}' table in the '{dataset}' semantic model has been updated to point to the '{eName}' table in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
60
- )
61
- except:
62
- print(
63
- f"ERROR: The '{tName}' table in the '{dataset}' semantic model has not been updated."
71
+ f"{icons.green_dot} The '{tName}' table in the '{dataset}' semantic model has been updated to point to the '{eName}' table in the '{lakehouse}' lakehouse within the '{lakehouse_workspace}' workspace."
64
72
  )
73
+ except Exception as e:
74
+ raise ValueError(f"{icons.red_dot} The '{tName}' table in the '{dataset}' semantic model has not been updated.") from e
@@ -45,10 +45,7 @@ def warm_direct_lake_cache_perspective(
45
45
 
46
46
  dfP = fabric.list_partitions(dataset=dataset, workspace=workspace)
47
47
  if not any(r["Mode"] == "DirectLake" for i, r in dfP.iterrows()):
48
- print(
49
- f"{icons.red_dot} The '{dataset}' semantic model in the '{workspace}' workspace is not in Direct Lake mode. This function is specifically for semantic models in Direct Lake mode."
50
- )
51
- return
48
+ raise ValueError(f"{icons.red_dot} The '{dataset}' semantic model in the '{workspace}' workspace is not in Direct Lake mode. This function is specifically for semantic models in Direct Lake mode.")
52
49
 
53
50
  dfPersp = fabric.list_perspectives(dataset=dataset, workspace=workspace)
54
51
  dfPersp["DAX Object Name"] = format_dax_object_name(
@@ -57,10 +54,8 @@ def warm_direct_lake_cache_perspective(
57
54
  dfPersp_filt = dfPersp[dfPersp["Perspective Name"] == perspective]
58
55
 
59
56
  if len(dfPersp_filt) == 0:
60
- print(
61
- f"{icons.red_dot} The '{perspective} perspective does not exist or contains no objects within the '{dataset}' semantic model in the '{workspace}' workspace."
62
- )
63
- return
57
+ raise ValueError(f"{icons.red_dot} The '{perspective} perspective does not exist or contains no objects within the '{dataset}' semantic model in the '{workspace}' workspace.")
58
+
64
59
  dfPersp_c = dfPersp_filt[dfPersp_filt["Object Type"] == "Column"]
65
60
 
66
61
  column_values = dfPersp_c["DAX Object Name"].tolist()
@@ -131,7 +126,7 @@ def warm_direct_lake_cache_perspective(
131
126
  bar.set_description(f"Warming the '{tableName}' table...")
132
127
  css = ",".join(map(str, filtered_list))
133
128
  dax = """EVALUATE TOPN(1,SUMMARIZECOLUMNS(""" + css + "))" ""
134
- x = fabric.evaluate_dax(dataset=dataset, dax_string=dax, workspace=workspace)
129
+ fabric.evaluate_dax(dataset=dataset, dax_string=dax, workspace=workspace)
135
130
 
136
131
  print(f"{icons.green_dot} The following columns have been put into memory:")
137
132
 
@@ -166,12 +161,13 @@ def warm_direct_lake_cache_isresident(
166
161
  Returns a pandas dataframe showing the columns that have been put into memory.
167
162
  """
168
163
 
164
+ workspace = fabric.resolve_workspace_name(workspace)
165
+
169
166
  dfP = fabric.list_partitions(dataset=dataset, workspace=workspace)
170
167
  if not any(r["Mode"] == "DirectLake" for i, r in dfP.iterrows()):
171
- print(
172
- f"The '{dataset}' semantic model in the '{workspace}' workspace is not in Direct Lake mode. This function is specifically for semantic models in Direct Lake mode."
168
+ raise ValueError(
169
+ f"{icons.red_dot} The '{dataset}' semantic model in the '{workspace}' workspace is not in Direct Lake mode. This function is specifically for semantic models in Direct Lake mode."
173
170
  )
174
- return
175
171
 
176
172
  # Identify columns which are currently in memory (Is Resident = True)
177
173
  dfC = fabric.list_columns(dataset=dataset, workspace=workspace, extended=True)
@@ -181,10 +177,9 @@ def warm_direct_lake_cache_isresident(
181
177
  dfC_filtered = dfC[dfC["Is Resident"]]
182
178
 
183
179
  if len(dfC_filtered) == 0:
184
- print(
180
+ raise ValueError(
185
181
  f"{icons.yellow_dot} At present, no columns are in memory in the '{dataset}' semantic model in the '{workspace}' workspace."
186
182
  )
187
- return
188
183
 
189
184
  # Refresh/frame dataset
190
185
  refresh_semantic_model(dataset=dataset, refresh_type="full", workspace=workspace)
@@ -199,7 +194,7 @@ def warm_direct_lake_cache_isresident(
199
194
  bar.set_description(f"Warming the '{tableName}' table...")
200
195
  css = ",".join(map(str, column_values))
201
196
  dax = """EVALUATE TOPN(1,SUMMARIZECOLUMNS(""" + css + "))" ""
202
- x = fabric.evaluate_dax(dataset=dataset, dax_string=dax, workspace=workspace)
197
+ fabric.evaluate_dax(dataset=dataset, dax_string=dax, workspace=workspace)
203
198
 
204
199
  print(
205
200
  f"{icons.green_dot} The following columns have been put into memory. Temperature indicates the column temperature prior to the semantic model refresh."
@@ -6,7 +6,6 @@ from sempy_labs.lakehouse._lakehouse import (
6
6
  )
7
7
 
8
8
  from sempy_labs.lakehouse._shortcuts import (
9
- list_shortcuts,
10
9
  # create_shortcut,
11
10
  create_shortcut_onelake,
12
11
  delete_shortcut,
@@ -17,7 +16,6 @@ __all__ = [
17
16
  "get_lakehouse_tables",
18
17
  "lakehouse_attached",
19
18
  "optimize_lakehouse_tables",
20
- "list_shortcuts",
21
19
  # create_shortcut,
22
20
  "create_shortcut_onelake",
23
21
  "delete_shortcut",