semantic-link-labs 0.11.2__py3-none-any.whl → 0.11.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of semantic-link-labs might be problematic. Click here for more details.
- {semantic_link_labs-0.11.2.dist-info → semantic_link_labs-0.11.3.dist-info}/METADATA +4 -4
- {semantic_link_labs-0.11.2.dist-info → semantic_link_labs-0.11.3.dist-info}/RECORD +26 -24
- sempy_labs/__init__.py +12 -18
- sempy_labs/_a_lib_info.py +1 -1
- sempy_labs/_external_data_shares.py +55 -1
- sempy_labs/_helper_functions.py +169 -5
- sempy_labs/_labels.py +126 -0
- sempy_labs/_list_functions.py +1 -1
- sempy_labs/_notebooks.py +152 -3
- sempy_labs/directlake/_dl_helper.py +4 -1
- sempy_labs/graph/_users.py +3 -5
- sempy_labs/lakehouse/_helper.py +18 -9
- sempy_labs/lakehouse/_lakehouse.py +18 -9
- sempy_labs/migration/_migrate_calctables_to_lakehouse.py +38 -47
- sempy_labs/migration/_migrate_calctables_to_semantic_model.py +12 -22
- sempy_labs/migration/_migrate_model_objects_to_semantic_model.py +7 -11
- sempy_labs/migration/_migrate_tables_columns_to_semantic_model.py +14 -23
- sempy_labs/ml_model/__init__.py +23 -0
- sempy_labs/ml_model/_functions.py +427 -0
- sempy_labs/report/_reportwrapper.py +1 -1
- sempy_labs/tom/_model.py +8 -3
- sempy_labs/variable_library/__init__.py +19 -0
- sempy_labs/variable_library/_functions.py +403 -0
- sempy_labs/_dax_query_view.py +0 -57
- sempy_labs/_ml_models.py +0 -111
- sempy_labs/_variable_libraries.py +0 -92
- {semantic_link_labs-0.11.2.dist-info → semantic_link_labs-0.11.3.dist-info}/WHEEL +0 -0
- {semantic_link_labs-0.11.2.dist-info → semantic_link_labs-0.11.3.dist-info}/licenses/LICENSE +0 -0
- {semantic_link_labs-0.11.2.dist-info → semantic_link_labs-0.11.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,403 @@
|
|
|
1
|
+
from sempy_labs._helper_functions import (
|
|
2
|
+
resolve_item_id,
|
|
3
|
+
resolve_workspace_id,
|
|
4
|
+
_base_api,
|
|
5
|
+
_create_dataframe,
|
|
6
|
+
_update_dataframe_datatypes,
|
|
7
|
+
delete_item,
|
|
8
|
+
_decode_b64,
|
|
9
|
+
)
|
|
10
|
+
import pandas as pd
|
|
11
|
+
from typing import Any, Optional, List, Union
|
|
12
|
+
from uuid import UUID
|
|
13
|
+
from sempy._utils._log import log
|
|
14
|
+
import json
|
|
15
|
+
import sempy_labs._icons as icons
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
@log
|
|
19
|
+
def get_variable_library(
|
|
20
|
+
variable_library: str | UUID, workspace: Optional[str | UUID] = None
|
|
21
|
+
) -> pd.DataFrame:
|
|
22
|
+
"""
|
|
23
|
+
Returns properties of the specified variable library.
|
|
24
|
+
|
|
25
|
+
This is a wrapper function for the following API: `Items - Get Variable Library <https://learn.microsoft.com/rest/api/fabric/variablelibrary/items/get-variable-library>`_.
|
|
26
|
+
|
|
27
|
+
Service Principal Authentication is supported (see `here <https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Service%20Principal.ipynb>`_ for examples).
|
|
28
|
+
|
|
29
|
+
Parameters
|
|
30
|
+
----------
|
|
31
|
+
variable_library : str | uuid.UUID
|
|
32
|
+
Name or ID of the variable library.
|
|
33
|
+
workspace : str | uuid.UUID, default=None
|
|
34
|
+
The Fabric workspace name or ID.
|
|
35
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
36
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
37
|
+
|
|
38
|
+
Returns
|
|
39
|
+
-------
|
|
40
|
+
pandas.DataFrame
|
|
41
|
+
A pandas dataframe showing the properties of the variable library.
|
|
42
|
+
"""
|
|
43
|
+
|
|
44
|
+
columns = {
|
|
45
|
+
"Variable Library Name": "string",
|
|
46
|
+
"Variable Library Id": "string",
|
|
47
|
+
"Description": "string",
|
|
48
|
+
"Active Value Set Name": "string",
|
|
49
|
+
}
|
|
50
|
+
df = _create_dataframe(columns=columns)
|
|
51
|
+
|
|
52
|
+
workspace_id = resolve_workspace_id(workspace)
|
|
53
|
+
variable_library_id = resolve_item_id(
|
|
54
|
+
item=variable_library, type="VariableLibrary", workspace=workspace
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
response = _base_api(
|
|
58
|
+
request=f"/v1/workspaces/{workspace_id}/variableLibraries/{variable_library_id}",
|
|
59
|
+
client="fabric_sp",
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
result = response.json()
|
|
63
|
+
prop = result.get("properties", {})
|
|
64
|
+
|
|
65
|
+
if prop:
|
|
66
|
+
df = pd.DataFrame(
|
|
67
|
+
[
|
|
68
|
+
{
|
|
69
|
+
"Variable Library Name": result.get("displayName"),
|
|
70
|
+
"Variable Library Id": result.get("id"),
|
|
71
|
+
"Description": result.get("description"),
|
|
72
|
+
"Active Value Set Name": prop.get("activeValueSetName"),
|
|
73
|
+
}
|
|
74
|
+
],
|
|
75
|
+
columns=list(columns.keys()),
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
_update_dataframe_datatypes(dataframe=df, column_map=columns)
|
|
79
|
+
|
|
80
|
+
return df
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
@log
|
|
84
|
+
def list_variable_libraries(workspace: Optional[str | UUID] = None) -> pd.DataFrame:
|
|
85
|
+
"""
|
|
86
|
+
Shows the variable libraries within a workspace.
|
|
87
|
+
|
|
88
|
+
This is a wrapper function for the following API: `Items - List Variable Libraries <https://learn.microsoft.com/rest/api/fabric/variablelibrary/items/list-variable-libraries>`_.
|
|
89
|
+
|
|
90
|
+
Service Principal Authentication is supported (see `here <https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Service%20Principal.ipynb>`_ for examples).
|
|
91
|
+
|
|
92
|
+
Parameters
|
|
93
|
+
----------
|
|
94
|
+
workspace : str | uuid.UUID, default=None
|
|
95
|
+
The Fabric workspace name or ID.
|
|
96
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
97
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
98
|
+
|
|
99
|
+
Returns
|
|
100
|
+
-------
|
|
101
|
+
pandas.DataFrame
|
|
102
|
+
A pandas dataframe showing the variable libraries within a workspace.
|
|
103
|
+
"""
|
|
104
|
+
|
|
105
|
+
columns = {
|
|
106
|
+
"Variable Library Name": "string",
|
|
107
|
+
"Variable Library Id": "string",
|
|
108
|
+
"Description": "string",
|
|
109
|
+
"Active Value Set Name": "string",
|
|
110
|
+
}
|
|
111
|
+
df = _create_dataframe(columns=columns)
|
|
112
|
+
|
|
113
|
+
workspace_id = resolve_workspace_id(workspace)
|
|
114
|
+
|
|
115
|
+
responses = _base_api(
|
|
116
|
+
request=f"/v1/workspaces/{workspace_id}/VariableLibraries",
|
|
117
|
+
uses_pagination=True,
|
|
118
|
+
client="fabric_sp",
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
rows = []
|
|
122
|
+
for r in responses:
|
|
123
|
+
for v in r.get("value", []):
|
|
124
|
+
prop = v.get("properties", {})
|
|
125
|
+
|
|
126
|
+
rows.append(
|
|
127
|
+
{
|
|
128
|
+
"Variable Library Name": v.get("displayName"),
|
|
129
|
+
"Variable Library Id": v.get("id"),
|
|
130
|
+
"Description": v.get("description"),
|
|
131
|
+
"Active Value Set Name": prop.get("activeValueSetName"),
|
|
132
|
+
}
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
if rows:
|
|
136
|
+
df = pd.DataFrame(rows, columns=list(columns.keys()))
|
|
137
|
+
_update_dataframe_datatypes(dataframe=df, column_map=columns)
|
|
138
|
+
|
|
139
|
+
return df
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
@log
|
|
143
|
+
def delete_variable_library(
|
|
144
|
+
variable_library: str | UUID, workspace: Optional[str | UUID] = None
|
|
145
|
+
):
|
|
146
|
+
"""
|
|
147
|
+
Deletes a variable library.
|
|
148
|
+
|
|
149
|
+
This is a wrapper function for the following API: `Items - Delete Variable Library https://learn.microsoft.com/rest/api/fabric/variablelibrary/items/delete-variable-library>`_.
|
|
150
|
+
|
|
151
|
+
Parameters
|
|
152
|
+
----------
|
|
153
|
+
navariable_libraryme: str | uuid.UUID
|
|
154
|
+
Name or ID of the variable library.
|
|
155
|
+
workspace : str | uuid.UUID, default=None
|
|
156
|
+
The Fabric workspace name or ID.
|
|
157
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
158
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
159
|
+
"""
|
|
160
|
+
|
|
161
|
+
delete_item(item=variable_library, type="VariableLibrary", workspace=workspace)
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
@log
|
|
165
|
+
def get_variable_library_definition(
|
|
166
|
+
variable_library: str | UUID,
|
|
167
|
+
workspace: Optional[str | UUID] = None,
|
|
168
|
+
decode: bool = True,
|
|
169
|
+
return_dataframe: bool = False,
|
|
170
|
+
) -> dict | pd.DataFrame:
|
|
171
|
+
"""
|
|
172
|
+
Gets the definition of a variable library.
|
|
173
|
+
|
|
174
|
+
This is a wrapper function for the following API: `Items - Get Variable Library Definition <https://learn.microsoft.com/rest/api/fabric/variablelibrary/items/delete-variable-library>`_.
|
|
175
|
+
|
|
176
|
+
Service Principal Authentication is supported (see `here <https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Service%20Principal.ipynb>`_ for examples).
|
|
177
|
+
|
|
178
|
+
Parameters
|
|
179
|
+
----------
|
|
180
|
+
workspace : str | uuid.UUID, default=None
|
|
181
|
+
The Fabric workspace name or ID.
|
|
182
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
183
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
184
|
+
|
|
185
|
+
Returns
|
|
186
|
+
-------
|
|
187
|
+
dict | pandas.DataFrame
|
|
188
|
+
A dictionary showing the definition or a pandas dataframe showing the definition.
|
|
189
|
+
"""
|
|
190
|
+
|
|
191
|
+
workspace_id = resolve_workspace_id(workspace)
|
|
192
|
+
variable_library_id = resolve_item_id(
|
|
193
|
+
item=variable_library, type="VariableLibrary", workspace=workspace
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
result = _base_api(
|
|
197
|
+
request=f"/v1/workspaces/{workspace_id}/variableLibraries/{variable_library_id}/getDefinition",
|
|
198
|
+
method="post",
|
|
199
|
+
client="fabric_sp",
|
|
200
|
+
status_codes=None,
|
|
201
|
+
lro_return_json=True,
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
if decode:
|
|
205
|
+
definition = {"definition": {"parts": []}}
|
|
206
|
+
|
|
207
|
+
for part in result.get("definition", {}).get("parts", []):
|
|
208
|
+
path = part.get("path")
|
|
209
|
+
payload = _decode_b64(part.get("payload"))
|
|
210
|
+
definition["definition"]["parts"].append({"path": path, "payload": payload})
|
|
211
|
+
else:
|
|
212
|
+
definition = result.copy()
|
|
213
|
+
|
|
214
|
+
if return_dataframe:
|
|
215
|
+
df = pd.DataFrame(definition["definition"]["parts"])
|
|
216
|
+
df.columns = ["Path", "Payload", "Payload Type"]
|
|
217
|
+
return df
|
|
218
|
+
else:
|
|
219
|
+
return definition
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
@log
|
|
223
|
+
def list_variables(
|
|
224
|
+
variable_library: str | UUID, workspace: Optional[str | UUID] = None
|
|
225
|
+
) -> pd.DataFrame:
|
|
226
|
+
"""
|
|
227
|
+
Lists the variables in a variable library.
|
|
228
|
+
|
|
229
|
+
Service Principal Authentication is supported (see `here <https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Service%20Principal.ipynb>`_ for examples).
|
|
230
|
+
|
|
231
|
+
Parameters
|
|
232
|
+
----------
|
|
233
|
+
variable_library : str | uuid.UUID
|
|
234
|
+
Name or ID of the variable library.
|
|
235
|
+
workspace : str | uuid.UUID, default=None
|
|
236
|
+
The Fabric workspace name or ID.
|
|
237
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
238
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
239
|
+
|
|
240
|
+
Returns
|
|
241
|
+
-------
|
|
242
|
+
pandas.DataFrame
|
|
243
|
+
A pandas dataframe showing the variables within a variable library.
|
|
244
|
+
"""
|
|
245
|
+
|
|
246
|
+
result = get_variable_library_definition(
|
|
247
|
+
variable_library=variable_library,
|
|
248
|
+
workspace=workspace,
|
|
249
|
+
decode=True,
|
|
250
|
+
return_dataframe=False,
|
|
251
|
+
)
|
|
252
|
+
|
|
253
|
+
columns = {
|
|
254
|
+
"Variable Name": "string",
|
|
255
|
+
"Note": "string",
|
|
256
|
+
"Type": "string",
|
|
257
|
+
"Value": "string",
|
|
258
|
+
}
|
|
259
|
+
|
|
260
|
+
df = _create_dataframe(columns=columns)
|
|
261
|
+
|
|
262
|
+
rows = []
|
|
263
|
+
for part in result.get("definition").get("parts"):
|
|
264
|
+
path = part.get("path")
|
|
265
|
+
payload = json.loads(part.get("payload"))
|
|
266
|
+
if path == "variables.json":
|
|
267
|
+
|
|
268
|
+
for variable in payload.get("variables", []):
|
|
269
|
+
rows.append(
|
|
270
|
+
{
|
|
271
|
+
"Variable Name": variable.get("name"),
|
|
272
|
+
"Note": variable.get("note"),
|
|
273
|
+
"Type": variable.get("type"),
|
|
274
|
+
"Value": variable.get("value"),
|
|
275
|
+
}
|
|
276
|
+
)
|
|
277
|
+
|
|
278
|
+
if rows:
|
|
279
|
+
df = pd.DataFrame(rows, columns=list(columns.keys()))
|
|
280
|
+
|
|
281
|
+
for part in result.get("definition", {}).get("parts", []):
|
|
282
|
+
path = part.get("path")
|
|
283
|
+
if path.startswith("valueSets") and path.endswith(".json"):
|
|
284
|
+
payload = json.loads(part.get("payload"))
|
|
285
|
+
value_set_name = payload.get("name")
|
|
286
|
+
|
|
287
|
+
# Initialize the new column with None (or pd.NA)
|
|
288
|
+
df[value_set_name] = None
|
|
289
|
+
|
|
290
|
+
for override in payload.get("variableOverrides", []):
|
|
291
|
+
variable_name = override.get("name")
|
|
292
|
+
variable_value = override.get("value")
|
|
293
|
+
|
|
294
|
+
# Set the value in the appropriate row and column
|
|
295
|
+
df.loc[df["Variable Name"] == variable_name, value_set_name] = (
|
|
296
|
+
variable_value
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
return df
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
@log
|
|
303
|
+
def get_variable_values(
|
|
304
|
+
variable_names: List[str],
|
|
305
|
+
variable_library: Union[str, UUID],
|
|
306
|
+
workspace: Optional[Union[str, UUID]] = None,
|
|
307
|
+
value_set: Optional[str] = None,
|
|
308
|
+
) -> dict:
|
|
309
|
+
"""
|
|
310
|
+
Gets the values of multiple variables from a variable library with a single call to list_variables.
|
|
311
|
+
|
|
312
|
+
Service Principal Authentication is supported (see `here <https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Service%20Principal.ipynb>`_ for examples).
|
|
313
|
+
|
|
314
|
+
Parameters
|
|
315
|
+
----------
|
|
316
|
+
variable_names : List[str]
|
|
317
|
+
A list of variable names to retrieve.
|
|
318
|
+
variable_library : str | uuid.UUID
|
|
319
|
+
Name or ID of the variable library.
|
|
320
|
+
workspace : str | uuid.UUID, default=None
|
|
321
|
+
The Fabric workspace name or ID.
|
|
322
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
323
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
324
|
+
value_set : str, default=None
|
|
325
|
+
The name of the value set to use for variable overrides.
|
|
326
|
+
If None, the active value set of the variable library will be used.
|
|
327
|
+
|
|
328
|
+
Returns
|
|
329
|
+
-------
|
|
330
|
+
dict
|
|
331
|
+
Dictionary mapping variable names to their corresponding values.
|
|
332
|
+
"""
|
|
333
|
+
|
|
334
|
+
if isinstance(variable_names, str):
|
|
335
|
+
variable_names = [variable_names]
|
|
336
|
+
|
|
337
|
+
if value_set is None:
|
|
338
|
+
vl_df = get_variable_library(
|
|
339
|
+
variable_library=variable_library, workspace=workspace
|
|
340
|
+
)
|
|
341
|
+
if vl_df.empty:
|
|
342
|
+
raise ValueError(
|
|
343
|
+
f"{icons.red_dot} The variable library '{variable_library}' does not exist within the '{workspace}' workspace."
|
|
344
|
+
)
|
|
345
|
+
value_set = vl_df["Active Value Set Name"].iloc[0]
|
|
346
|
+
|
|
347
|
+
df = list_variables(variable_library=variable_library, workspace=workspace)
|
|
348
|
+
found_variables = df[df["Variable Name"].isin(variable_names)]
|
|
349
|
+
|
|
350
|
+
missing = set(variable_names) - set(found_variables["Variable Name"])
|
|
351
|
+
if missing:
|
|
352
|
+
raise ValueError(
|
|
353
|
+
f"{icons.red_dot} The following variables do not exist in the '{variable_library}' variable library: {', '.join(missing)}"
|
|
354
|
+
)
|
|
355
|
+
|
|
356
|
+
if value_set == "Default value set":
|
|
357
|
+
value_set = "Value"
|
|
358
|
+
if value_set not in df.columns:
|
|
359
|
+
raise ValueError(
|
|
360
|
+
f"{icons.red_dot} The value set '{value_set}' does not exist in the variable library '{variable_library}' within the '{workspace}' workspace."
|
|
361
|
+
)
|
|
362
|
+
|
|
363
|
+
return dict(zip(found_variables["Variable Name"], found_variables[value_set]))
|
|
364
|
+
|
|
365
|
+
|
|
366
|
+
@log
|
|
367
|
+
def get_variable_value(
|
|
368
|
+
variable_name: str,
|
|
369
|
+
variable_library: str | UUID,
|
|
370
|
+
workspace: Optional[str | UUID] = None,
|
|
371
|
+
value_set: Optional[str] = None,
|
|
372
|
+
) -> Any:
|
|
373
|
+
"""
|
|
374
|
+
Gets the value of a single variable in a variable library.
|
|
375
|
+
|
|
376
|
+
Service Principal Authentication is supported (see `here <https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Service%20Principal.ipynb>`_ for examples).
|
|
377
|
+
|
|
378
|
+
Parameters
|
|
379
|
+
----------
|
|
380
|
+
variable_name : str
|
|
381
|
+
Name of the variable.
|
|
382
|
+
variable_library : str | uuid.UUID
|
|
383
|
+
Name or ID of the variable library.
|
|
384
|
+
workspace : str | uuid.UUID, default=None
|
|
385
|
+
The Fabric workspace name or ID.
|
|
386
|
+
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
387
|
+
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
388
|
+
value_set : str, default=None
|
|
389
|
+
The name of the value set to use for variable overrides.
|
|
390
|
+
If None, the active value set of the variable library will be used.
|
|
391
|
+
|
|
392
|
+
Returns
|
|
393
|
+
-------
|
|
394
|
+
Any
|
|
395
|
+
The value of the variable.
|
|
396
|
+
"""
|
|
397
|
+
|
|
398
|
+
return get_variable_values(
|
|
399
|
+
variable_names=[variable_name],
|
|
400
|
+
variable_library=variable_library,
|
|
401
|
+
workspace=workspace,
|
|
402
|
+
value_set=value_set,
|
|
403
|
+
)[variable_name]
|
sempy_labs/_dax_query_view.py
DELETED
|
@@ -1,57 +0,0 @@
|
|
|
1
|
-
from typing import Optional
|
|
2
|
-
from uuid import UUID
|
|
3
|
-
from ._helper_functions import (
|
|
4
|
-
resolve_dataset_id,
|
|
5
|
-
_get_fabric_context_setting,
|
|
6
|
-
resolve_workspace_id,
|
|
7
|
-
)
|
|
8
|
-
from sempy._utils._log import log
|
|
9
|
-
import gzip
|
|
10
|
-
import base64
|
|
11
|
-
import urllib.parse
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
@log
|
|
15
|
-
def generate_dax_query_view_url(
|
|
16
|
-
dataset: str | UUID, dax_string: str, workspace: Optional[str | UUID] = None
|
|
17
|
-
):
|
|
18
|
-
"""
|
|
19
|
-
Prints a URL based on query provided. This URL opens `DAX query view <https://learn.microsoft.com/power-bi/transform-model/dax-query-view>`_ in the Power BI service, connected to the semantic model and using the query provided.
|
|
20
|
-
|
|
21
|
-
Parameters
|
|
22
|
-
----------
|
|
23
|
-
dataset : str | uuid.UUID
|
|
24
|
-
The semantic model name or ID.
|
|
25
|
-
dax_string : str
|
|
26
|
-
The DAX query string.
|
|
27
|
-
workspace : str | uuid.UUID, default=None
|
|
28
|
-
The workspace name or ID.
|
|
29
|
-
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
30
|
-
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
31
|
-
"""
|
|
32
|
-
|
|
33
|
-
workspace_id = resolve_workspace_id(workspace=workspace)
|
|
34
|
-
dataset_id = resolve_dataset_id(dataset=dataset, workspace=workspace_id)
|
|
35
|
-
|
|
36
|
-
prefix = _get_fabric_context_setting(name="spark.trident.pbienv").lower()
|
|
37
|
-
|
|
38
|
-
if prefix == "prod":
|
|
39
|
-
prefix = "app"
|
|
40
|
-
|
|
41
|
-
def gzip_base64_urlsafe(input_string):
|
|
42
|
-
# Compress the string with gzip
|
|
43
|
-
compressed_data = gzip.compress(input_string.encode("utf-8"))
|
|
44
|
-
|
|
45
|
-
# Encode the compressed data in base64
|
|
46
|
-
base64_data = base64.b64encode(compressed_data)
|
|
47
|
-
|
|
48
|
-
# Make the base64 string URL-safe
|
|
49
|
-
urlsafe_data = urllib.parse.quote_plus(base64_data.decode("utf-8"))
|
|
50
|
-
|
|
51
|
-
return urlsafe_data
|
|
52
|
-
|
|
53
|
-
formatted_query = gzip_base64_urlsafe(dax_string)
|
|
54
|
-
|
|
55
|
-
url = f"https://{prefix}.powerbi.com/groups/{workspace_id}/modeling/{dataset_id}/daxQueryView?query={formatted_query}"
|
|
56
|
-
|
|
57
|
-
print(url)
|
sempy_labs/_ml_models.py
DELETED
|
@@ -1,111 +0,0 @@
|
|
|
1
|
-
import pandas as pd
|
|
2
|
-
from typing import Optional
|
|
3
|
-
from ._helper_functions import (
|
|
4
|
-
resolve_workspace_id,
|
|
5
|
-
_base_api,
|
|
6
|
-
delete_item,
|
|
7
|
-
_create_dataframe,
|
|
8
|
-
create_item,
|
|
9
|
-
)
|
|
10
|
-
from uuid import UUID
|
|
11
|
-
from sempy._utils._log import log
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
@log
|
|
15
|
-
def list_ml_models(workspace: Optional[str | UUID] = None) -> pd.DataFrame:
|
|
16
|
-
"""
|
|
17
|
-
Shows the ML models within a workspace.
|
|
18
|
-
|
|
19
|
-
This is a wrapper function for the following API: `Items - List ML Models <https://learn.microsoft.com/rest/api/fabric/mlmodel/items/list-ml-models>`_.
|
|
20
|
-
|
|
21
|
-
Parameters
|
|
22
|
-
----------
|
|
23
|
-
workspace : str | uuid.UUID, default=None
|
|
24
|
-
The Fabric workspace name or ID.
|
|
25
|
-
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
26
|
-
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
27
|
-
|
|
28
|
-
Returns
|
|
29
|
-
-------
|
|
30
|
-
pandas.DataFrame
|
|
31
|
-
A pandas dataframe showing the ML models within a workspace.
|
|
32
|
-
"""
|
|
33
|
-
|
|
34
|
-
columns = {
|
|
35
|
-
"ML Model Name": "string",
|
|
36
|
-
"ML Model Id": "string",
|
|
37
|
-
"Description": "string",
|
|
38
|
-
}
|
|
39
|
-
df = _create_dataframe(columns=columns)
|
|
40
|
-
|
|
41
|
-
workspace_id = resolve_workspace_id(workspace)
|
|
42
|
-
|
|
43
|
-
responses = _base_api(
|
|
44
|
-
request=f"/v1/workspaces/{workspace_id}/mlModels",
|
|
45
|
-
status_codes=200,
|
|
46
|
-
uses_pagination=True,
|
|
47
|
-
)
|
|
48
|
-
|
|
49
|
-
rows = []
|
|
50
|
-
for r in responses:
|
|
51
|
-
for v in r.get("value", []):
|
|
52
|
-
model_id = v.get("id")
|
|
53
|
-
modelName = v.get("displayName")
|
|
54
|
-
desc = v.get("description")
|
|
55
|
-
|
|
56
|
-
rows.append(
|
|
57
|
-
{
|
|
58
|
-
"ML Model Name": modelName,
|
|
59
|
-
"ML Model Id": model_id,
|
|
60
|
-
"Description": desc,
|
|
61
|
-
}
|
|
62
|
-
)
|
|
63
|
-
|
|
64
|
-
if rows:
|
|
65
|
-
df = pd.DataFrame(rows, columns=list(columns.keys()))
|
|
66
|
-
|
|
67
|
-
return df
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
@log
|
|
71
|
-
def create_ml_model(
|
|
72
|
-
name: str, description: Optional[str] = None, workspace: Optional[str | UUID] = None
|
|
73
|
-
):
|
|
74
|
-
"""
|
|
75
|
-
Creates a Fabric ML model.
|
|
76
|
-
|
|
77
|
-
This is a wrapper function for the following API: `Items - Create ML Model <https://learn.microsoft.com/rest/api/fabric/mlmodel/items/create-ml-model>`_.
|
|
78
|
-
|
|
79
|
-
Parameters
|
|
80
|
-
----------
|
|
81
|
-
name: str
|
|
82
|
-
Name of the ML model.
|
|
83
|
-
description : str, default=None
|
|
84
|
-
A description of the ML model.
|
|
85
|
-
workspace : str | uuid.UUID, default=None
|
|
86
|
-
The Fabric workspace name or ID.
|
|
87
|
-
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
88
|
-
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
89
|
-
"""
|
|
90
|
-
|
|
91
|
-
create_item(name=name, description=description, type="MLModel", workspace=workspace)
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
@log
|
|
95
|
-
def delete_ml_model(name: str | UUID, workspace: Optional[str | UUID] = None):
|
|
96
|
-
"""
|
|
97
|
-
Deletes a Fabric ML model.
|
|
98
|
-
|
|
99
|
-
This is a wrapper function for the following API: `Items - Delete ML Model <https://learn.microsoft.com/rest/api/fabric/mlmodel/items/delete-ml-model>`_.
|
|
100
|
-
|
|
101
|
-
Parameters
|
|
102
|
-
----------
|
|
103
|
-
name: str | uuid.UUID
|
|
104
|
-
Name or ID of the ML model.
|
|
105
|
-
workspace : str | uuid.UUID, default=None
|
|
106
|
-
The Fabric workspace name or ID.
|
|
107
|
-
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
108
|
-
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
109
|
-
"""
|
|
110
|
-
|
|
111
|
-
delete_item(item=name, type="MLModel", workspace=workspace)
|
|
@@ -1,92 +0,0 @@
|
|
|
1
|
-
from ._helper_functions import (
|
|
2
|
-
resolve_workspace_id,
|
|
3
|
-
_base_api,
|
|
4
|
-
_create_dataframe,
|
|
5
|
-
_update_dataframe_datatypes,
|
|
6
|
-
delete_item,
|
|
7
|
-
)
|
|
8
|
-
import pandas as pd
|
|
9
|
-
from typing import Optional
|
|
10
|
-
from uuid import UUID
|
|
11
|
-
from sempy._utils._log import log
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
@log
|
|
15
|
-
def list_variable_libraries(workspace: Optional[str | UUID] = None) -> pd.DataFrame:
|
|
16
|
-
"""
|
|
17
|
-
Shows the variable libraries within a workspace.
|
|
18
|
-
|
|
19
|
-
This is a wrapper function for the following API: `Items - List Variable Libraries <https://learn.microsoft.com/rest/api/fabric/variablelibrary/items/list-variable-libraries>`_.
|
|
20
|
-
|
|
21
|
-
Service Principal Authentication is supported (see `here <https://github.com/microsoft/semantic-link-labs/blob/main/notebooks/Service%20Principal.ipynb>`_ for examples).
|
|
22
|
-
|
|
23
|
-
Parameters
|
|
24
|
-
----------
|
|
25
|
-
workspace : str | uuid.UUID, default=None
|
|
26
|
-
The Fabric workspace name or ID.
|
|
27
|
-
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
28
|
-
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
29
|
-
|
|
30
|
-
Returns
|
|
31
|
-
-------
|
|
32
|
-
pandas.DataFrame
|
|
33
|
-
A pandas dataframe showing the variable libraries within a workspace.
|
|
34
|
-
"""
|
|
35
|
-
|
|
36
|
-
columns = {
|
|
37
|
-
"Variable Library Name": "string",
|
|
38
|
-
"Variable Library Id": "string",
|
|
39
|
-
"Description": "string",
|
|
40
|
-
"Active Value Set Name": "string",
|
|
41
|
-
}
|
|
42
|
-
df = _create_dataframe(columns=columns)
|
|
43
|
-
|
|
44
|
-
workspace_id = resolve_workspace_id(workspace)
|
|
45
|
-
|
|
46
|
-
responses = _base_api(
|
|
47
|
-
request=f"/v1/workspaces/{workspace_id}/VariableLibraries",
|
|
48
|
-
uses_pagination=True,
|
|
49
|
-
client="fabric_sp",
|
|
50
|
-
)
|
|
51
|
-
|
|
52
|
-
rows = []
|
|
53
|
-
for r in responses:
|
|
54
|
-
for v in r.get("value", []):
|
|
55
|
-
prop = v.get("properties", {})
|
|
56
|
-
|
|
57
|
-
rows.append(
|
|
58
|
-
{
|
|
59
|
-
"Variable Library Name": v.get("displayName"),
|
|
60
|
-
"Variable Library Id": v.get("id"),
|
|
61
|
-
"Description": v.get("description"),
|
|
62
|
-
"Active Value Set Name": prop.get("activeValueSetName"),
|
|
63
|
-
}
|
|
64
|
-
)
|
|
65
|
-
|
|
66
|
-
if rows:
|
|
67
|
-
df = pd.DataFrame(rows, columns=list(columns.keys()))
|
|
68
|
-
_update_dataframe_datatypes(dataframe=df, column_map=columns)
|
|
69
|
-
|
|
70
|
-
return df
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
@log
|
|
74
|
-
def delete_variable_library(
|
|
75
|
-
variable_library: str | UUID, workspace: Optional[str | UUID] = None
|
|
76
|
-
):
|
|
77
|
-
"""
|
|
78
|
-
Deletes a variable library.
|
|
79
|
-
|
|
80
|
-
This is a wrapper function for the following API: `Items - Delete Variable Library <https://learn.microsoft.com/rest/api/fabric/warehouse/items/delete-variable-library>`_.
|
|
81
|
-
|
|
82
|
-
Parameters
|
|
83
|
-
----------
|
|
84
|
-
navariable_libraryme: str | uuid.UUID
|
|
85
|
-
Name or ID of the variable library.
|
|
86
|
-
workspace : str | uuid.UUID, default=None
|
|
87
|
-
The Fabric workspace name or ID.
|
|
88
|
-
Defaults to None which resolves to the workspace of the attached lakehouse
|
|
89
|
-
or if no lakehouse attached, resolves to the workspace of the notebook.
|
|
90
|
-
"""
|
|
91
|
-
|
|
92
|
-
delete_item(item=variable_library, type="VariableLibrary", workspace=workspace)
|
|
File without changes
|
{semantic_link_labs-0.11.2.dist-info → semantic_link_labs-0.11.3.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|
|
File without changes
|